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ASYMPTOTIC ESTIMATES FOR RATIONAL LINEAR SPACES
ON HYPERSURFACES

SCOTT T. PARSELL

ABSTRACT. We develop a repeated efficient differencing procedure for estimat-
ing mean values of certain multidimensional exponential sums over smooth
numbers. As a consequence, we obtain asymptotic lower bounds for the num-
ber of linear spaces of fixed dimension up to a given height lying on the hy-
persurface defined by an additive equation.

1. INTRODUCTION

The problem of counting integral points lying on the hypersurface defined by an
additive equation has occupied a prominent place in number theory over the past
century. Specifically, one often asks how large s must be in terms of k£ in order to
ensure that the hypersurface

(1.1) ey + o tezb =0

contains a non-trivial integral point for all integers cy, ..., cs. Frequently, one also
wishes to establish asymptotic estimates for the number of integral points lying
within a box as the box size tends to infinity. Subject to a local solubility hypothesis,
the ground-breaking work of Wooley [12] on Waring’s problem can be used to show
that the number of integral solutions of (II)) in the box [P, P]® has the expected
order of magnitude of P*~* whenever s > (14+0(1))klog k. Moreover, an asymptotic
formula for the number of solutions can be established when s > (1 +o(1))k? log &,
and in this case no local solubility hypothesis is needed (except for indefiniteness)
since a classical result of Davenport and Lewis [5] shows that k2 + 1 variables suffice
to satisfy the congruence conditions.

Because of the homogeneity of ([I1l), if the hypersurface in question contains one
non-trivial integral point, then it contains all scalar multiples of that point as well.
One may choose to express this by saying that the hypersurface contains a rational
linear space of projective dimension zero, and it is therefore natural to ask about
linear spaces of higher dimension. While results concerning the existence of such
spaces date to work of Brauer [4] and Birch [3], asymptotic estimates for the number
of such spaces up to a given height seem to have been considered only in recent work
of the author (see [6], [7], and [9]). If x1,...,%4 are linearly independent vectors
in Z°, then we are interested in determining whether the linear space of projective
dimension d — 1 spanned by these vectors is contained in (ILI). By collecting the
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coefficients of tzf . -tﬁf for each d-tuple (i1, ...,iq) satisfying iy + --- 4+ ig = k, one
sees that this occurs if and only if x1,...,x4 satisfy the system of equations
(1.2) aziy a4 teat o xl =0 (i +ig=k).

We note that the number of equations in the above system is given by
kE+d—1
(1.3) (= < + ) )

We shall frequently abbreviate a monomial of the shape :czf . ~:c;d by x!, and we
shall also write |i| = i1 + -+ + iq. Our strategy for counting solutions of (L2 is
to focus on solutions in which most of the variables are free of large prime factors.
Thus our main tool will be the exponential sum

fle)=flesP,R)= Y el D> ax|,

Z1,...,tg €A(P,R) li|=k
where e(y) = €2™, and where
AP,R)={n€[1,P]NZ: p|n, p prime = p < R}

denotes the set of R-smooth numbers up to P. In order to account for negative
solutions to (L2), we let f*(a) denote the analogue of f(a) in which the variables
x1,...,2q range over = A(P, R) U {0}. By orthogonality, the number of solutions
N i,a(P) of the system ([2) with z;; € [P, P] N Z satisfies

Ny p,a(P) > /w Hf*(cja) do,
j=1

where T? denotes the /-dimensional unit hypercube. Our aim is to show that
N k.a(P) > Psa=kL whenever s is sufficiently large in terms of £ and d. This then
leads to a similar estimate for the number of linear spaces of height at most P
lying on ([I1l), except that each space is counted with a weight equal to the number
of different bases. We return to the issue of counting distinct spaces later in this
section.

In order to count solutions of the system (2]) via the Hardy-Littlewood method,
one needs upper bounds for the number of solutions of an auxiliary symmetric sys-
tem. We find it convenient to do the bulk of our analysis with the exponential sum
f (), which restricts us for the moment to positive solutions. We let S i 4(P, R)
denote the number of solutions of the system

Xi+-+xi=yi+o+yy o (lil=k)
with z;;,y:; € A(P, R), and we observe that

&mmm:/umﬂmwm-
‘]1‘2

Before considering upper bounds for S . (P, R), it is useful to derive an elementary
lower bound. Let S; i q4(P, R;h) denote the number of solutions of the system

S

Yo -y = (il=k)

m=1
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with X,,, ym € A(P, R)?, and observe that
SeralPRsh) = [ [f(ei P R)Pel(~a b da < S.palP.R)
‘]1‘2

Thus, by summing over all values of h for which S i 4(P, R; h) is non-zero, we find
that

|A(P, R)|**¢ < P*S; ;. 4(P, R).
If R is at least a positive power of P, then it is well known (see for example [I1],
section 12.1) that A(P, R) > P, so in this case we have

(1.4) Sska(P; R) > P27

By considering diagonal solutions, one also obtains the lower bound S i 4(P, R) >
P4 but the expression in (L) dominates whenever s > kf/d. Moreover, a heuristic
argument suggests that P?*¢~** represents the true order of magnitude, since there
are O(P?%9) choices for the variables and a random choice should satisfy each of
the ¢ equations (independently) with probability O(P~F).

Thus we aim to establish estimates of the shape
(1.5) Ss’k’d(P, R) < P2$d_ke+As+E,

where Ay = A; ¢ is small whenever s is sufficiently large in terms of k and d. If
the estimate (LH]) holds with R = P whenever 5 is sufficiently small, we say that
A; is an admissible exponent for (s, k,d). Our main theorem in this direction is
the following.

Theorem 1.1. Suppose that k is sufficiently large in terms of d, and write
(1.6) so = dkl (1 log(dk) — loglogk) .
Then the estimate (L)) holds with

_Jdke e3—2s/(dkl) if 1 <s< s,
* 7 € (logk)? e33(—50)/ QAR if g5 g0

We now state our estimate for Ny x 4(P) that follows from Theorem [[T] through
an application of the Hardy-Littlewood method.

Theorem 1.2. Suppose that k is sufficiently large in terms of d and that s > sq,
where

(1.7) s1 = dkl(% log(k() + log(dk) + 2loglogk + 8).

Further suppose that the system ([L2) has a non-singular real solution and a non-

singular p-adic solution for every prime p. Then there are positive constants C =
C(s,k,d;c) and Py = Py(s, k,d;c) such that whenever P > Py one has

N p.a(P) > CP*=H,

A simple counting argument shows that the number of choices for x1,...,x4 €
[P, P]* N Z® that are linearly dependent over Q is O(P*=+4). Whenever s >
kf+d, as is the case in (L), this is of smaller order of magnitude than P*¢=*¢ so the
conclusion of Theorem [[2 holds with N; » 4(P) replaced by N7, ,(P), the number
of solutions of (I.2) for which the vectors x1,...,X, are linearly independent.

Heights for subspaces. In view of the preceding remark, Theorem [[22l may be
interpreted as providing lower bounds for the number of linear spaces of bounded
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“height” lying on the hypersurface (LI)). We now aim to make this assertion some-

what more precise. First of all, we define the height of a vector x = (z1,...,2,) €
Z" to be
H(X) _ maxlgign ‘.’L‘Z‘ .
ged(xy, ..., p)
Notice that this height is also well defined on points viewed as elements of projective
space. Now for a subspace £ C Z°® with basis vectors x1,..., Xy, we write

H(L)=H(xy A+ Axq),

where we set n = (2) and identify the wedge product with its natural embedding

in Z"™. If y1,...,yq is another basis of £, then we have Y = X B, where X and Y
denote the s x d matrices corresponding to each basis and where B is an invertible
d x d change-of-basis matrix. Since

yl/\---/\yd:(detB) b SIARERWAD &1

we see that our definition of height does not depend on the basis.

Let N k.qa(P) denote the number of distinct linear spaces £, with projective
dimension d — 1 and height at most P, lying on the hypersurface (IIl). If g (L)
denotes the number of integral bases for £ with all components bounded by @ =
(P/d))"/?, then we have

Nipa(@ <Y Bol) < (max fo(L)) Noka(P).

