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CHAPTER I

Introduction

1.1 Waring’s Problem

Perhaps the most famous result in additive number theory is that every positive

integer can be written as the sum of four squares. First stated explicitly in 1621, the

theorem survived a claimed proof by Fermat (who died before disclosing it) and the

best efforts of Euler before succumbing to a proof by Lagrange in 1770. Many proofs

of this result are known today, a representative sampling of which can be found in

[25], [43], and [44].

In 1770, shortly before Lagrange announced his theorem, Edward Waring had

come forth with a more sweeping conjecture. Let g(k) denote the smallest integer s,

if one exists, such that every positive integer n can be represented in the form

n = xk1 + · · ·+ xks (1.1)

with xi ∈ N ∪ {0}. Waring stated without proof that g(2) = 4, g(3) = 9, g(4) = 19,

“and so on,” thus implicitly claiming the existence of g(k) for all k. Of course,

Lagrange’s Theorem establishes the claim that g(2) = 4, since integers congruent to

7 modulo 8 cannot be represented as sums of 3 or fewer squares.

In 1909, Hilbert [28] finally demonstrated the existence of g(k), using Lagrange’s

Theorem as the base of a difficult induction relying on complicated polynomial iden-

tities. Because of its inductive nature, Hilbert’s argument does not yield any re-

spectable upper bound for g(k). On the other hand, a lower bound showing that

g(k) is necessarily quite large is easily obtained by considering the integer

n = 2k

[(
3

2

)k]
− 1.

Since n < 3k, any representation of n in the form (1.1) must involve only kth powers

of 1 and 2. Clearly, the minimal number of terms in such a representation is obtained

1
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by taking [(3
2
)k]− 1 powers of 2 and 2k − 1 powers of 1, whence

g(k) ≥ 2k +

[(
3

2

)k]
− 2. (1.2)

Around the time of Hilbert’s proof, Wieferich [60] and Kempner [34] were able

to show that g(3) = 9, and it was immediately observed by Landau [35] that only

finitely many integers actually require 9 cubes; all others can be represented by 8 or

fewer. In fact, Dickson [21] showed in 1939 that 23 and 239 are the only integers

that cannot be represented as sums of 8 cubes. In 1943, Linnik [37] took these

observations one step further by showing that there are only finitely many integers

that cannot be represented as the sum of 7 cubes.

These observations suggest that the enormous size of g(k) results from peculiar

difficulties of representing certain small integers. Thus we define a new function G(k)

to be the smallest integer s such that every sufficiently large positive integer n can

be represented in the form (1.1). While the exact value of g(k) is now known for

every k, the problem of determining G(k) turns out to be considerably more difficult.

Aside from Lagrange’s result that G(2) = 4, the only value known at present is due

to Davenport [16], who showed in 1939 that G(4) = 16. In particular, our knowledge

about sums of cubes is still embarrassingly weak. On combining Linnik’s Theorem

with an elementary counting argument, one obtains the bounds

4 ≤ G(3) ≤ 7,

which remain the best available today, although it is widely conjectured that the

lower bound represents the true state of affairs.

1.2 The Hardy-Littlewood Method

In the early 1920’s, Hardy and Littlewood [24] devised an analytic approach,

known as the circle method, which allows one to derive upper bounds for G(k).

Before describing the method, we briefly introduce some of the notation that

will be used throughout. Landau’s notation f(t) = O(g(t)) means that there exists

a positive constant C such that |f(t)| ≤ C|g(t)| for all values of t. We will often

find it more convenient, however, to write the same statement using Vinogradov’s

notation, f(t) ¿ g(t). If f(t) ¿ g(t) and f(t) À g(t), then we write f(t) ³ g(t).

Finally, we write f(t) = o(g(t)) when f(t)/g(t) → 0 as t→∞ and f(t) ∼ g(t) when

f(t)/g(t) → 1 as t→∞.

Returning now to Waring’s problem, we write P = [n1/k], and let

Rs,k(n) = card{x ∈ [1, P ]s ∩ Zs : n = xk1 + · · ·+ xks}.
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If we further let e(z) = e2πiz and define the exponential sum

f(α) =
∑

1≤x≤P
e(αxk), (1.3)

then on noting the orthogonality relations

∫ 1

0

e(αm) dα =





1 if m = 0,

0 if m ∈ Z \ {0},
(1.4)

one sees immediately that

Rs,k(n) =

∫ 1

0

f(α)se(−αn) dα. (1.5)

The strategy for evaluating this integral is to dissect the unit interval into major

and minor “arcs,” with the major arcs consisting of points that are well-approximated

by a rational number with small denominator. We should remark that the term

“arcs” persists as a result of Hardy and Littlewood’s original approach to the prob-

lem, in which they used Cauchy’s integral formula to represent Rs,k(n) as the integral

over a circle in the complex plane. The above set-up reflects a later simplification

due to Vinogradov [57].

Since there are roughly ns/k total choices for the variables x1, . . . , xs, a probabilis-

tic argument suggests that one may expect to have Rs,k(n) ³ ns/k−1, and in fact this

turns out to be the correct order of magnitude provided that s is sufficiently large

in terms of k. Roughly speaking, one shows that a contribution of this size arises

from the integral over the major arcs and that the integral over the minor arcs is

negligible by comparison as n→∞.

To be more specific, let δ be a small positive number, and define the major arcs

by

M =
⋃

0≤a≤q≤P δ

(a,q)=1

M(q, a),

where

M(q, a) = {α ∈ [0, 1] : |α− a/q| ≤ P δ−k},

and write m = [0, 1] \M for the minor arcs. Then one hopes to show that

∫

M

f(α)se(−αn) dαÀ P s−k,
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where the implicit constant may depend on s and k. Hence, if one can also show

that
∫

m

|f(α)|sdα = o(P s−k), (1.6)

then it will follow that Rs,k(n) > 0 when n is sufficiently large.

