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SCOTT T. PARSELL

Abstract. We outline an approach, based on the Hardy-Littlewood
method, for demonstrating that a pair of additive equations has a
non-trivial integral solution. Particular attention is given to the is-
sues surrounding an optimal implementation of Wooley’s iterative
method for estimating mean values of exponential sums.

1. Introduction

Let k and n be integers with k ≥ n ≥ 1, and let c1, . . . , cs and d1, . . . , ds

be non-zero integers. We consider the problem of determining conditions
under which one can demonstrate that the system of equations

c1x
k
1 + · · ·+ csx

k
s = 0

d1x
n
1 + · · ·+ dsx

n
s = 0

(1)

possesses a non-trivial integral solution. One obvious requirement is that
the system must have a non-trivial real solution and a non-trivial p-adic
solution for every prime p. In fact, the success of the Hardy-Littlewood
method depends explicitly upon good information concerning the density
of such solutions, and hence one must typically show that there are non-
singular solutions in each local field. Unfortunately, the local solubility
problem for (1) tends to be quite hard. When p > k4n2, Wooley [25]
demonstrates the existence of non-trivial p-adic solutions to (1) provided
only that s > 2(k + n), but the number of variables required for smaller
primes in the recent work of Knapp [14] is often significantly larger than
what would be required to handle the minor arcs in an application of the
circle method. Moreover, it is difficult to guarantee that the solutions
produced by the p-normalization methods of [14] and [25] are non-singular
when k − n > 1. We therefore focus our attention on determining how
large s must be in order to establish a local-global principle for (1). Define
G∗(k, n) to be the least integer r such that, whenever s ≥ r and the system

1991 Mathematics Subject Classification. 11D72, 11P55.

1



2 SCOTT T. PARSELL

(1) has a non-singular real solution and a non-singular p-adic solution for
every prime p, the system (1) has a non-trivial integral solution.

The situation in which k = n has attracted interest for quite some time,
beginning with work of Davenport and Lewis [11] on pairs of cubics in 18
variables. Cook [9] showed thatG∗(2, 2) ≤ 9, while the bound of Davenport
and Lewis for G∗(3, 3) has been steadily reduced over the years by work of
Cook [10], Vaughan [19], Baker and Brüdern [4], and finally Brüdern [7],
who obtained G∗(3, 3) ≤ 14. Obstructions to local solubility are already
apparent here, as [11] shows that there are pairs of cubics in 15 variables
possessing no non-trivial 7-adic solution. In attempting to bound G∗(k, k),
one considers exponential sums of the type

F (γ) =
∑
|x|≤P

e(γxk),

where we have written e(z) = e2πiz . In practice, the summation is often
further restricted to integers that are free of large prime factors, but we
suppress this point for now. One then observes that the number of solutions
to (1) lying in the box [−P, P ]s is given by the integral

∫
[0,1]2

s∏
i=1

F (ciα+ diβ) dα dβ.

To obtain an upper bound for the minor arc contribution to this integral,
one can apply Hölder’s inequality and then make a change of variables
that factors the integral into a product of one-dimensional mean values to
which the estimates of Vaughan and Wooley [22], [24] apply. Thus one
typically expects bounds for G∗(k, k) that are about twice the size of the
corresponding bound for G(k) in Waring’s problem. However, the sharpest
bounds for G(k) are often obtained by employing a form of p-adic iteration
to save an extra variable over what would result from a direct application of
the mean value estimates and Weyl’s inequality. As illustrated in Brüdern
[7], the extension of such techniques to pairs of equations can present serious
technical challenges, although the argument of [18], leading to the bound
G∗(5, 5) ≤ 34, is actually somewhat manageable. For larger k, the methods
of Brüdern and Cook [8] show that G∗(k, k) ≤ (2 + o(1))k log k, which
compares as expected with the well-known bound of Wooley [28].