H(L)XP

The number of possibilities for the change-of-basis matrix can be estimated by
choosing a prime p with @ < p < 2@ and viewing the computations over F,,. It is

then clear that (L) <« pd2 < de, so we have
Ns,k,d(P) > Qsd7k€7d2 > ps—kt/d—d

whenever the conditions of Theorem hold. This provides an estimate of the
type advertised in the title. It seems that a more sophisticated approach would be
required to obtain asymptotic formulas for N 4(P) from the results of [9].

The author expresses his sincere thanks to Bob Vaughan and Trevor Wooley for
constant encouragement and for many helpful discussions concerning this problem
and related ideas. The author also acknowledges the useful comments of the referee.

2. PRELIMINARY ESTIMATES

Fundamental to our iterative method is an estimate for the number of non-
singular solutions to an associated system of congruences. In order to retain ad-
equate control over the singular solutions, however, we are forced to work with
systems somewhat smaller than ([2]). We find it convenient to place the indices
i in lexicographic order, so that one writes i < j if and only if there exists | with
0 <l < dsuch that iy = j1,...,4 = j; and 4;41 < ji+1. We temporarily think of j
as being fixed and write j; for the multi-index (4,0, ...,0). Further, let

(2.1) éjz(k_f;_r;l_l)

denote the number of equations in ([2) with i > j;. It turns out that these
equations form a maximal set to which we can apply the argument in §3 for counting
singular solutions with j efficient differences.
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Suppose that f;(x) is a polynomial in ¢ variables with ¢t > ¢;, and let u € Z%.
When q € N? we again adopt the notation q' = ¢}'---¢% and further write
g = q1---qq. We now define Bqy(f;u) to be the number of non-singular solutions
x € (Z/q*7Z)* of the system of congruences

fi(x) =w; (mod q') (i>ji, |i| = k).

By a non-singular solution, we mean a solution for which the Jacobian matrix
(0fi/0x;) of the left-hand side has at least one ¢; x £; sub-matrix whose determinant
is relatively prime to q.

Lemma 2.1. Suppose that f; € Z[xy,...,x4], where t > {;. Further let u € Z%
and q € N%, and write ¢ = q1 - - qq4. Then one has

0 . g
card B4(f; u) <« q’“’f_?](k_”*'sq1 it

Proof. We start by choosing integers a; = u; (mod q') with 1 < a; < ¢* for each i
with i > j; and |i| = k. Since the number of prime divisors of ¢ is O(log ¢/ loglog q),
it follows from the main theorem of Wooley [15] and the Chinese Remainder The-
orem that the number of non-singular solutions of the system of congruences

fix)=a; (mod ¢*) (i>j1, li|=k)
is O(g*(t=4)*e) for each choice of a. Now the number of choices for a is ¢ - - g,
where
wm= > (ki)

i-ji,|i|l=k
Furthermore, the number of indices i with i > j; and ¢,,, = r is

k—r—j+d—-2
d—2

k—r+d—-2
d—2

if m=1and r > 7, and zero if m =1 and r < j. Thus we obtain the formulas

> T B B Gy

r=0 =0

whenever 2 < m < d,

for 2 <m < d and

We now observe that
k—j k—j
l+d—2 l+d-1 l+d—-2
=03 (07) —ans [(50) - (057
=1 =1
with the convention that () =0 when n < 0. The latter sum telescopes to give

==Y < da- - e
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and it is easy to see that w,, = w; + j¢; for m > 2. Thus for m > 2 one has
k(t—4;) +wm =kt —kl; +kf;(1— é) — g1 — é) +jb; =kt — %](k: —1J),

and the lemma follows. O

Definition 2.2. When 0 < j < k, we say that (¥) is of type (j, P, A) if

(1) The system consists of polynomials ¥; € Z[z1,..., z4], each of total degree
k — j, indexed by the vectors i satisfying |i| = k.

(2) The coefficient of each term of degree k — j in ¥; is bounded by APJ.

(3) For each i with i = (5,0,...,0), the polynomial ¥; contains a term of degree
k — j that does not appear explicitly in any of the ¥y with i’ = i.

Write so(n) for the square-free kernel of the integer n, defined to be the product
of all primes dividing n. We conclude this section by recalling an estimate for the
number of integers in an interval with a given square-free kernel.

Lemma 2.3. Suppose that X is a positive real number and n is a positive integer
such that logn < log X. Then, for every e > 0, one has

card{y < X : 59(y) = so(n)} < X°.
Proof. This is Lemma 2.1 of Wooley [12]. d

3. EFFICIENT DIFFERENCING

Our goal in this section is to develop an iterative method for bounding
Ss.k,d(P,R) as s increases, and it is convenient to increase s to s + ¢, where ¢
is as in ([I3)), at each iteration. Moreover, within each iteration, we aim to employ
a repeated differencing process that injects new congruence information at each
stage.

We suppose throughout that & is sufficiently large in terms of d and that P
is sufficiently large in terms of k. We let ¥ be a system of type (j, P, A) for
some constant A, where 0 < j < k. We further let C1,...,C, be constants and
write C = C1C5---C,,. For each i with |i| = k, we let D; € Z[xy,...,z,] have
the property that D;(c) # 0 whenever 1 < |¢| < C;. Generally, the variables ¢
and n denote small positive numbers whose values may change from statement to
statement. Typically, n will be chosen sufficiently small in terms of ¢, and the
implicit constants in our analysis may depend at most on €,7,s,k, and d. Since
our methods involve only a finite number of steps, all implicit constants that arise
remain under control, and the values assumed by 7 remain uniformly bounded away
from zero.

We let S (P, Q, R; ¥) denote the number of solutions of the system

(3.1) D 0(i(zn, ) — Wi(wy,€)) = Di(e) > (xh, —yh) (i =k)
n=1 m=1
with 1 < zp,wy < P, with 2, y0u € A(Q, R), with 7, € {£1}, and with
1 < ¢ < C;. Note that we have suppressed the dependence on k, d, C, and D for
simplicity; likewise, we shall often abbreviate Ss x 4(P, R) by Ss(P, R).
We further write Jac(¥;z,w,c) for the ¢; x 2rd Jacobian matrix formed with
the polynomials on the left-hand side for which i > j;, and we write Jac(¥;z, c)
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and Jac(¥;w,c) for the corresponding ¢; x rd Jacobians. Here we think of z as

(Zla s 7Z7“)'
When u € Z™ and v € Z™ with m < n, we write u—v if there exists a strictly
increasing function o : {1,...,m} — {1,...,n} with the property that u; = v,

for each ¢ with 1 < i < m. If z* € Z% and z*<z, then we also write J(¥;z*, c) for
the determinant of the ¢; x ¢; matrix Jac(¥;z*, c). Now let S, (P, Q, R; ¥) denote
the number of solutions of (1] with the variables as above and additionally

(3.2) J(¥;z*,¢c)#0 and J(P;w*,c)#0
for some z*, w* € Z% with z*<—z and w*—w.
Finally, we let Ts (P, Q, R, ; ¥) denote the number of solutions of the system
(33) D ma(Ti(zn,c) = Ui(wy,c)) = Di(c)d' (uh, —vi,) ([ =k)
n=1 m=1
with z, w, ¢, and i as above, with u,;, v, € A(QP~Y, R), with q € [P?, P’R]4,
and with

(3.4) Znt = wn (mod (g1 -+ ga)").

We are now ready to state the fundamental lemma that provides the basis for our
efficient differencing procedure.

Lemma 3.1. Suppose that (¥) is a system of type (j, P, A), where {; < rd, and let
0 be a parameter at our disposal. For each € > 0, there exists n = n(e, s, k,d) > 0
such that whenever R < P" one has

Syr(P,Q, R; ®) < CP¥I-D+5-16(Q R) + PUT°Q*1S, | .(P,Q, R; )
+ (POR)(2571)d+k(rd276j)+6Ts r(Pa Q, R, 0; \I/)

Proof. Let Sy denote the number of solutions counted by S; (P, @, R, ¥) for which
the rank of Jac(¥;z, w, c) is less than ¢;, and let S denote the number of solutions
for which Jac(¥;z,w,c) has rank ¢;. We sometimes find it convenient to write
U;(Z,c) as a polynomial in the variable Z = (Z,...,Z4), which may then be
evaluated at any Z € {z1,...,%,, Wy,..., W, }.