When α is not close to a rational number with small denominator, one expects

that the terms in the sum (1.3) will behave somewhat randomly and hence that

enough cancellation will occur to establish (1.6). In 1916, Weyl [59] was able to show

that for any ε > 0 one has

sup
α∈m

|f(α)| ¿ P 1−δ 21−k+ε,

and in 1938 Hua [31] established the mean value estimate

∫ 1

0

|f(α)|2sdα¿ P 2s−k+ε,

for s ≥ 2k−1 by interpreting the integral as the number of solutions of the equation

xk1 + · · ·+ xks = yk1 + · · ·+ yks (1.7)

with xi, yi ∈ [1, P ] ∩ Z. Combining these two results, one finds that (1.6) holds

whenever s ≥ 2k + 1, and this completes the analysis of the minor arcs.

On M(q, a), one has α = a/q + β, where |β| ≤ P δ−k, so one hopes to relate f(α)

to f(a/q). By sorting the sum (1.3) into arithmetic progressions modulo q, we have

f(α) =

q∑
r=1

e

(
ark

q

) ∑

x≡r (q)

e(βxk).

Since β is small, the function e(βxk) is not oscillating rapidly, so we are able to

replace the inner sum by an integral with relatively small error. Hence one obtains

the approximation

f(α) ∼ q−1S(q, a)v(β),

where

S(q, a) =
∑

1≤x≤q
e

(
axk

q

)

and

v(β) =

∫ P

0

e(βγk) dγ.
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After some analysis, this leads to the factorization
∫

M

f(α)se(−αn) dα ∼
∑

q≤P δ

∑
1≤a≤q
(a,q)=1

(q−1S(q, a))se(−an/q)
∫ P δ−k

−P δ−k

v(β)se(−βn) dβ

∼ Ss,k(n)Js,k(n),

where

Js,k(n) =

∫ ∞

−∞
v(β)se(−βn) dβ

is known as the singular integral and

Ss,k(n) =
∞∑
q=1

∑
1≤a≤q
(a,q)=1

(q−1S(q, a))se(−an/q)

is the singular series. The singular integral captures information about the density

of real solutions to (1.1), and in fact it follows from Fourier’s Integral Theorem (see

for example Davenport [18]) that

Js,k(n) ∼ Γ(1 + 1/k)s

Γ(s/k)
ns/k−1.

The positivity of the singular series depends on the p-adic solubility of (1.1), which

one establishes by a combination of analytic and Hensel’s Lemma-type arguments.

Thus when s ≥ 2k + 1, we obtain the asymptotic formula

Rs,k(n) ∼ Ss,k(n)
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1,

and it follows that G(k) ≤ 2k + 1.

The above result, combined with numerical work on smaller values of n, has led

to the determination of g(k) for all values of k. The precise formula is somewhat

complicated to state, but the lower bound (1.2) is is fact attained for all but at most

finitely many values of k.

Refinements of the above methods have led to substantial improvements in the

ensuing bounds for G(k). In particular, Vinogradov’s Mean Value Theorem (see for

example [55]) allows one to obtain estimates of nearly the same strength as Hua’s

with s much smaller than 2k. Moreover, these estimates can be transformed, via

the large sieve inequality or similar methods, to yield improved versions of Weyl’s

inequality. Within this framework of ideas, Vinogradov [58] established the bound

G(k) ≤ 2k log k(1 + o(1))

in 1959, but no further improvements of any significance were made over the next

30 years.
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1.3 Smooth Numbers and the Iterative Methods

A major breakthrough in the analysis of Waring’s problem occurred in 1989 with

the work of Vaughan [53]. His contribution was to exploit properties of “smooth”

numbers, i.e. numbers without large prime factors, to set up an iterative method for

estimating the number of solutions of the auxiliary equation (1.7), which arises in

the treatment of the minor arcs. Let R be a small power of P , and write

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R} (1.8)

for the set of R-smooth numbers up to P . It is shown, for example in [55], that

card(A(P,R)) À P, (1.9)

and hence one may restrict attention to representations of n as sums of kth powers

of smooth numbers without serious loss. Moreover, the smooth numbers possess

convenient factoring properties, which, roughly speaking, allow one to introduce a

congruence condition on some of the variables in (1.7). Thus we define the exponen-

tial sum

f(α;P,R) =
∑

x∈A(P,R)

e(αxk)

and observe that the mean value

Ss(P,R) =

∫ 1

0

|f(α;P,R)|2sdα

counts the number of solutions of (1.7) with xi, yi ∈ A(P,R) and hence in particular

is bounded above by the number of solutions of the equation

zk + xk1 + · · ·+ xks−1 = wk + yk1 + · · ·+ yks−1 (1.10)

with 1 ≤ z, w ≤ P and xi, yi ∈ A(P,R). Notice that if x ∈ A(P,R) then for any

M > x there is a divisor of x lying between M and MR. By applying this observation

to the xi and yi and then using Hölder’s inequality to uniformize the choice of divisor,

one is able to relate the number of solutions of (1.10) to the number of solutions of

zk + qk(uk1 + · · ·+ uks−1) = wk + qk(vk1 + · · ·+ vks−1) (1.11)

with

1 ≤ z, w ≤ P, ui, vi ∈ A(P 1−θ, R), and P θ < q ≤ P θR,
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where θ is a parameter satisfying θ ≤ 1/k. The congruence condition implicit in

(1.11) now allows one to classify solutions according to the common residue class of

zk and wk modulo qk, and then by applying Cauchy’s inequality to the underlying

exponential sums, one reduces to the consideration of solutions in which z ≡ w

(mod qk). Hence one may write w = z+hqk and thus set up a differencing procedure

which is “efficient” in the sense that the parameter h is bounded by P 1−kθ instead

of P . It is now easy to obtain estimates for Ss(P,R) from estimates for Ss−1(P,R)

by fixing z, q, and h, and considering the underlying mean values. Thus we have an

iterative procedure for estimating Ss(P,R), and this leads to an improved analysis

of the minor arcs.