Pairs of equations of differing degree have received considerably less
attention, as their study requires a distinctly two-dimensional approach
involving exponential sums of the shape

F (α, β) =
∑
|x|≤P

e(αxk + βxn).
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This situation was first tackled by Wooley [27], who developed a version
of Vaughan’s iterative method [20] suitable for generating mean value esti-
mates for sums of this type restricted to smooth numbers. These estimates
initially produced the bound G∗(3, 2) ≤ 14, which was later improved to
G∗(3, 2) ≤ 13 in [30] using the results of [29]. In this particular case, Woo-
ley [26] was actually able to establish p-adic solubility whenever s ≥ 11,
and hence one only needs to impose a real solubility hypothesis.

It is a straightforward exercise to generate bounds for other pairs of ex-
ponents using the general method of Wooley [29]. In particular, one should
be able to demonstrate with little difficulty thatG∗(k, n) ≤ (2+o(1))k log k,
for large k > n. However, as in the current treatment of Waring’s prob-
lem (see Vaughan and Wooley [22], [24]), there are various refinements that
may be attempted in order to obtain good results for smaller exponents. As
the amount of available technology associated with the Hardy-Littlewood
method is nowadays quite substantial, one has many options for carrying
out such refinements, and it is a non-trivial task to determine the optimal
strategy in each case. Our goal here is mainly to provide an overview of
the various possible approaches and their limitations, so we defer most of
the technical details to [17]. In the following table, the entry appearing in
row k and column n is the upper bound we obtain for G∗(k, n).

1 2 3 4 5 6 7
3 10 13 14
4 17 20 24 24
5 30 31 32 36 34
6 49 50 49 47 50 49
7 66 72 70 65 64 66 67

As mentioned above, the estimates for G∗(3, 3), G∗(5, 5), and G∗(3, 2)
are obtained from [7], [18], and [30], respectively. The bounds for G∗(k, k)
in the remaining cases follow in relatively routine fashion from the mean
value estimates of [20], [22], and [24], and it may be possible to save an
additional variable in some of these instances by proceeding as in [18].

The estimates for mean values of exponential sums obtained in our anal-
ysis may be further applied to deal with the corresponding problem on pairs
of diophantine inequalities, where one seeks to demonstrate that two forms
with real coefficients take arbitrarily small values simultaneously at inte-
gral points. This problem has already been investigated by the author [15],
[16] in the case of a cubic and quadratic form by employing the mean value
estimates of Wooley [30], together with some new ideas of Bentkus and
Götze [5] and Freeman [12]. We intend to pursue this application for other
pairs of exponents in a later paper.
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2. The Analytic Set-up

After possibly replacing some of the variables xi by −xi and then chang-
ing the signs of the corresponding coefficients in forms of odd degree, we
may suppose that the system (1) has a non-singular real solution with all
coordinates positive, and hence it suffices to consider solubility in positive
integers. Let

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n⇒ p ≤ R}
denote the set of R-smooth numbers of size at most P . As usual, we take
P to be a large positive number and R to be a small positive power of P ,
so that one has card(A(P,R)) � P (see for example Vaughan [21], §12.1).
We now write α = (α, β) and define the exponential sums

F (α) =
∑

1≤x≤P

e(αxk + βxn)

and

f(α) =
∑

x∈A(P,R)

e(αxk + βxn). (2)

Further, write Fi(α) = F (ciα, diβ) and fi(α) = f(ciα, diβ), and introduce
the decomposition s = t+ 2u. Then one sees that

N(P ) =
∫

[0,1]2

t∏
i=1

Fi(α)
s∏

i=t+1

fi(α) dα

is the number of solutions of (1) with the variables satisfying

1 ≤ xi ≤ P (i = 1, . . . , t) and xi ∈ A(P,R) (i = t+ 1, . . . , s).