First of all, suppose that S; > S5, and consider a choice of z and w counted by
S1. Then the rows of the corresponding Jacobian matrix are linearly dependent, so
there exist a; € Z, not all zero, such that

oW;
(3.5) S a 37

i>j1

=0
Z=Z,

whenever Zg € {z1,...,2,,W1,...,w,.} and 1 <[ < d. We now choose a prime
p € [P, 2P] that does not divide any coefficient of a term of maximal degree in any
of the polynomials 0¥;/0Z;. The number of choices for the coefficients a; modulo
p is O(p®~1), since one of them may be normalized to 1 in F,. Now let i denote
the smallest index (in the lexicographic ordering defined above) for which a; is non-
zero modulo p. By condition (3) of Definition 2] there is an | with 1 <1 < d
such that 0¥;/0Z; contains a term of degree k — j — 1 that is not present in any
0V;/0Z; with j > i. Thus, by considering terms of degree k — j — 1, it follows that
the polynomial Zi>_j1 a; 0W;/0Z; is not identically zero in F,[Z1,...,Z4]. Hence
B3) shows that each z, and w,, satisfy a non-trivial polynomial equation in d
variables over the field FF),, so the argument of the proof of Lemma 2 of Wooley



2936 SCOTT T. PARSELL

[14] shows that the number of choices for z and w modulo p is O(p?" (=) for each

fixed choice of the a;. Thus the total number of possibilities for z and w modulo
pis <« p?rld=1 . pti-1 « p2rd=1+6-1" Gince p > P, it follows that there are
O(P2rd=1+6;-1) choices for z and w over Z as well. Trivially, there are O(C)
choices for ¢ and 1. Now write

fc(O‘;QaR) = Z e Z aiDi(c)x‘

x€A(Q,R)? li|l=k

Then for any fixed choice of z, w, ¢, and 7, there is an integral vector n such that
the number of choices for x and y satisfying (B.1]) is given by

[ felesQ. R e(ar- n)da < 5.(Q. ).

where this last inequality follows on considering the underlying Diophantine equa-
tions. We therefore have

(3.6) Syr(P,Q, R; ®) < 25, < CP¥@-D+5-15(Q R).

Next, suppose that S, > S7, and consider a solution counted by S3. After
relabeling variables and making appropriate sign changes, we may suppose that
Jac(¥;z,c) has rank ¢;. When z € Z" and Z C {1,...,rd} with |Z| = ¢;, we
define the vector zz € Z% to have ith component Z,(;), where o(i) is the ith
element (in increasing order) of Z. In particular, we have zz<—z. Here again we
typically think of the components of z to be ordered as (z1,...,z,).

We therefore have

Ser(PQRW) < Y / He (o Py )M, (0 P )| fo(o; Q, R) > dax,
c,n,w,Z
where
Henles P#) = Ye [ 3 0 Y miti(on e
z H k n=1

and

cwI(aP\I’) Z Zalzwn (Zn,c

J(‘I’;zzz,c);éo li=k  n=1
By the Cauchy-Schwarz inequality, we have
1/2
S < (Z L Hcm(a)?fc(amda) z [ Mew(@Ptele)lda |

where we have abbreviated Ss (P, Q, R; ¥) and the exponential sums f.(o; @, R),
Hen(o; P ), and H7 , 7(a; P; ¥) in the obvious ways. It follows on considering
the underlying Dlophantlne equations that the first factor on the right-hand side is
bounded above by S, .(P,Q, R; ®)'/? and hence that

(3.7) Ser(PQRW) < > S3(T) < max S3(2),
IC{1,...,rd}
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where S3(Z) is the number of solutions counted by S; (P, @, R; ¥) for which
J(¥;z7,¢) #0 and J(P;wz,c) #0.

We now fix Z for which S3(Z) is maximal and further classify the solutions
counted by S3(Z). Write x D(L) y if there exists d|z with d < L such that z/d has
all its prime factors amongst those of y. We let S; denote the number of solutions
counted by S5(Z) for which

(3.8) Ty D(P?) J(W;27,¢) or ym D(PY) J(¥;wrz,c)

for some m and [ with 1 < m < sand 1 <[ <d, and let S5 denote the number of
solutions such that [B.8)) fails for all m and I.
Suppose that S; > S5, and write

S(¥;z,¢)={z € A(Q,R) : z D(P?) J(¥;z71,c)}

and
ﬁc,n,l(a) = Z Z e Z Qi <Z N Vi(Zn, c) — Di(C)Xi)
Lz x€cA(Q,R d li|l=k n=1
J(W;27,¢)#0 ZL’LGS((\QI’;Z,)c)

Then by the Cauchy-Schwarz inequality we have

Sy < Z/ ﬁc,r],l(a)Hz,n(fa)fc(aFSilda
Te

c,m,l
1/2 1/2

<\ X [ eniteretep=iaa) (X [ (e fee il
c,m,l c,m,l

so on considering the underlying Diophantine equations and recalling ([B1) we find
that

(3.9) Ser(P,Q, R;®) < > V(g,h,l,0),

g:h,l,c

where V (g, h, [, c) denotes the number of solutions of the system

S (47, ©) — B, ) + Dife) 3 (x, — yL,) = Dy(e)(aiu — biv)

with g|J(¥;zz,c) # 0 and h|J(¥; wz,c) # 0, with so(u;) = g and so(v;) = h, with
1 <a,b < P with u,v € [1,Q]% with v; < Q/a and v; < Q/b, and with the
remaining variables as indicated in the discussion surrounding (3I). Now write

Gemgl@)= > e| D ailm¥i(z1,¢) + -+ n.¥i(z, )

Zz s —
glI(@ia.c)£0  \I=F

and

Gemi(a) = Z Gemgla) Z Z ¢ Z a;Dj(c)a"u’

9<Q a<P? ue1,Q]¢ li|=Fk
w<Q/a
so(ur)=g
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From 39, we find that

(3.10) S.(P,Q,R;¥) < Z /W Gem () fe(a)?* 72| da,

c,m,l
and on applying Cauchy’s inequality and interchanging the order of summation we
obtain
(3.11) |Gemi(@)]? < Ecnl(a)Fea(a),

where
Eem(a) = Z |Gc,n7g(a)|2
9<Q
and

Feila) = Z Z Z e ZaiDi(c)a“ui

9=Q |ue[1,Q]* a<P’ li|=k
so(u)=g a<Q/u;

After another application of Cauchy’s inequality, we deduce from Lemma that

P9
(3.12) Feala) <Y Q71 ) QF  qrarepe,
9<Q wem
so(u1)=g

Thus, on substituting (311]) and BI2)) into (BI0) and recalling a standard estimate
for the divisor function, we conclude that

(3.13) Ssr(P,Q,R; ®) < Q¥ P05, | (P,Q,R;®).

Finally, suppose that S5 > Sy, and consider a solution to (B counted by Ss.
Write G for the largest divisor of x,,; that is coprime to J(¥;zz,c), and write
DPmy for the largest divisor of y,,; that is coprime to J(¥;wz,c). Since for each m
and [ the condition (B.8) fails to hold, we have §,,; > P? and $,,; > P?. Moreover,
since these integers are R-smooth, we may divide out a suitable product of prime
factors to obtain integers ¢, dividing x,,; and p,,; dividing y,,; with the property
that

(3.14) P’ < g, pou < P°R
and
(3.15) (gmi, J(¥527,¢)) = (P, J(¥; Wz, ) =1

for each m and [ with 1 <m < s and 1 <[ < d. Thus we have S5 <« Vi, where V;
denotes the number of solutions of the system
T S
> 0 (Wi(2n, €) — i(wn, ) = Di(c) > _ (o, ub, — ph,vi,)
n=1 m=1
with z, w,c,n as in the discussion surrounding B.)), with u,v € A(QP~? R)*?,
and with q and p satisfying 3.14)) and BI5). We now write

g= [ om and p= J[ pm

1<m<s 1<m<s
1<1<d 1<1<d
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and introduce the exponential sum

FCﬂ%q(a) - Z e Z Qj (nlqji(zlac)+"'+nr\Pi(Zr,c))

ze[l,P]"d li|=k
(¢,J(¥;z1,0))=1

Then we have

S

(3.16) Vi < Z / g (@) Femp(—a) ch,m(a)da,

c,m,q,p m=1
where
Fen(@) = fo(dme; QP R) fo(~pme; QP™%, R),
and where we have written qo for the /-dimensional vector whose component in-
dexed by i is given by q'a;. We now let

chn;m(a) = |Fc7n7q(a)2fc(qma; QP_07 R)25|
and
Yenm(@) = | Fenp(@)? fe(Pma; QP R)*|.