Wooley [62] has refined Vaughan’s method to allow one to repeat the differencing

process, only fixing z, q, and h trivially after several (perhaps as many as k − 1)

efficient differences have been taken. With this refinement, Wooley was able to halve

Vinogradov’s bound for G(k), showing in [62] that

G(k) ≤ k(log k + log log k +O(1)). (1.12)

We remark that a simple counting argument shows that G(k) ≥ k + 1, and it is

expected that this lower bound represents the true state of affairs for most values of

k. In certain cases, however, local solubility obstructions may require that G(k) be

somewhat larger. Define Γ(k) to be the least integer s such that for every n and q

the congruence xk1 + · · ·+ xks ≡ n (mod q) has a solution with (x1, q) = 1.

Conjecture. One has G(k) = max(k + 1,Γ(k)).

Unfortunately, the technology leading to (1.12) offers little hope of proving such

a statement, as the circle method cannot possibly succeed in its present form when

s ≤ 2k. In fact, the calculation of Γ(k) is a difficult problem in its own right. It is

known that Γ(k) ≤ 4k and that this upper bound is attained whenever k is a power

of 2, but it is an open question to determine whether lim inf Γ(k) > 3.

Vaughan and Wooley [56] have introduced iterative schemes that lead to re-

spectable bounds for G(k) for small k ≥ 5, but even these do not approach what is

conjectured. For example, the inequalities

6 ≤ G(5) ≤ 17, 9 ≤ G(6) ≤ 24, 8 ≤ G(7) ≤ 33, and 32 ≤ G(8) ≤ 42

are the best currently available.

An exposition of the main ideas underlying the use of smooth numbers in additive

number theory can be found in Vaughan [54].
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1.4 Additive Equations and Inequalities

The Hardy-Littlewood method may also be applied to show that the additive

equation

c1x
k
1 + · · ·+ csx

k
s = 0 (1.13)

has non-trivial integer solutions when the ci are nonzero integers (not all of the same

sign when k is even) and s is sufficiently large in terms of k. By (1.4), the number

of solutions of (1.13) with x1, . . . , xs ∈ [1, P ] ∩ Z is given by

Ns,k(P ) =

∫ 1

0

(
s∏
i=1

f(ciα)

)
dα,

where f(α) is as in (1.3), and one finds via Hölder’s inequality and changes of variable

that essentially all of the technology discussed for Waring’s problem applies. The only

serious difficulty lies in satisfying the p-adic solubility condition and hence proving

that the singular series is bounded away from zero. When k = p− 1 for some prime

p, one must in fact take s ≥ k2 + 1, for it is easily seen that the equation

(xp−1
1 + · · ·+ xp−1

p−1) + p(yp−1
1 + · · ·+ yp−1

p−1) + · · ·+ pp−2(zp−1
1 + · · ·+ zp−1

p−1) = 0

has (p − 1)2 variables and no non-trivial p-adic solution. It is a classical result of

Meyer [40] that 5 = 22 + 1 variables suffice when k = 2, and Baker [6] showed in

1989 that 7 variables suffice when k = 3. In contrast to the situation for Waring’s

problem, Baker’s result is easily seen to be best possible by considering the equation

x3
1 + 2x3

2 + 7(x3
3 + 2x3

4) + 49(x3
5 + 2x3

6) = 0

over Q7. Meyer’s result is also seen to be best possible by considering an equation

of similar form in 4 variables.

If the integers ci in (1.13) are replaced by arbitrary real numbers λi, then one

should not expect to find integers x1, . . . , xs such that λ1x
k
1 + · · ·+λsx

k
s = 0, but one

can instead ask whether the inequality

|λ1x
k
1 + · · ·+ λsx

k
s | < ε (1.14)

has non-trivial integer solutions for arbitrarily small ε. In 1946, Davenport and

Heilbronn [20] showed that (1.14) has infinitely many integral solutions for any ε > 0

when k = 2 and s ≥ 5, provided that λ1, . . . , λs are not all of the same sign. Moreover,

their proof easily generalizes to show that s = 2k + 1 variables suffice for general k,

again provided that the λi are not all of the same sign when k is even. Davenport
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and Heilbronn established their result by developing an appropriate version of the

circle method. While the analytic set-up is now less obvious, the analysis actually

turns out to be much easier, owing to the absence of p-adic solubility considerations.

We first observe that it suffices to establish the result for ε = 1, since one may then

replace λi by λi/ε. Furthermore, we may assume by relabeling variables that λ1/λ2

is irrational, since we may appeal to the theory of additive equations if all the λi are

in rational ratio. One proceeds by choosing a suitable “kernel” function, for example

K(α) =

(
sin πα

πα

)2

, (1.15)

whose Fourier transform has properties useful for detecting solutions of (1.14). With

the above choice, it is a simple exercise in the calculus of residues to show that

K̂(t) =

∫ ∞

−∞
K(α)e(αt) dα = max(0, 1− |t|),

from which it follows that

θs,k(P ) =

∫ ∞

−∞

(
s∏
i=1

f(λiα)

)
K(α) dα

is a lower bound for the number of integral solutions of (1.14) with x ∈ [1, P ]s. Hence

it suffices to show that θs,k(P ) →∞ along some infinite sequence of P , the sequence

here being determined by the denominators of the convergents to the continued

fraction for λ1/λ2. One now dissects the real line into a single major arc near zero,

two minor arcs covering an intermediate range on each side of the major arc, and two

large “trivial arcs.” The analysis of the minor and trivial arcs requires the use of a

mean value estimate such as Hua’s Lemma, and the minor arcs additionally require

some version of Weyl’s inequality. The analysis of the major arc is relatively easy,

as one has to deal with a singular integral but no singular series.