We now describe our Hardy-Littlewood dissection. Write tk = max |ci|
and tn = max |di|, and let Xi = 2k2tiP

i−1 for i = k, n. Define the major
arcs M to be the union of the rectangles

M(q, a, b) = {α ∈ [0, 1)2 : |qα− a| ≤ X−1
k and |qβ − b| ≤ X−1

n }
with 0 ≤ a, b ≤ q ≤ P and (q, a, b) = 1, and write

m = [0, 1]2 \M

for the minor arcs. Provided that s and t are not too small, the existence
of non-singular real and p-adic solutions allows one to show that∫

M

t∏
i=1

Fi(α)
s∏

i=t+1

fi(α) dα � P s−(k+n) (3)

by employing a straightforward extension of the argument of Wooley [27].
Here one uses the t variables ranging over a complete interval to prune
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back to a thinner set of major arcs, on which asymptotics for fi(α) can be
obtained. For the minor arcs, an application of Hölder’s inequality, together
with a consideration of the underlying diophantine equations, shows that∫

m

t∏
i=1

Fi(α)
s∏

i=t+1

fi(α) dα � sup
α∈m

|Fi(α)|t
∫

[0,1]2

|f(α)|2u dα

for some i. A minor arc bound for Fi(α) is provided by a generalization of
Weyl’s inequality due to Baker [1] (see also [2], [3]), while the estimation
of the even moments of f(α) represents our main challenge. Baker’s result
allows us to save essentially P σ per variable over the trivial estimate, where
σ = 21−k, and our mean value estimates take the shape∫

[0,1]2

|f(α)|2udα � P 2u−(k+n)+∆u+ε, (4)

where an estimate with ∆u = 0 would be essentially best possible. We
therefore obtain the bound∫

m

t∏
i=1

Fi(α)
s∏

i=t+1

fi(α) dα � P s−(k+n)−δ

for some δ > 0, provided that σt > ∆u. Thus on recalling (3), one has

G∗(k, n) ≤ min
u∈N

(
2u+

[
∆u

σ

]
+ 1

)
. (5)

We concentrate on obtaining bounds for ∆u in the remaining sections.

3. Efficient Differencing

One sees from the above discussion that the number of variables required
to establish a local-global principle for the system (1) is closely connected
with the strength of the available estimates for mean values of the exponen-
tial sums (2). We now indicate a strategy, based on the method of Wooley
[29], for obtaining such mean value estimates. Wooley [27] showed using
elementary methods that the number of solutions of the system

xk
1 + xk

2 + xk
3 = yk

1 + yk
2 + yk

3

xn
1 + xn

2 + xn
3 = yn

1 + yn
2 + yn

3

(6)

with xi, yi ∈ [1, P ] is O(P 3+ε) whenever k > n ≥ 1. This provides an
estimate for the 6th moment of F (α), and hence of f(α), that is essentially
best possible in view of the diagonal solutions to (6). One only saves P 3

over the trivial estimate, however, so in the context of (4) one is forced
to take ∆3 = k + n − 3. An examination of (5) with u = 3 therefore
produces unimpressive bounds such as G∗(3, 2) ≤ 15 and G∗(5, 3) ≤ 87. To
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improve on these, one instead uses the information concerning the number
of solutions to (6) as the basis for an iteration to higher moments via the
method of Vaughan [20] and Wooley [28], [29].

A typical step in the iteration may be summarized as follows. Suppose
that one has an estimate of the shape (4) for the mean value

Ss(P,R) =
∫

[0,1]2

|f(α)|2s dα,

and write λs = 2s− (k + n) + ∆s. Then Ss+2(P,R) is bounded above by
the number of solutions of the system

zk
1 − wk

1 + zk
2 − wk

2 =
s∑

i=1

(xk
i − yk

i )

zn
1 − wn

1 + zn
2 − wn

2 =
s∑

i=1

(xn
i − yn

i )

(7)

with xi, yi ∈ A(P,R) and zi, wi ∈ [1, P ]. Now let θ ≤ 1/k be a parameter
at our disposal, and write

M = P θ, Q = PM−1, and H = PM−k.

The solutions of (7) with some xi or yi smaller than M can be shown to
contribute a negligible amount, and for the remaining solutions the fact
that xi and yi are R-smooth implies that each has a divisor lying between
M and MR. Then by applying Hölder’s inequality, one reduces to the
situation in which the divisors are all identical and is thus led to analyze
the system

zk
1 − wk

1 + zk
2 − wk

2 = mk
s∑

i=1

(uk
i − vk

i )

zn
1 − wn

1 + zn
2 − wn

2 = mn
s∑

i=1

(un
i − vn

i )

(8)

with ui, vi ∈ A(Q,R), M < m ≤MR, and zi, wi ∈ [1, P ]. One may further
suppose, after some effort, that m is coprime to any Jacobian determinant
of zi and wj arising from the left-hand side.