Then by interchanging the order of summation and applying Holder’s inequality
twice in (BI0), we find that

|| (Z | Xenm >da>1/25 (Z [ Venmt@ da)

q,p m=1

1/2s

= H W(P,Q, R, qm)"/**W(P,Q, R,py)"/**,

q,p m=1
where W (P, Q, R, q) denotes the number of solutions of (3.3) with z,w € [1, P]"?
with u,v € A(QP~% R)*?, and with
(3.17) (g1 94, J(¥s27,¢)) = (q1- - qa, J(¥;wz,c)) = 1.
It therefore follows from Hoélder’s inequality that

1/2s s 1/2s
Vi < (PYR)®s= 1 (H > W(P,Q,R, qm>) (H ZW(P,Q,R,pm)>

m=1 qm m=1 pm

and hence
(3.18) Vi < (P'R)®*~VU, . (P,Q, R, 0; %),

where Us (P, @, R, 9; ¥) denotes the number of solutions of (3.3]) with ¢, n,z, w, u,
v as above, with q € (P?, PPR]¢, and with (3.17).
It remains to impose the condition (3.4). Write

i(z,c,n) Znn (Zn,c

and let Bq(u,c,n) denote the set of solutions modulo (q; ...qq)" of the system of
congruences

Ti(z,c,n) =w (modq')  ([i| =Fk)
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satisfying (q1---qq, J(¥;27,¢)) = 1. For each solution that is counted by
Us.(P,Q, R,0;¥), we have
Ti(z,c,n) = Ti(w,c,n) (modq’)  (|i| = k),

so we can classify the solutions according to this common residue class. Let

Hy(asz;¢,m) = Z e Z a;Ti(x,c,n)
x€[1,P]"¢ lil=k
x=z (mod (q1---qa)")

and

o= Y | Y Hamen
lgulilgqi zEBq(u,c,m)

Then we have

Usr(P,Q,R, 0, %) < Y / Hgy(a; ¢,n)| fe(ao; QP~, R)|**dev.
c,n T

By Cauchy’s inequality and Lemma 2T} we have

Hy(ase,m) < > (PPR) " |Hg(eszicm)|%,

u

ey 2€Bq(u.c.m)
—=Y1=

where

Q=d <k:rd - %(k j)> —jl; = k(rd® — ¢;).
After inserting this upper bound for I;Tq(a; c,n), considering the underlying Dio-
phantine equations, and recalling [33]) and (34]), we deduce that
Usr(P,Q, R, 0; W) < (P'R)™T, (P, Q, R, 0; ).
The lemma now follows on assembling [B.6]), B.I3), and B.IJ). O

When s is sufficiently large, it turns out that the second term in the estimate of
Lemma [B.I] can be eliminated. Thus we obtain the following simplification, which
will be useful in our iterative processes.

Lemma 3.2. Suppose that (V) is a system of type (j, P, A), that 0 < 0 < 1/(dk),
that s > (k + 2)¢, and that r < {; < rd. For each € > 0, there exists ng =
no(e, s, k,d) > 0 such that whenever R = P" and 1 < ng one has

Ser(P,Q,R; W) < CP>=D+6-15 (Q R) + PY*T, .(P,Q, R, 0; ¥),
where Q = P'=% and
v =0[(25 — 1)d + k(rd* — ¢;)].

Proof. We may clearly suppose that the second term in the estimate of Lemma
3.1l dominates, for the above estimate is certainly true otherwise. That is, we may
assume that

Ser(P,Q,R; W) < PUTQ*-15, | .(P,Q,R; ).
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Write

Hep(a; P;¥) = Z e Z ai (mVi(z1,¢) + -+ n.¥i(z,,c)) |,
z li|=Fk

where the summation is over all z € [1, P]"? for which Jac(¥;z,c) has rank /;.
Then

Se10(P,Q R;¥) = /( [H* (0 P; @) fo(o; Q, R)** 2| dax,
T
sMN

and following two applications of Holder’s inequality we deduce that

1/s
_ % 1-1/s
Ss,r < P0+EQ2d ! <Z /]I‘Z |Hc,n(a;P§ ‘I’)|2da> (Ss,'r)
c,n
< 5P2rd—£j+50+sQ(2d—l)s

where we have abbreviated S; (P, Q, R; ¥) by S, . We now claim that this bound
is smaller than the first term in the lemma whenever s > (k + 2)¢ and 6 < 1/(dk).
By ([T4), we have S,(Q, R) > Q*?* so it suffices to show that

P2rd7£j+50Q(2d71)5 < P2r(d71)+éj71Q25d7kZ

and this is equivalent to
s(20 —1)—4; < =2r+4{; —1—kl(1—0),
or
0(2s —kl) <s+20; —2r —1 -kt
Since 0 < 1/(dk), it now suffices to show that
2s — Kkl < dk(s+2¢; —2r — 1 — k),
and a simple calculation reveals that this indeed holds whenever the conditions

s> (k+2)¢ and r < ¢; are satisfied. O

We now describe the polynomials ¥; to which we want to apply Lemma [3.1] and
verify that they satisfy the hypotheses of the lemma. To this end, we first define
the difference operator A; recursively by

Ai(f(z);h1) = f(z+h1) — f(2)
and
Ajia(f(z)ihy, .. hyg) = Ay (A;(f(z); by, .. hy)shyg),
and we adopt the convention that Ag(f(z)) = f(z). Next we define ¥; ; recursively
by taking ¥; o(z) = z! and setting

U; j(z;hym) = Aj(z'5 hy(my---ma)®, . hy(my - -ma)").

We typically think of h and m as fixed and regard ¥;; as a polynomial in z.
When h = (hy,...,h;) is a j-tuple of d-dimensional vectors, we find it useful to
let h* denote the corresponding d-tuple of j-dimensional vectors formed by taking
the transpose of the underlying matrix, so that hi = (hy,...,h;). We start
by relating our vector difference operator to the more familiar scalar one. When
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A={i1,...,im} and B = {j1,...,7:} with ANB =0, we write
Di(f(2);hs A;B) = Ae(f(z + hay + -+ Ry )i Byys ooy gy,
where A; is the one-dimensional version of the difference operator defined above.

Lemma 3.3. One has
d

Aj(z'hy,.. hy) = Z HD\AZ\(Z;Z;hT;AlU"'UAl—l;Al)-
A]Uu-\_lAd:{l,.“,j} =1

Proof. We proceed by induction on j. First of all, we have
Ao(z') = 20 - sz = HDO(ZZ’;Q]; 0).
Now suppose that the result holds with j replaced by 7 — 1. Then by the induction
hypothesis and the linearity of Ay, we have
Aj(Zi; hl, ey hj) = Al(Ajfl(Zi; hl, PN 7hj,1); hj)

- Z ( 1(z0+ hji) Hf( )) )
A u--UAg={1,...,5—1} \i=1

U

E&

where
fi(2) = Dy ("5 hf5 A U - U A 15 Ay,

Note that, for any complex numbers a; and b;, one has

Hal Hbl Zal—bl)Hamem.
=1

m>1 m<l

We therefore find that
d

d d
[T £+ ) =TT £iz0) =D Diaya (35 073 Co; AU {5}) Yz h),

=1 1=1 =1
where we have written C;_1 for A; U---U A;_1, and where
h) = [T Diani(ais s Coumt U {7} Am) TT Diai (i hins Cons Av).
m>l m<l

On writing B; = A, U {j} and B,, = A, for m # [, we see that

d d
Aj(z'hy, .. hy) =Y > 11 Dis.. (Zi i b By U - - U B 15 Br),
=1 ByU--UBy={1,...,j} m=1
JEB:
and the result follows on summing over [. O

We are now in a position to analyze the polynomials ¥; ; defined above.