There has been considerable interest in quadratic and cubic inequalities in recent

years. Most notably, Margulis [39] resolved a conjecture of Oppenheim by proving

that any indefinite quadratic form (not necessarily diagonal) in at least 3 variables,

takes arbitrarily small values at integer points, provided that not all its coefficients

are in rational ratio. This is easily seen to be best possible, since such a statement

in two variables would assert that certain algebraic numbers possess rational ap-

proximations of higher quality than allowed by Liouville’s Theorem (see for example

[25]). Recently, Baker, Brüdern, and Wooley [7] showed that 7 variables suffice to

solve (1.14) in the cubic case, and they in fact obtained a quantitative version of this

result in which ε is replaced by an explicit function of x. It is still possible, however,

that as few as 3 variables suffice in the cubic case, and perhaps even for larger k.
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A problem of related interest is the so-called “fractional parts” problem, in which

we consider inequalities modulo 1. Write ||x|| for the distance from x to the nearest

integer. Then, as a simple example, one tries to establish that for N > N0(ε, k)

min
1≤n≤N

||αnk|| < N ε−τ(k),

with τ(k) as large as possible. The best result on this particular problem is due to

Wooley [65], who was able to take τ(k)−1 ∼ k log k. Here one does not use the circle

method directly, but exponential sum estimates are still the key ingredient in the

analysis. When α has major arc-type rational approximations, then the statement

is generally easy to prove. Otherwise, one can use some version of Weyl’s inequality

in combination with a version of the Erdös-Turán inequality (see for example [5],

[42]) to bound the discrepancy between the actual and expected distribution of the

sequence αnk modulo 1.

The above methods may be further generalized to investigate systems of equations

and inequalities. Let F1, . . . , Ft be diagonal forms of degree k with real coefficients

in s variables, and let ε be a positive real number. The solubility of the system of

inequalities

|F1(x)| < ε, . . . , |Ft(x)| < ε (1.16)

in integers x1, . . . , xs has been considered by a number of authors over the last

quarter-century, starting with the work of Cook [15] and Pitman [48] on the case

t = 2. More recently, Brüdern and Cook [14] have shown that the above system is

soluble provided that s is sufficiently large in terms of k and t and that the forms

F1, . . . , Ft satisfy certain additional conditions.

What has not yet been considered is the possibility of allowing the forms F1, . . . , Ft

to have different degrees. However, the recent work of Wooley [61], [72] on the

corresponding problem for equations has made the study of such systems a feasible

prospect. Our first result takes an initial step in that direction by studying the

analogue of the system considered in [61] and [72]. Let λ1, . . . , λs and µ1, . . . , µs be

real numbers such that for each i at least one of λi or µi is nonzero. We define the

forms

F (x) = λ1x
3
1 + · · ·+ λsx

3
s

G(x) = µ1x
2
1 + · · ·+ µsx

2
s

and consider the solubility of the system of inequalities

|F (x)| < (max |xi|)−σ1

|G(x)| < (max |xi|)−σ2
(1.17)
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in rational integers x1, . . . , xs. In Chapter 2 we establish the following result by

employing a two-dimensional version of the Davenport-Heilbronn method described

above.

Theorem 1. Let s ≥ 13, and let λ1, . . . , λs and µ1, . . . , µs be real numbers such that

for some i and j the ratios λi/λj and µi/µj are algebraic and irrational. Then the

simultaneous inequalities (1.17) have infinitely many solutions in rational integers

provided that

(a) F (x) has at least s− 4 variables explicit,

(b) G(x) has at least s− 5 variables explicit,

(c) the system F (x) = G(x) = 0 has a non-singular real solution, and

(d) one has σ1 + σ2 <
1
12

.

If Θs(P ) denotes the number of solutions of (1.17) with x ∈ [1, P ]s∩Zs, then our

analysis in Chapter 2 will in fact show that Θs(P ) À P s−5−σ1−σ2 as P → ∞. We

also note that condition (c) implies that the quadratic form G is indefinite, which is

plainly a necessary requirement for solubility.

A significant question raised by Theorem 1 is whether the requirement that our

forms have some pair of coefficients in algebraic ratio can be shown to be necessary.

One suspects that such a condition is not needed, but its removal provides a clear

obstruction to the method. When either F or G has a large number of zero coeffi-

cients, however, we can exploit results for a single inequality to obtain results that do

not require the existence of algebraic irrational coefficient ratios. This is discussed

more fully in Chapter 2.

Finally, we remark that the iterative methods developed in Wooley [69] poten-

tially allow one to investigate pairs of inequalities of arbitrary degrees, say k and

n, possibly showing solubility in roughly 2k log k variables if k > n. However, the

mean values of the exponential sums relevant for attacking such a problem have not

yet been considered in detail, and obtaining sharp estimates for them is likely to

be a formidable task. In principle, one can even consider more general systems of t

diagonal inequalities having degrees k1, . . . , kt using the methods of [69] along with

the Diophantine approximation results of [5], but this is deferred to later work.

1.5 Multiple Exponential Sums

In contrast to the highly-developed theory of exponential sums in a single vari-

able, multiple exponential sums are not well-understood, and consequently relatively

little is known about the Diophantine problems that demand their use. Arkhipov,
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Karatsuba, and Chubarikov [3] have provided estimates for fairly general d-fold sums,

but most of these estimates are not explicit enough to be useful in applications. As

a first step toward obtaining sharper general estimates, we concentrate most of our

analysis on double sums of the form

f(α;P,R) =
∑

x,y∈A(P,R)

e(α0x
k + α1x

k−1y + · · ·+ αky
k),

where R is a small power of P . Write T r for the r-dimensional torus. We are

particularly interested in estimating the mean value

Ss(P,R) =

∫

Tk+1

|f(α;P,R)|2sdα,

which, by orthogonality, counts the number of solutions of the auxiliary system

s∑
m=1

(xk−im yim − x̃k−im ỹim) = 0 (0 ≤ i ≤ k) (1.18)

with

xm, ym, x̃m, ỹm ∈ A(P,R) (1 ≤ m ≤ s). (1.19)

This is done in Chapter 3 by building the apparatus of efficient differencing for

polynomials of two variables, so that an iterative method like that of Wooley [69]

can be implemented. Thus we are able to derive estimates of the form

Ss(P,R) ¿ P 4s−k(k+1)+∆s+ε, (1.20)

where ∆s → 0 as k → ∞. To consider the strength of such an estimate, let Js(h)

denote the number of solutions of the system

s∑
m=1

(xk−im yim − x̃k−im ỹim) = hi (0 ≤ i ≤ k)

with (1.19). Then one has

Js(h) =

∫

Tk+1

|f(α;P,R)|2se(−α · h) dα ≤ Ss(P,R).