Equipped with an estimate for the number of non-singular solutions in
zi, wi, distinct modulo mk, to the implicit pair of congruences in (8), one
can further reduce, via Cauchy’s inequality, to the situation in which

z1 ≡ w1 (mod mk) and z2 ≡ w2 (mod mk). (9)
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These congruence conditions allow us to perform a differencing operation
that is more efficient than the classical one of Weyl, since we can now write

w1 = z1 + h1m
k and w2 = z2 + h2m

k

with h1 and h2 of magnitude at most H . It is actually convenient to write
xi = zi + wi and to consider the symmetric difference polynomials

ψi(x, h,m) = m−i((x+ hmk)i − (x − hmk)i).

One then finds (essentially) that

Ss+2(P,R) � P εM2s+k−n−1

∫
[0,1]2

F1(α)|f1(α)|2s dα, (10)

where

F1(α) =
∑
m

∣∣∣∣∣∣
∑
h,z

e(αkψk(z, h,m) + αnψn(z, h,m))

∣∣∣∣∣∣
2

,

with the summations running over

M < m ≤MR, 1 ≤ h ≤ H, and 1 ≤ z ≤ 2P,

and where

f1(α) =
∑

x∈A(2Q,R)

e(αkx
k + αnx

n).

Of course, one also needs to account for the terms with h = 0, but in
practice one usually chooses θ in such a way that this diagonal contribution
is of the same order of magnitude as the expression in (10). The factor of
M2s+k−n−1 appearing in (10) represents the cost of obtaining the uniform
divisor m and imposing the strong congruence condition (9). One can
now obtain an estimate for Ss+2(P,R) by employing the trivial bound
F1 �MH2P 2 together with the estimate Ss(2Q,R) � Qλs+ε, which was
obtained at the previous stage. Alternatively, one could extract divisors
from the ui and vi in (8) and then repeat the differencing argument, perhaps
multiple times, before making a final estimate. More creative strategies for
dealing with (10), along the lines of Vaughan and Wooley [22], [24], are
described in the next section.

4. End-game Strategies

If we apply the efficient differencing argument of the previous section j
times, then we choose parameters M1, . . . ,Mj corresponding to the sizes
of the divisors extracted at each difference. The variables ui and vi in the
analogue of (8) are represented by an exponential sum fj that is identical
to f1 except that the variables range only up to 2jP (M1 · · ·Mj)−1. The
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polynomial ψi is replaced by a polynomial of degree i− j in z that is also
a function of the divisors m1, . . . ,mj and difference parameters h1, . . . , hj.
We can then write down an exponential sum Fj analogous to F1 and at-
tempt to estimate an integral of the shape∫

[0,1]2

Fj(α)|fj(α)|2r dα. (11)

Here r is typically about s− j, where s is as in (10). Finally, we trace this
estimate back through the differencing process, optimizing the parameters
Mi along the way, until we reach (10). The fundamental decisions to be
made are how many differences to take and how to estimate the integral
(11) after the final difference.

One possible approach, useful near the beginning of the iteration, is
to consider estimates for the various moments of Fj(α). For example, it
is fairly easy to demonstrate by considering the underlying diophantine
equations that one has∫

[0,1]2

F1(α)2 dα � P 2+εM2H3, (12)

with similar results holding for Fj whenever j ≤ k−2. Higher moments can
also be estimated, but the bounds are in most cases too weak to be useful
in light of the other available methods. In order to use an estimate such
as (12), we apply Hölder’s inequality to (11), and this in turn may require
us to estimate a higher moment of fj that was not scheduled to be dealt
with until later in the iteration. Thus we should first obtain preliminary
bounds for all the relevant moments by applying (for example) the method
described at the end of §3. It is sometimes effective when using mean
values to employ a generalization of the differencing argument in which
the congruence condition (9) is weakened in order to reduce the cost of
imposing it. In bounding G∗(5, 3), for example, it is useful to consider
the congruences modulo m3

j rather than modulo m5
j on the final difference

when s is small.
Towards the end of the iteration, the use of mean values tends to become

less effective. If we are sufficiently far from a diagonal situation, however,
it is often possible to obtain major and minor arc estimates for the sums
Fj and hence to treat the integral (11) by means of a Hardy-Littlewood
dissection. For example, in the case k = 5 and n = 3 one has