Lemma 3.4. Fiz j with 0 < j < k, and suppose that hy,...,h; € 7% and
my,...,m; € Z have the property that 0 < |hymF,| < cP whenever 1<n<jy

and 1 <1 < d. Then the polynomials ¥ ; form a system of type (j, P, A), where
A= I (k)L
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Proof. Tt is easy to show (see, for example, Vaughan [I1, Exercise 2.1]) that the
leading term of D;(2%; h; A; B) is

it it
9(2) = (DI (g%) z

and it therefore follows from Lemma [3.3] that the terms of highest degree in the
polynomial ¥; ;(z; h; m) are given by

d
_ i1 —[ Ay ig—|Aql
Gii(2) = > (H (”_|Al\ i LT haamy ) cerd
g}

AU UAg={1,...,j neA
Conditions (1) and (2) of Definition 2.2 follow immediately. To check condition (3),

we fix i with i > j; (so in particular i; > j) and consider the term zil Jzé"’ e z;d
arising from the choice A; = {1,...,j} in the expression for Gj ;(z) above. Suppose

now that there is some i’ such that ¥y ;(z) (and hence Gy j(z)) contains the term

Ik zéd. If #) = i1, then this term must again arise from the choice A; =
{1,...,4}, and it follows that i’ = i. Otherwise, we must have ¢} < 4y, which
implies that i’ < i. O

We now consider the effect of substituting ¥; ;(z; h;m) for ¥i(z, c) in the Fun-
damental Lemma. Suppose that 0 < ¢; < 1/(dk), and write

M;=P%, H;=PM;% and Q;=P(M;---M;)"",
with the convention that Q)g = P. We also set ]\A/[/] =M, ---Mjand H; = H, --- Hj,
and we replace the conditions on ¢ by
(319) 1< ‘hzl‘ <H; and M; <my < MR

for each i and [ with 1 <i < j and 1 <1 < d. Finally, we take D;(m) = m} - m;

The following lemma allows us to relate Ts (P, @, R, ¢j11; ¥;) to Ss(Qj+1, R)
and Ss (P, Qj4+1, R; ¥j41) and hence to repeat the differencing process.

Lemma 3.5. Suppose thatr < 2w. For everye > 0 there exists ng = no(e, s, k,d) >
0 such that whenever R = P" and n < 19 one has

Ts,r(P, Qja Ra ¢j+1; \I’]) < P(2d717d(d71)k¢j+1)TJrsﬁfj%d—i—lss(Qj+1a R)

. d(r 1) d 1—r/2w
+ P°H; (H M S(Qn, )) (Sew(P,Qjy1, Ry ¥j41))

Proof. We introduce the exponential sums

r/2w

Laq(o;h;m) = g e g a;¥; j(z;h;m) |,
z€[1,P]¢ li|l=Fk
z=a (mod q)

Kq(a;h;m) = Z |Laq(c;h;m) %
a€(l,q]?
and

gq(a;m) = Z e Z a; Di(m

x€A(Q;+1,R)4 li|=k
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Then on considering the underlying Diophantine equations we find that
T, < Z Z K(g1-q)+ (@ h;m)"|gq (o m)[**der,
h,m q€[M;11,M;41 R]? T

where the summation ranges for h and m are given by (3.I9) and where we have
abbreviated T (P, Q, R, ¢;11; ®¥;) by T, ,. We let Uy denote the number of solu-
tions counted by T (P, Q, R, ¢;41; ¥;) for which z,; = wy, for some n and [ with
1<n<rand1<1I<d, and let U; denote the number of solutions with z,; # wy;
for all n and [.

First suppose that Uy > U;. In view of the condition ([B.4]), we have

Uy < P08 5 e i) g s dex
h,m,q

so after two applications of Holder’s inequality we find that
(3.20)  Tur(P,Q,R, ¢jp1; ;) < PRATImdd=Dke e gdpfd S (Q;1 1, R).

Next suppose that U; > Up, and consider a solution counted by U;. For each n
and [, (B4) allows us to write

Wit = Znt + gy -+ qa)",
where the g,; and ¢; are integers with
(321) 1< |gnl| < Hj+1 and Mj+1 <q < Mj+1R.

Thus we see that U; is bounded above by the number of solutions of the system

S

Z \Iji,j—&-l(zn; ha gn; 1M, q) = ljl(rn)q1 Z (ulrn - V;n) (|i| = k)a

n=1 m=1

with all the variables in the ranges described above. Now write

Glasg;q) = Z e Zai\l/i,j+l(z§h,g§m7Q)

ze[L,P]¢  \[il=k
Then we find after an application of Holder’s inequality that
U < Hd(r 2 Z / |G(; g5 Q)" gq(a; m)*|da,
h,g,m,q
where the summation conditions are given by (3.19) and 321I]). Applying Holder’s

inequality twice more gives

)

~ —~ 1—r/2w
U, < Hd(r Vs, w(PyQjy1, Ry W)/ (PEHf+1Mf+1Ss(Qj+17 R))

and this, together with ([B:220), completes the proof of the lemma. O
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4. MEAN VALUE THEOREMS

We begin by deriving a simple result using only first differences. When 0 < 6 <
1/(dk), we employ the notation

M = P?, H = PM%*, and Q=PM !

Theorem 4.1. Suppose that s > (k + 2)¢ and that Ay < kf is an admissible
exponent. Then the exponent Asip = Ag(1 — ﬁ) is also admissible.

Proof. We take 0 = 1/(dk) in the above notation. Then by Lemma B2l we have
Se0(P, P, R; W) < P4~1=1G (P R) + M@s~ Dkl ~1ter (P P R, 6;W,).
By employing the argument of the proof of Lemma [3.5 we find that
To (P, P, R,0; ®y) < P M?5,(Q, R)
after making a trivial estimate and noting that H = 1. It follows that
Se0(P, P, Ry W) < PY4==15 (P, R) 4 M>HHF( @ ~D+dpilteg () R).

Moreover, since the exponent Ay = 2sd — kf + A, is permissible, we find after a
little calculation that

Se1e(P,R) < So4(P, P, R; W) < PMTe 4 phate

where
A =2(s+0d—kt—(0+1)+ A
and
Ay =2(s+4)d — ki + Ag(1—0).
Since A; < kf, one sees easily that 0A; < ¢+ 1 and hence that A; < A;. We
therefore deduce that the exponent A1, = A (1—0) is admissible, as required. O

We note that the above theorem yields admissible exponents that decay roughly
like kle=3/(40) Good results therefore begin to appear when s is a bit larger than
dkllog(kf), and we can improve this somewhat by employing repeated efficient
differencing. However, we are hampered by the fact that, after j differences, the
singularity issues considered in sections 2 and 3 force us to restrict attention to /;
of the ¢ available equations. We find it convenient to introduce the notation

which may be thought of as a measure of the resulting loss of potential congruence
information. Our results arising from repeated differencing are summarized in the
following theorem.

Theorem 4.2. Suppose that k > 2d, and let u be a positive integer with u > (k+2)¢.
Further suppose that A, < kf is an admissible exponent, and let j be an integer
with 1 < j < k/2. For each positive integer m, we write s = u + mt and define
the numbers ¢(j,s,J), Os, and Ag recursively as follows. Given a value of Ag_y,
we set ¢(7,8,7) = 1/(dk) and evaluate ¢(j, s, J — 1) successively for J =j,...,2 by
setting

s 1 I A .
(4.2) ¢ (J737J—1)—M (§+W) ¢(4,5,J)

and
¢(j787 J— 1) = min{l/dk7¢*(jasa J— 1)}
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Finally, we set

0, = mi s, 1
s 1;;1%%/2(;5(],5,)

and

(4.3) Ay =N o(1—0,)+0(dkbs —1).

Then Ay is an admissible exponent for s = u + ml for all positive integers m.
Proof. Take j to be the least integer with 1 < j < k/2 for which ¢(j,s+¢,1) = 05,
and write ¢; = ¢(4, s+¢, J) for J = j,..., 1. By following the argument of the proof

of Theorem 6.1 in [I6], we find that the minimality of j ensures that ¢; < 1/(dk)
whenever J < j. We recall the notation established in section 3 and set

M; = P?%, Hy = PM;%*, and  Qy=P(M;---M;) "
for 1 < J < j, with the usual convention that Qy = P.