On the other hand, upon recalling (1.9) one sees that

P 4s ¿
∑

h
|hi|≤sPk

Js(h) ¿ P k(k+1)Ss(P,R),
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and thus

Ss(P,R) À P 2s + P 4s−k(k+1),

the first term arising from the diagonal solutions of (1.18). Hence the estimate (1.20)

becomes nearly best possible as ∆s → 0.

The following theorem provides a bound of the shape (1.20) by means of single

efficient differencing.

Theorem 2. Let k ≥ 2 be a positive integer, and put r =
[
k+1
2

]
. Further, write

s1 = k2

(
1− 1

2k

)−1

+ r,

and let s be a positive integer with s ≥ s1. Then for any ε > 0 there exists η =

η(s, k, ε) such that whenever R ≤ P η the estimate (1.20) holds with

∆s = k(k + 1)

(
1− 1

2k

)(s−s1)/r

.

Note for example that if s ≥ 2k2 log k then we have ∆s ∼ k2e−s/k
2 ≤ 1. Whenever

∆s has the property that, for every ε > 0, there exists η = η(s, k, ε) such that (1.20)

holds whenever R ≤ P η, we say that ∆s is an admissible exponent.

We remark for comparison that Arkhipov, Karatsuba, and Chubarikov [3] have

obtained estimates for the number of solutions of the “complete” system

s∑
m=1

(ximy
j
m − x̃imỹ

j
m) = 0 (0 ≤ i, j ≤ k)

with

1 ≤ xm, ym, x̃m, ỹm ≤ P (1 ≤ m ≤ s),

which lead, via a standard argument, to admissible exponents for (1.18) behaving

roughly like k3e−s/2k
3
, so that one must take s ≥ 6k3 log k in most applications.

In Chapter 3, we obtain the following sharper result as a consequence of repeated

efficient differencing, yielding admissible exponents that decay in most cases roughly

like k2e−3s/2k2
.

Theorem 3. Write r =
[
k+1
2

]
, and put

s0 = k(k + 1) and s1 = 4
3
rk(log(4rk)− 2 log log k).
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Further, define

∆s =





4rke2−3(s−s0)/4rk, when 1 ≤ s ≤ s1,

e4(log k)2
(
1− 1

2k

)(s−s1)/r
, when s > s1.

Then there exists a constant K such that the exponent ∆s is admissible whenever

k ≥ K.

For smaller k, one often needs other methods to obtain reasonable admissible

exponents, and this is illustrated for k = 3 in Chapter 5.

As was the case with Vinogradov’s Mean Value Theorem, our mean value esti-

mates may be transformed into Weyl estimates by using the large sieve inequality.

Such estimates will be important to the analysis of the minor arcs in subsequent

applications of the Hardy-Littlewood method. For example, we have

Theorem 4. Define m to be the set of α ∈ Rk+1 such that whenever ai ∈ Z and

q ∈ N satisfy (a0, . . . , ak, q) = 1 and |qαi − ai| ≤ P 1/2−kRk (0 ≤ i ≤ k) one has

q > P 1/2Rk+1. Then given ε > 0, there exists η = η(ε, k) such that whenever

R ≤ P η one has

sup
α∈m

|f(α;P,R)| ¿ P 2−σ1(k)+ε,

where

σ1(k)
−1 ∼ 28

3
k3 log k as k →∞.

A slightly more general version of this theorem will be proved in Chapter 4, but

the above version suffices for most of our applications.

1.6 Applications to Diophantine Problems

Estimates of the type given in Theorem 4 have immediate applications to the

problem of obtaining localized bounds for the fractional parts of polynomials in two

variables. In particular, we have

Theorem 5. Given α ∈ Rk+1 and ε > 0, there exists N0 = N0(ε, k) such that

whenever N > N0 one has

min
1≤m,n≤N

||α0m
k + α1m

k−1n+ · · ·+ αkn
k|| < N ε−ρ(k),

where

ρ(k)−1 ∼ 14
3
k3 log k as k →∞.
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It is worth noting that when α0 = 0 or αk = 0 a superior result is obtained

by specializing one of the variables and applying Wooley [63], Corollary 1.3, to the

resulting polynomial in a single variable. Hence in this case one could take

ρ(k)−1 ∼ 4k2 log k

in Theorem 5, and so our results are only of interest when both α0 and αk are

nonzero. A more precise expression for ρ(k) will be given in Chapter 4.

Next we consider a generalization of Waring’s problem posed by Arkhipov and

Karatsuba [2]. As Waring’s problem considers representations of a single integer as

a sum of terms of the shape xk, the simplest form of degree k in a single variable, a

natural generalization is to consider simultaneous representations of the shape

xk−j1 yj1 + · · ·+ xk−js yjs = nj (0 ≤ j ≤ k), (1.21)

since xk, xk−1y, . . . , yk are the simplest forms of degree k in two variables. By the

binomial theorem, we see that this is equivalent to representing the polynomial

p(t) =
k∑
j=0

(
k

j

)
njt

j (1.22)

as a sum of s kth powers of linear polynomials. That is, we seek to write

p(t) = (x1t+ y1)
k + · · ·+ (xst+ ys)

k (1.23)

with xi, yi ∈ N. We remark that the analogous problem over the complex numbers

has been considered recently by algebraic geometers (see for example [33], [41]). By

exploiting a surprising connection with the theory of partial differential operators,

one finds that precisely s =
⌈
k+1
2

⌉
terms are required to guarantee a representation

of the shape (1.23) for arbitrary polynomials of degree k over C. Working over the

integers, however, an elementary counting argument shows that one in fact needs

sÀ k2. Obviously, there will be no representations of the shape (1.23) if the relative

sizes of the nj are sufficiently disparate. For example, if some one of the nj is large,

then some one of the xi or yi must be large, which in turn forces the other nj to be

large. Thus we will need to impose some conditions in order to obtain a result.

Definition. For fixed s and k, the polynomial p(t) defined by (1.22) is said to be

locally representable if

(1) there exist real numbers P, µ0, . . . , µk, and δ = δ(s, k,µ) > 0 such that

∣∣nj − P kµj
∣∣ < δP k (0 ≤ j ≤ k) (1.24)
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and such that the system

ηk−j1 ξj1 + · · ·+ ηk−js ξjs = µj (0 ≤ j ≤ k) (1.25)

has a non-singular real solution with 0 < ηi, ξi < 1, and

(2) the system (1.21) has a non-singular p-adic solution for all primes p.