α5ψ5 + α3ψ3 = 10hα5z
4 + (20h3m10α5 + 6hm2α3)z2,

and one can deduce from Baker [1] that there are good rational approxi-
mations to the coefficients of z4 and z2 above (for many values of h and m)
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whenever the sum F1 is unusually large. However, the resulting approxima-
tions to α5 and α3 certainly depend on h and m, and it is not immediately
clear that there is any fixed choice for which the approximations are of
major arc quality. Fortunately, Baker’s argument confronts essentially the
same issue, in the context of ordinary Weyl differencing, and employs a
result of Birch and Davenport [6] to obtain uniform approximations of the
desired quality. While a version of Baker’s argument works in principle for
our situation, there are in fact several conditions to check, and these tend
to fail unless j is relatively small in terms of k and n. In the case k = 5 and
n = 3, for example, the method is currently only successful for first differ-
ences. A possible alternative for larger j is to attempt a one-dimensional
dissection based solely on approximations to αk, but this is usually inferior
to the other available methods.

Finally, the constant interplay between exponential sums and underlying
diophantine equations gives rise to a variety of ad-hoc methods for estimat-
ing the integral (11) more directly. For example, if we difference n times,
then we reduce to a system analogous to (8), but where the left-hand side
of the second equation is zero. For the quintic-cubic case, the resulting
system is

480h1h2h3(z2
1 − z2

2) =
r∑

i=1

(u5
i − v5

i ), 0 =
r∑

i=1

(u3
i − v3

i ).

To count the solutions with z1 = z2, it suffices to fix the variables z1, h1,
h2, and h3 and to apply an estimate for Sr(P,R). If z1 6= z2, then we
can instead fix the ui and vi using the second equation, at which point h1,
h2, h3, z1, and z2 are determined to O(P ε) by a divisor estimate. Note
that in either case the variables m1, m2, and m3 must be accounted for
by a trivial estimate, since they do not appear explicitly in the system.
This method turns out to be quite effective in the intermediate stages
of the iteration and is noteworthy because it has no analogue in a one-
dimensional situation like Waring’s problem. When k−n = 1 and j ≤ n−1,
a variation employed by Wooley in bounding G∗(3, 2) is often somewhat
more effective. Here one deals with the non-diagonal solutions by taking a
linear combination of the two equations and then applying a generalization
of Hua’s inequality ([13], Theorem 4). It is in some ways natural to view
the type of analysis described in this paragraph as a more direct version of a
Hardy-Littlewood dissection, with the non-diagonal and diagonal solutions
corresponding respectively to the major and minor arcs (see [23]).

The whole iterative process can now be repeated, seeded with improved
preliminary estimates, until the values of λs stabilize. Because of the num-
ber of possibilities at each stage, we use a computer to determine the opti-
mal iterative scheme for each pair of exponents. In the quintic-cubic case,
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a combination of mean values, dissections, and ad-hoc analyses permits
us to obtain ∆15 ≤ 0.11321, and the bound G∗(5, 3) ≤ 32 then follows
immediately from (5).

It is generally not effective to difference more than n times, because
the loss of the non-singularity condition on the implicit pair of congru-
ences would then essentially force us into a one-dimensional analysis. It is
therefore difficult to generate good estimates for G∗(k, n) when n is small
relative to k, since a large value of k would ordinarily call for a large number
of differences. As a consequence, we sometimes obtain better bounds for
G∗(k, n) when n is close to k than for G∗(k, 1) or G∗(k, 2). This is contrary
to the expectation that systems of lower total degree should require fewer
variables to solve, but it seems to be a fundamental difficulty associated
with the method.
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