We prove by induction on m that the exponents A, defined above are admissible
for s = u + mf, where m is a non-negative integer. The m = 0 case is trivial,
since the admissibility of A, is a hypothesis of the theorem. Now suppose that
s = u+ml, where m > 0, and that A, is admissible. Then when R is a sufficiently
small power of P we have S,(P,R) < P**¢ where A\, = 2sd — kf + A,. We
need to establish that A, , is admissible as well. In order to do this, we first show
inductively that

(44) T, (P.Qy, Robyi1: ¥ ) < PRATImdd=Dkos)bte frdprd 3

for J=5—1,j—2,...,1,0. To establish ({4 for J = j — 1, we apply Lemma 3.5
with j replaced by j — 1 and with r = ¢;_; and w = ¢;. It is easy to verify that
£;_1 < 2¢; whenever k > 2d and j < k/2. On making the trivial estimate

Sa, (P, Qj, B ) < P25 HIMIQ
and noting that ¢; = 1/(dk), and hence H; = 1, it follows easily that
Ty, (P,Qj1, R, ;5% 1) < P2 HL MIQ),

as required. Now suppose that ([@4) holds for J, where 1 < J < j—1. Then Lemma
gives

Ssty(P.Qy, Ry W) < HIMFPEDI1QY e 4 MG Ty, (P QR b ),
where v = (2s—1)d+kl;(d*>—1). Substituting (4] and noting that Q; = Q41 M
then yields

Sty (P Qs Ry W) < HIMYPEIDO1QY e (1 My prodid-bosts)

and a simple calculation shows that the second term in parentheses can be expressed

as PM5+1, where

B=kl;(d—1)+kl —As >0.
Hence the second term dominates, and we get
Ser,(P,Qs, R W) < ﬁﬁMjM§+lQ§sp(zd71)zJ+e.
Thus an application of Lemma gives
T575J—1 (P’ QJ—lv Ra ¢J; ‘IIJ—I) < P(Zdilid(dil)kd”)zj_lﬁg_1M§Q§S+E + PEWJ,



LINEAR SPACES ON HYPERSURFACES 2947

where

Ly—1
207

o 1=
W, = Hj(eJ—l—l) (H((;M“}Q/}b) 207 (H‘a]lM‘c]le_‘_lQ/}SP@dfl)ZJ)

After simplifying and putting o = g"e’; , we find that

Wy = I WTQ) H3 = M3, PO,

and hence
Tor, . (P, Qs_1, R, by \I’J—l) < ﬁ§_1MjQ§S+E (PA1 + Hf]le‘]_lM;flP(d_%)z‘]_l) ,

where A; = (2d —1—d(d — 1)k¢j)€y—1. Moreover, the second term in parentheses
can be expressed as P2, where

0,
Ao = (1 —dkéy)dly_1 + % (dkly + Q= Ag) + (d— L)y 1.
J

Finally, from (£2) and the observation that ¢; < 1/(dk) for J < j, we obtain the
relation

(2dkpy — 1)y = (dkly + Qy — Ag)bys1,
which yields
Ao =(1—dkoj)dlj_1+ (dkdy — %)ej_l + (d— %)EJ_l = A

Thus we find that (@4]) holds with J replaced by J — 1, as required. Applying this
bound with J = 0, we get

T, (P, P, R, éy; Wy) < P2d-1-d(d=Dkén)tddrir.(1=d1)+e,
Lemma therefore yields
Sere(P,R) < Ss4(P, P, R; W) < Phate 4 phate
where
As=(2d -1l —1+X, and Ay = (2d—1)l+ \s + ¢1(dkl — A,),
and it is obvious that A3 < A4. Thus we find that the exponent
Aspe =2d(s+4) — kL + Ag(1 — 1) + £(dkpy — 1)

is permissible, and this completes the proof. O

We now need to gain some understanding of the size of the admissible expo-
nents provided by Theorem [£.2] and this is achieved by a fairly standard argument
(see, for example, [7], [9], [12], [13], and [I6] for similar analyses). The following
lemma provides the starting point by relating these exponents to the roots of a
transcendental equation.

Lemma 4.3. Suppose that s > (k + 3)¢ and that As_y is an admissible exponent
satisfying L(logk)? < Ag_¢ < kl. Write 05—y = As_¢/(dkl), and define §, to be the
unique (positive) solution of the equation

2 2
4. 4 logds = 0. p4+loge p— 4=
(4.5) 0s +logds = 65— + log ds_¢ dk+dk(logkz)3/2

Then the exponent A; = dklds is admissible.



2948 SCOTT T. PARSELL
Proof. We apply Theorem B2 with j = [(log k)'/3]. Then on writing 6, = ¢(j, s, 1),
we find that the exponent
(4.6) A=Ay (1 —0,) +(dkOs — 1) = dklds_g — £+ dklOs(1 — 55_¢)
is admissible. On recalling (2.I)) and (1), a simple calculation shows that
Qy < l(logk)'/?
for 0 < J < j, provided that k is sufficiently large in terms of d. Thus on writing
¢y for ¢(4,s,J) and noting that £;_1 < £, we deduce from ([€2) that

(4.7) br1 < g +5(1-8)0s  @<T<)),

where

Aye — (log k)2
ke

the last inequality following from the hypothesis that A, , > £(logk)2. Using a
downward induction via (4.1]), one easily verifies that

1 VS AN ,
¢J§dk(1—|—5’)<1+5< 9 ) > (1< J<y),

so in particular we have

(4.8) 5 = > 65o(1 = (logk)~*/?),

14§27

(49) 98 = (bl S ma

since 0 < ¢’ < 1. Let us temporarily introduce the notation L = (log k)~3/2. Since
(1+ax)/(1+z) is a decreasing function of  whenever o < 1, we deduce from (3]

and (4.9) that
g < L0l —L)2'77 146,027 + L) _ 1+20.L
P T dk(1+6,¢(1-1L)) =  dk(1+0.—y) ~ dk(1+dsy)

provided that k is large enough so that j > 1+ log,(log k)3/ 2. It now follows with
a little computation from (L8] that

A s (12w
dkt =t dkl(1+ 065 4) )

where w = 2(1 — §5_¢) L. Since log(1 —z) < —z for 0 < z < 1, we therefore obtain

A5 e s o5 (12w N es. - 27w
dke B e = 0t k(1 + 05_¢) &0 Tkl + 0,0

2 2
<5 +logds_p — ak + W

on inserting the bound w < 2L. Now ¢ + logd is an increasing function of ¢, so if
05 is defined by (&3], then it must be the case that A%/(dkf) < s, and it follows
that dkfds is an admissible exponent. O

We are now in a position to state the stronger mean value estimates arising from
repeated differencing in a form convenient for applications.
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Theorem 4.4. Suppose that d > 2 and that k is sufficiently large in terms of d,
define so and s, as in (L6) and (L7), and write L = (logk)?. Then the exponents
Ay defined by

2s
| dkee*are if 1<s< s,

T {éLeg/3 (1-2:01- %))(5780)/6 if s> s

are admissible.

Proof. Write r = (k + 2)¢. We start by observing that the theorem is trivially true
when s < r. Next, we define J5 to be the unique positive solution of the equation
2(s =) 2(s—1)

dkl dk((log k)3/2’
and we show inductively that the exponent Ay = dk{ds is admissible whenever

r < s < sg. First of all, suppose that r < s < r + f. The exponent A% = kf is
trivially admissible, and furthermore

(4.10) 85 +1logd, =1 —

:—1-1 A:—l—i-l 1<1 2<6+1 1)
dkl ke T d % dk = 0 T80

since 0 < s —r < {. Tt follows that A%/(dkf) < &5 and hence that Ay = dkld, is
admissible. Now suppose that r+/¢ < s < s and that the exponent Ag;_y = dklds_y
is admissible. Then we have
2(sp—1)
dkl
Since d,_y < 1, we deduce that dkds_, > (logk)?, and thus the exponent
L o=min{kl, A}
satisfies the hypotheses of Lemma We therefore conclude that the exponent
A = dklvs is admissible, where 7, is the positive root of the equation
2 2
R + —_—s,
dk  dk(log k)3/2
and where §,_, = AL_,/(dkl) < é5_p. On applying [@I0) with s replaced by s — ¢,
we find that v +logvs < ds+1ogds, and hence v, < d5. It follows that Ay = dkld,
is admissible. Moreover, when s < sg, we see from (LI0) that
7 2s
logds < 3 = ke
provided that k is sufficiently large, and the desired bound for Ay follows. Finally,
if s > s¢, we take t to be the integer with sg —¢ <t < sg and t = s (mod ¢). Then
we know that A, = dkle™/3-2t/(dk0) i an admissible exponent, and we have

(4.11) e Po(log k)? < Ay < e3/34(log k)2
We now apply Theorem with j = 2 and s replaced by t 4+ ¢. In the notation of
that theorem, we have ¢(2,t+ ¢,2) = 1/(dk), and thus
1 1 Q-4 1 1 Q- A
(2,4 4,1) = — R . =
P(2t+61) 2dk (2 + 2dkty ) 2d2 k24,
It therefore follows from (£3) that the exponent

1 14 Ay — Wl
4.12 Ao =2 (1- = (14—
(4.12) bhe = S ( ak < * 2£1> * 2d2k2£1> T oake,

0s—¢+1logds_g>1— > 1 —log(dk) + 2loglog k.