Now let G∗1(k) denote the least integer s such that, whenever the polynomial p(t)

given by (1.22) is locally representable and n0, . . . , nk are sufficiently large, one has

the global representation (1.23) for some natural numbers x1, . . . , xs and y1, . . . , ys.

Theorem 6. One has

G∗1(k) ≤ 14
3
k2 log k + 10

3
k2 log log k +O(k2).

We note that Arkhipov and Karatsuba [2] have previously outlined a program

for obtaining bounds of the form G∗1(k) ≤ Ck2 log k using the theory of multiple

exponential sums over a complete interval developed in [3]. Theorem 6 thus gives an

explicit asymptotic version of this result, showing that one may take C ∼ 14/3.

In Chapter 5, we sketch a refined analysis that leads to

Theorem 7. One has G∗1(3) ≤ 56.

Our final application concerns the density of rational lines on the hypersurface

defined by an additive equation. Let F (x) be a form of degree k in s variables,

with integer coefficients. In 1945, Brauer [10] used a diagonalization argument to

demonstrate the existence of an m-dimensional linear space on the hypersurface

F (x) = 0 over some solvable extension of Q, provided that s is sufficiently large in

terms of k and m. By refining Brauer’s method, Birch [8] obtained the same result

over Q for odd k in 1957. Unfortunately, the elementary methods of Brauer and

Birch do not yield any reasonable estimates for the number of variables required,

although explicit astronomical bounds have been given recently by Wooley [70]. For

small values of k, somewhat more satisfying results have been obtained by Lewis and

Schulze-Pillot [36] and Wooley [67], [68]. Up to this point, however, no estimates

have been provided for the density of rational lines on a given hypersurface.

In Chapter 4, we obtain an explicit upper bound for the number of variables

required to guarantee the expected density of rational lines on the hypersurface

F (x) = 0 in the case when F is an additive form of degree k. Let c1, . . . , cs be non-

zero integers, and let Ls(P ) denote the number of distinct lines of the form xt + y,

with xi, yi ∈ [−P, P ] ∩ Z, that lie on the hypersurface

c1z
k
1 + · · ·+ csz

k
s = 0. (1.26)
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Clearly, Ls(P ) is related to the number of solutions of the system of equations

c1x
k−j
1 yj1 + · · ·+ csx

k−j
s yjs = 0 (0 ≤ j ≤ k), (1.27)

with xi, yi ∈ [−P, P ] ∩ Z, so the theory of multiple exponential sums is again ap-

plicable. Thus in Chapter 4 we are able to prove

Theorem 8. Suppose that the system of equations (1.27) has a non-singular real

solution and a non-singular p-adic solution for all primes p. Then one has

Ls(P ) À P 2s−k(k+1)

for P sufficiently large, provided that

s ≥ 14
3
k2 log k + 10

3
k2 log log k +O(k2).

We note that, when s is large in terms of k, the theory of a single additive equa-

tion discussed in Section 1.4 shows that the hypersurface defined by (1.26) contains

“trivial” lines, corresponding to the case where either xi = 0 or yi = 0 for each i in

(1.27). By a trivial estimate, however, the number of such lines is O(P s). Hence in

the situation of Theorem 8 we see that most of the points on (1.26) that lie on lines

in fact lie on non-trivial lines.

It transpires that the p-adic solubility conditions imposed in the above theorems

need only be checked for finitely many primes p, for we show in Chapter 4 using

exponential sums that they do in fact hold whenever p > p0(k) and s ≥ (k + 1)2.

While p-adic solubility issues were considered in detail by Arkhipov [1] in his work

on the Hilbert-Kamke problem, such considerations have largely been ignored in

the results stated by Arkhipov and Karatsuba [2] on the multidimensional analogue

of Waring’s problem. It would therefore be desirable (and possibly quite difficult)

to give necessary and sufficient conditions for, or prove unconditionally, the p-adic

solubility of the systems (1.21) and (1.27) for small primes.

In the cubic case, we are able to establish a version of Theorem 8 that does not

require any local solubility hypotheses. Thus in Chapter 5 we prove

Theorem 9. Suppose that k = 3 and s ≥ 58. Then for P sufficiently large one has

Ls(P ) À P 2s−12.

It is worth noting that higher dimensional analogues of Theorems 6–9 would be

accessible with a satisfactory theory of higher dimensional exponential sums. Thus

in the analogues of Theorems 8 and 9 we would seek estimates for the density of

rational linear spaces (e.g. planes) of some dimension m ≥ 2 that lie on (1.26). Some
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of the technical apparatus for such a program has been laid by Arkhipov, Karatsuba,

and Chubarikov [3] in their treatment of d-fold exponential sums, but a substantial

refinement of that analysis would be necessary in order to obtain explicit results. It

may be possible to use the generality of their analysis as a model for extending the

iterative methods we develop in Chapter 3 to d-fold exponential sums over smooth

numbers.



CHAPTER II

Simultaneous Diagonal Inequalities

2.1 Overview

Our main goal in this chapter is the proof of Theorem 1. We begin by recalling

some of the notation introduced in Section 1.4. Let λ1, . . . , λs and µ1, . . . , µs be real

numbers such that for each i at least one of λi or µi is nonzero, and define the forms

F (x) = λ1x
3
1 + · · ·+ λsx

3
s

G(x) = µ1x
2
1 + · · ·+ µsx

2
s.

Further, let Θs(P ) denote the number of solutions of the system of inequalities

|F (x)| < (max |xi|)−σ1

|G(x)| < (max |xi|)−σ2
(2.1)

with x1, . . . , xs ∈ [1, P ] ∩ Z. The following is a quantitative version of Theorem 1.

Theorem 2.1. Let s ≥ 13, and let λ1, . . . , λs and µ1, . . . , µs be real numbers such

that for some i and j the ratios λi/λj and µi/µj are algebraic and irrational. Further,

suppose that

(a) F (x) has at least s− 4 variables explicit,

(b) G(x) has at least s− 5 variables explicit,

(c) the system F (x) = G(x) = 0 has a non-singular real solution, and

(d) one has σ1 + σ2 <
1
12

.

Then one has Θs(P ) À P s−5−σ1−σ2 for P sufficiently large.

When either F or G has a large number of zero coefficients, we can exploit results

for a single inequality to obtain a result in which the conditions on the coefficient

ratios are not needed.

19
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Theorem 2.2. Let λ1, . . . , λs and µ1, . . . , µs be real numbers. The simultaneous

inequalities (2.1) have infinitely many solutions in rational integers provided that

(a) F (x) has at least 7 variables explicit,

(b) G(x) has at least 5 variables explicit,

(c) the system F (x) = G(x) = 0 has a non-singular real solution, and

(d) one of the following holds:

(i) at least 4 of the λi are zero and max(σ1, σ2) ≤ 10−5, or

(ii) at least 7 of the µi are zero and σ1 ≤ 10−4.

We remark that condition (b) is not actually needed to prove the stated ver-

sion of Theorem 2.2; however, the condition arises naturally in discussing possible

improvements on condition (d)(ii), so we state it for convenience.

In Section 2.2, we deduce Theorem 2.2 in an elementary manner from results on

a single Diophantine inequality. We also consider a refinement of condition (d)(ii)

that would follow from improvements in our understanding of cubic inequalities.

We then prove Theorem 2.1 in Sections 2.3, 2.4, and 2.5, using a two-dimensional

version of the Davenport-Heilbronn method. We show that

Θs(P ) À
∫ ∞

−∞

∫ ∞

−∞
H(α)K(α) dα,

where H(α) is a suitable product of exponential sums (many of which we restrict to

smooth numbers) and K(α) is a product of two kernels similar to (1.15). We then

dissect the plane in analogy with the one-dimensional Davenport-Heilbronn dissec-

tion discussed in Section 1.4. The success of our minor arc analysis depends heavily

on an estimate of Wooley [72] for the 10th moment of a certain exponential sum over

smooth numbers and also on a result of R. Baker [5] relating the size of a certain

exponential sum to the existence of good rational approximations to the coefficients

of its argument. The treatment of the major arc is essentially straightforward using

the ideas of Wooley [61].

Finally, in Section 2.6, we discuss the possibility of weakening some of the hy-

potheses imposed in Theorems 2.1 and 2.2.

Throughout our analysis, implicit constants in the notations of Vinogradov and

Landau may depend on the coefficients λ1, . . . , λs and µ1, . . . , µs, the exponents σ1

and σ2, and also on any parameters denoted by ε or δ.

The material of this chapter appears in the author’s forthcoming publication [47].
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2.2 Forms with Many Zero Coefficients

Here we prove Theorem 2.2 using results on a single inequality. We first consider

the case (d)(i). The argument is similar to that given in Lemmata 6.3, 6.4, and

6.5 of Wooley [61], but it also incorporates the recent work of Baker, Brüdern, and

Wooley [7] on cubic inequalities in 7 variables and makes use of a result of Birch and

Davenport [9] on small solutions of quadratic inequalities in 5 variables. We start

with an analogue of [61], Lemma 6.3.

Lemma 2.2.1. Suppose that there is a rearrangement of the variables x1, . . . , xs

such that λi = 0 for i = 1, . . . , 4 and µ1, . . . , µ4 are not all of the same sign. Then

Theorem 2.2 holds in the case (d)(i).

Proof. Let σ = 1.43 × 10−4 and δ = 1
10
σ. It is easily seen that the main theorem

of [7] holds with the above value of σ, although the result is stated with a slightly

smaller exponent. Thus by condition (a) of Theorem 2.2, there exist infinitely many

(s− 4)-tuples of integers (a5, . . . , as) such that

∣∣λ5a
3
5 + · · ·+ λsa

3
s

∣∣ < (max |ai|)−σ. (2.2)

Now put Mi = µi for i = 1, . . . , 4, and put

M5 = µ5a
2
5 + · · ·+ µsa

2
s.

If |M5| < (max |ai|)−δ, then we can take x1 = · · · = x4 = 0 and xi = ai for i =

5, . . . , s. Otherwise, by the main theorem of [9] we can find (for max |ai| sufficiently

large) integers u1, . . . , u5, not all zero, such that

∣∣M1u
2
1 + · · ·+M5u

2
5

∣∣ < (max |ai|)−δ (2.3)

and

|M1u
2
1|+ · · ·+ |M5u

2
5| ¿ (max |ai|)δ(4+5δ)|M1 · · ·M5|1+δ.

But M5 ¿ (max |ai|)2, so that

|uj| ¿ (max |ai|)1+ δ
2
(6+5δ) (j = 1, . . . , 4)

and

|u5| ¿ (max |ai|) δ
2
(6+5δ).

Hence on putting x = (u1, . . . , u4, u5a5, . . . , u5as), we have

max |xi| ¿ (max |ai|)1+ δ
2
(6+5δ)
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and

|F (x)| < |u5|3(max |ai|)−σ ¿ (max |ai|) 3δ
2

(6+5δ)−σ.

Thus on taking

ε <
2σ − 3δ(6 + 5δ)

2 + δ(6 + 5δ)

we see that for max |ai| sufficiently large one has

|F (x)| < (max |xi|)−ε,

and so we may take σ1 = 1.429× 10−5. Moreover, on taking

γ <
2δ

2 + δ(6 + 5δ)

we have

|G(x)| < (max |ai|)−δ < (max |xi|)−γ

for max |ai| sufficiently large, so we may take σ2 = 1.429× 10−5.

When the hypothesis of Lemma 2.2.1 is not satisfied, we need some additional control

over the solution to our cubic inequality (2.2) in order to guarantee that the quadratic

in (2.3) is indefinite. Specifically, we require the following analogue of [61], Lemma

6.4.