¥s +logys = 6, ;4 logd,_, —

dk  dk
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is admissible. A simple calculation reveals that €y < d¢ for k sufficiently large,
and thus (EI) gives Q; < d(logk) 2A; = dL~'A;. Hence on iterating (EI2)) and
noting that ¢/¢; = 1+ O(1/k), we find that the exponent

3 d (s—t)/¢
%= (1= g (131

is admissible for k£ sufficiently large, and the theorem follows on substituting the
upper bound in [@IT]) and recalling that t < sg. O

To deduce Theorem [I.1], we first note that

3 d 3 1
_ = _ )< _ = _
Lo (1 QL) = (1 2dk> (H kL)

for dk > 6. Thus on using the inequality (1 + b/z)* < e” we find that

3 1 dk
1-—(1- < e 32 L
( 2dk< logk>> =c e

Theorem [Tl now follows immediately from Theorem [£.4] when s < s;. Finally, the
argument given in section 6 below to prove Theorem may be modified to show
that Ay = 0 for s > s1, so Theorem [T holds in that case as well.

5. MAJOR ARC ASYMPTOTICS

In this section, we obtain an asymptotic formula for the exponential sum f(a)
when « lies within a narrow set of major arcs. We let W be a parameter with
W < (log P)*/?~¢ and define M(q, a; W) to be the set of all a € T such that

i —aifql <WP™" (i = k).

Further, write 91(W) for the union of all the (g, a; W) with 0 < a; < ¢ < W
and (¢,a) = 1. Here and throughout we adopt the notation (x,y) to represent
ged(z, y1, ..., y¢) whenever z € Z and y € Z*. In what follows, we find it convenient
to introduce the notation

. ey — § -1 § : i1 15, 0j41 ig
Sj(Q,&,IJ+1,...,.’Ed)— el q QT T X Ty
1<ry,...,rj<q li|=k

and

wj(ﬁ;ﬂfjﬂ,m,md)/[ ]_ﬁj(’Y,R)e Zmilmw}jxﬁfwx? dy - dvj,
R,Pli ‘
’ li|=Fk

where 4
J
~ log v;
(~.R) =
i (v R) Ep <logR
and where p denotes the well-known Dickman function (see, for example, Vaughan

[11), section 12.1]). We shall write S(g,a) and w(3) for Sg(q,a) and wq(B), respec-
tively, and we also write

S(q;9) =zq:6 (@) and  p*(v, R) =p(11§gg]%)-

r=1 q
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Lemma 5.1. For any polynomial g(x) with integer coefficients, one has

Yoe <@> =q"'S(g;9)p* (v, R)v + E(v),

veA(vr) N I

where E(Y) is a piecewise-differentiable function satisfying E(v) < qP/log P.

Proof. First of all, by Lemmas 5.3 and 5.4 of Vaughan [I0], one has

P
1 1=q1p* .
(5.1) > qp (%R)HO(lOgP)
z€A(v,R)
z=r (mod q)
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Next, by sorting the sum according to residue classes modulo ¢ and noting that

g(z) = g(r) (mod g) whenever x = r (mod ¢), we obtain

3 g(z) Zq g(r) 3
veA(vRr) 1 =1 N4 reAliR)
z=r (mod q

and the lemma now follows easily.

O

We can analyze the effect of a small twist on the above sum via partial summa-

tion.

Lemma 5.2. Suppose that g(x) € Z[z] and h(z) € R[z] and that W (z) < WP~}

whenever |x| < P. Then one has

z€A(P,R)
Proof. For fixed g and ¢, we write

- 3 o(5)

z€A(v,R)
By Lemma [5.T] and properties of the Riemann-Stieltjes integral, we have

(5:2) > (M nw) = [ etmenrerar+om)
cearpr) 9 R
and
T'(v) = q‘IS(q;g)a% (0" (v, R)Y] + E' (%),
where E(v) < ¢P/log P. Moreover, we have
ol ol =0 (103) + g (iogh)
Since log R > log P, we deduce that

T'(y) =a 'S(a:9)p" (v, R) + E'(v) + O <10g1P>

for v > R, since p'(x) < 1 whenever x > 1. We therefore obtain

P P
/ ()T (1) dy = 'S (g; 9) ( / 5 (7, R)e(h(7)) dy + £(q. P)) ,

R R

S (M) =0 st [ oonRenm o (BT,
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/ E'(vy )d7+0(101gjp).

Integrating by parts and using the assumption that h/(y) < WP~! we find that

where

qW P

& - Vdy <« —

(0,P) < 75 + / Mldy < 1 o8P
The lemma now follows 1mmed1ately on noting the trivial bound S(¢; g) < ¢ and
recalling the formula (5.2]). d

Lemma 5.3. Suppose that a € N(q,a; W) C N(W), and write ;i = «; — ai/q.
Then one has

qWPd>

fle) = *s(aayu(s) +0 (1

Proof. We prove by induction that one has

63 Y o Y qjsj<q,a;f<j+1>wj<ﬁ;s<j+l>+0(

qWPj>
T, y2; EA(P,R) li|=k

log P

for 1 < j < d, where we have written X;; for the vector (zj41,...,2q). For j =1,
we fix xa,...,2q and let

Z a;xit ok - and h(z1) = Z Bixtw - ali,

li|=k lij=k

Then since a € MN(q, a; W) C N(W), we have
W) < ) |GIPY < WP
li|=k
whenever |z1| < P, so (5.3) follows immediately from Lemma [5.2lin the case j = 1.
Now suppose that (53) holds for some j < d, and write U, (x) for the left-hand side
of (B.3). Then one has
qW pitl >

B0 U =a? X Sleasau@gn) -0 (T

zj4+1€A(P,R)

and the first term on the right-hand side may be rewritten as

Y / iR Y elgg(xr) + h(x,7) dy - dy,

PlJ

1<ry,,rj<q” I z;41€A(P,R)
where
; 7 7 L 7 03 )
r) = E airy' --orfx ) cagt and h(x,y) = E Biyit - SE TSI
li|=k li|=k

Let us also write V(x,r, ) for the sum over z;4; on the right-hand side. We may
temporarily fix the variables r, v, xj42, ..., zq and view g(x,r) and h(x,7) as
functions of x4, alone. Then by applying Lemma as above, we find that
q P
* qW P
Vorm) =a Y a6 [0 ReHx ) ara+o (DD)).
. R

rj+1=1
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where
G(x,r) = Z airy' ol a
li|=k
and ' _
H(x,v) = Z Bt -l
li|=k
On substituting this into (54, we find that

. R ~ qWPj“
Ujra(x) = ¢ 771 8541(q a3 Xj40)wj1(B; Xjg2) + O (17 ;
og P
and thus (53) holds with j + 1 in place of j. The lemma now follows immediately
by taking j = d in (B3)). O

Finally, we record the asymptotics for our exponential sums over complete inter-
vals, which are valid on a wider set of major arcs. We let X < P1~¢ be a parameter,
and define M(q, a; X) to be the set of a € T* such that

|gas — aj < Xpk (li| = k).

We further write 9(X) for the union of the M(q,a; X) with 0 < ¢; < ¢ < X and
(g,a) = 1. Finally, write

v(B) = el > By | dy

0,21\ 5=
in analogy with the function w(3) defined above.

Lemma 5.4. Suppose that a € M(q,a; X) C M(X), and write B; = a; — ai/q.
Then one has
F(a) = q "S(q,a)v(8) + O(XP*1).

Proof. This follows immediately from Lemma 5.3 of [9]. For an alternative proof,
one may follow the argument of Lemmas E.IH5.3] above with the right-hand side of
(E1) replaced by v/q + O(1) to deduce the result. O

The argument of this section may obviously be applied to exponential sums
over more general sets than [1, P] and A(P, R), the two considered here. All one
needs is a formula of the type (5I), which ensures that the elements of the set are
well distributed in residue classes. The rest of the argument is essentially partial
summation.

6. COUNTING LINEAR SPACES
In order to establish Theorem [[L2] we introduce the exponential sums
Fj(a) = Z e Z cjxt
x€[-P,Pl4  \Ji|=k
and

fila) = Z e chozixi ,

x€A*(P,R)®  \[i|=k
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where A*(P,R) = +A(P, R) U {0}. Tt is fairly easy to argue that the exponential
sum estimates established in §4 and in [9] carry over to the above situations, in
which the components of x can take on negative values. On writing s = t + 2u, one
sees by orthogonality that N x 4(P) > Z(P;T?), where

zpiw) = [ (TLA@) ] | I] @) ] do

j=t+1

We define the set of major arcs by 9t = 9M(cP'/?), where we have written
¢ = max|c;|, and further write m = T\ 9 for the set of minor arcs. We deal
with the minor arcs by applying Theorem [[LT] in combination with the following
Weyl-type estimate. Here we write F'(ax) for the coefficient-free version of Fj(a).

Lemma 6.1. Suppose that k is sufficiently large in terms of d and that |F(a)| >
Pd=o%¢ for some € > 0, where o~ > 3k%*¢logk. Then there exist integers a; and
q, with (q,a) = 1, satisfying 1 < ¢ < P* and |qoy — a;| < P for each i with
li| = k.

Proof. This is an immediate consequence of Parsell [9, Theorem 1.2], together with
the above remarks. O

By making trivial estimates, one finds that
7(Pim) < [ [Fi()'fj(0)*"| da
m

for some 7 and j, where 1 < i <t and t+1 < j <s. Moreover, the argument of
[7, Lemma 10.3] implies that c;a ¢ MM(P'/?) whenever a € m. Therefore, after a
change of variable, we obtain from Lemma that

t
I(Psm) < (sup |F<cia)|) Su(P.R) < Pri-kt-ottha,

aem

where 07! = 3k?¢log k, and where A, is as in Theorem [Tl Taking ¢ = 3k¢ and
u = [dkt (2 log(kl) + 3 log(dk) + loglogk + 3) |

gives A, < (klogk)™! and hence ot > A,. Thus one has

(6.1) Z(P;m) < Pk

for some 7 > 0, which completes the analysis of the minor arcs.

Next we prune the major arcs down to a thin set 0t = M(W), where W = (log P)¥
for some sufficiently small v > 0. From Lemmas II.2 and IL.8 of [I], we have the
estimates

—~1/k

(6.2) v(B) < P14+ g P

li|=Fk
and

(6.3) S(g,a) < g71/FFe
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for every € > 0, provided that (¢,a) = 1. In conjunction with these estimates, a
routine application of Lemma [5.4] shows that

(6.4) Z(P; M\ M) < ped-Fy =0
for some d > 0, so it now suffices to deal with the set .
Write

B =[-1,1]" x ([-1,-R/P] U [R/P, 1])**

S
_ log(P7;)
He = 11 p( ok )
j=t+1
On using Lemma [5:3] together with ([6.2)), (€3], and the observation that meas(9t)
<« W2+ p=Fkt ope finds that

(6.5) Z(P;M) = J& P~k L o(p*=Fw—9)

for some § > 0, where

jAeLH(V)e Zﬂi(017i1+...+cs,yis) i~y

li|=k

and

denotes the singular integral and

&= > Jla"Sca)

9=l ag[1,q]" =1
(¢,2)=1

denotes the singular series. It now suffices to show that 7 and & are both positive.
To deal with the singular integral, we follow the argument of [8, Lemma 7.4].
We let T be a positive real number and introduce the functions
. 2
sinTpT 1
Kr(B) = (W) and Kr(B) = Hk Kr(5).
It follows from Lemma 14.1 of Baker [2] that

(6.6) / Kr(8) e(8y) df = Tmax(0,1 - Ty)

for all real numbers y. We introduce the auxiliary singular integral

jT/RZICT(ﬁ)/%H(’Y)e ST Bileyt + o+ ed) | dy

li|=k
and note that (6.2]) yields

(6.7) J—-Ir < / (1-Kr(B H 1+16i]) %z dg.

A simple calculation reveals that
1- ’CT(ﬁ) < min(la |/6‘2T72)a

so by considering the integral in (G over the regions |3] < T and |B| > T
separately, one easily shows that J — Jr < T~° for some § > 0. Hence we have

(6.8) J = lim Jr,
T—o0
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and so it suffices to analyze Jr. We first note that

(6.9) o= [ e [T Rrlatr) d
B li|=F
where we have written
gily) = v+ e

Since we have assumed that the system g;(y) = 0 (|i| = k) possesses a non-singular
real solution n = (n4,...,n,), the Implicit Function Theorem ensures that locally
near 7 there is an (sd — ¢)-dimensional space of real solutions, continuously pa-
rameterized by sd — £ of the coordinates. Therefore, by using continuity of the
determinant, we may perturb 7 slightly to obtain another non-singular solution in
which at most ¢ coordinates are zero. Furthermore, we may suppose after a re-
arrangement of variables that each j for which some 7;; = 0 satisfies 1 < j <¢. It
then follows that i lies in the interior of B whenever P is sufficiently large. Now let

k be any bijection from the set of i with |i| = & to the set {1,...,¢}, and consider
the map ¢ : R®? — R*¢ defined by

ee) (V) = gi(y) and  @i(y) =7 ((+1 <7 < sd).
By the Inverse Function Theorem, there is an open set U C B containing n, and

an open set V' containing (0,...,0,7,11,...,7s4), such that ¢ maps U injectively
onto V. Since H(y) > 1 on B and the integrand in (6.9) is non-negative, we have

(6.10) JT>>/ Kr(uy) - Kp(ug) duy - - dus.
\%

In particular, the projection of V onto the first / components contains the set
D = [~1/2T,1/2T]* whenever T is sufficiently large. Moreover, (6.6) shows that
the integrand in (6.I0) is bounded below on ® by (7/2)*. Since meas(D) = T, it
follows immediately that Jr > 1 for T sufficiently large, and we therefore conclude
from (68) that J > 0.

In order to show that & > 0, we first note that Lemma I1.4 of [I] may be used
to deduce that the function

S@= > [Ia %S ca)

a€[l,q)* 7=1
(g,2)=1

is multiplicative. Moreover, the series
o0
h
T(p)=>_S")
h=0

is absolutely convergent in view of the bound (6.3]), so we find that & is represented
by the absolutely convergent product & = Hp T'(p) and that there exists an integer
po such that

It therefore suffices to show that T'(p) > 0 for all primes p < pg. Let M(q) denote
the number of solutions of the system of congruences

axi 4+ +exi =0 (mod q) (il = k).



LINEAR SPACES ON HYPERSURFACES 2957

By applying the argument of [I1, Lemma 2.12], as in [7, Lemma 9.7], we find that

> S(d) = ¢ M (g),

dlq

and it follows that

T(p) = lim > S(d) = lim p"“—D i (ph).
h—»oodlph h—oo

Since we have assumed that the system (L.2]) possesses a non-singular p-adic solution
for each prime p, we may apply a Hensel’s Lemma argument as in [7, Lemma 9.9],

to

It
(G

conclude that there exists an integer u = u(p) < oo such that for all h one has
My (ph) 2 o0,

follows that T(p) > p=s5d) for each p < po, and we therefore deduce that
> 0. Theorem [[22 now follows on recalling (61I), (€4]), and (61, together with

the positivity of the singular integral.
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