Lemma 2.2.2. Let λ1, . . . , λt (t ≥ 7) be non-zero real numbers, and suppose that

(η1, . . . , ηt) is a real solution of the equation

λ1x
3
1 + · · ·+ λtx

3
t = 0

with 0 < ηi < 1 for all i. Then for any α ∈ (0, 1) and P > P0(η,λ, α), there exist

integers y1, . . . , yt such that

|λ1y
3
1 + · · ·+ λty

3
t | < (max |yi|)−σ,

where σ = 1.43× 10−4 and

(1− α)ηiP < yi ≤ (1 + α)ηiP (i = 1, . . . , t). (2.4)
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Proof. If the λi are all in rational ratio, then the result follows from Lemma 6.4

of [61]. Otherwise, we follow through the analysis of [7], restricting the ranges of

summation on the generating functions so that only values of the variables satisfying

(2.4) are included. All of the required estimates continue to hold, with only the

major arc analysis requiring a slight modification.

Now we can complete the proof of case (d)(i) by arguing as in the proof of [61],

Lemma 6.5. Suppose that at least 4 of the λi are zero, and rearrange variables so

that λ1, . . . , λt 6= 0 and λi = 0 for i = t+1, . . . , s. By condition (c) and the argument

of [61], Lemma 6.2, we may assume that the equations F (x) = G(x) = 0 have a real

solution (η1, . . . , ηs) with all of the ηi non-zero, and then on replacing λi by −λi if

necessary and using homogeneity we may assume that 0 < ηi <
1
2

for all i. Further,

by Lemma 2.2.1, we may assume that µt+1, . . . , µs are all positive, so that

µ1η
2
1 + · · ·+ µtη

2
t = −(µt+1η

2
t+1 + · · ·+ µsη

2
s) = −C < 0.

Let α, P, and (y1, . . . , yt) be as in Lemma 2.2.2 with

α <
2C

3t
(max |µi|)−1 ,

and put M = µ1y
2
1 + · · ·+ µty

2
t . Then

|M + CP 2| ≤ P 2(α2 + 2α)
t∑
i=1

|µiη2
i | <

1

2
CP 2,

so that

M < −1

2
CP 2 < 0.

Now let δ = 1.43 × 10−5 as before. If |M | < P−δ, then we can take xi = yi for

i = 1, . . . , t and xt+1 = · · · = xs = 0. Otherwise, for P sufficiently large, we may

use the result of [9] as in the proof of Lemma 2.2.1 to find integers vt, . . . , vs, not all

zero, with

|vt| ¿ P
δ
2
(6+5δ) and |vi| ¿ P 1+ δ

2
(6+5δ) (i = t+ 1, . . . , s)

such that

|Mv2
t + µt+1v

2
t+1 + · · ·+ µsv

2
s | < P−δ.

Proceeding exactly as in the proof of Lemma 2.2.1, we find that

x = (y1vt, . . . , ytvt, vt+1, . . . , vs)
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satisfies (2.1) with σ1 = σ2 = 10−5, and this completes the proof of Theorem 2.2 in

the case (d)(i).

The case (d)(ii) of Theorem 2.2 follows immediately from the results of [7], and

this completes the proof of the theorem.

We now investigate the possibility of reducing the number of zero coefficients

required by condition (d)(ii) from 7 to 6, in accordance with [61] and [72]. Brüdern

[13], improving on a result of Pitman and Ridout [49], has shown that if λ1, . . . , λ9

are real numbers with |λi| ≥ 1 for all i then there exist integers x1, . . . , x9 satisfying

|λ1x
3
1 + · · ·+ λ9x

3
9| < 1

and

0 <
9∑
i=1

|λix3
i | ¿δ |λ1 · · ·λ9|1+δ. (2.5)

Unfortunately, in order to use this result in an argument like the one in Lemma 2.2.1

we would have to assume that G(x) had at least eight zero coefficients, and in this

situation we would do better to apply the results of [12]. Suppose, however, that the

above result held with 7 variables instead of 9. Then condition (d)(ii) of Theorem

2.2 could be replaced by

(d)(ii)′ at least 6 of the µi are zero and max(σ1, σ2) ≤ 10−2.

The argument resembles the one above, but an argument like the one ensuing from

Lemma 2.2.2 will not be necessary since the quadratic under consideration there will

be replaced by a cubic.

Proceeding just as in Lemma 2.2.1, we fix σ < 1/10 and δ = 1/70. After rear-

ranging variables, we may assume that µ1 = · · · = µ6 = 0. Now by condition (b) of

Theorem 2.2 and an easily obtained quantitative version of the classical Davenport-

Heilbronn Theorem, we see that there exist infinitely many (s− 6)-tuples of integers

(a7, . . . , as) such that
∣∣µ7a

2
7 + · · ·+ µsa

2
s

∣∣ < (max |ai|)−σ.
Now put Λi = λi for i = 1, . . . , 6, and put

Λ7 = λ7a
3
7 + · · ·+ λsa

3
s.

If |Λ7| < (max |ai|)−δ, then we can take x1 = · · · = x6 = 0 and xi = ai for i = 7, . . . , s.

Otherwise, by our hypothesis, we can find (for max |ai| sufficiently large) integers

u1, . . . , u7, not all zero, such that
∣∣Λ1u

3
1 + · · ·+ Λ7u

3
7

∣∣ < (max |ai|)−δ



25

and

|Λ1u
3
1|+ · · ·+ |Λ7u

3
7| ¿ (max |ai|)δ(6+7δ)|Λ1 · · ·Λ7|1+δ.

But Λ7 ¿ (max |ai|)3, so that

|uj| ¿ (max |ai|)1+ δ
3
(9+7δ) (j = 1, . . . , 6)

and

|u7| ¿ (max |ai|) δ
3
(9+7δ).

Hence on putting x = (u1, . . . , u6, u7a7, . . . , u7as), we have

max |xi| ¿ (max |ai|)1+ δ
3
(9+7δ),

so on taking

γ <
3δ

3 + δ(9 + 7δ)

we have

|F (x)| < (max |ai|)−δ < (max |xi|)−γ.

Furthermore, if

ε <
3σ − 2δ(9 + 7δ)

3 + δ(9 + 7δ)

then we have

|G(x)| < |u7|2(max |ai|)−σ ¿ (max |ai|) 2δ
3

(9+7δ)2−σ,

whence for max |ai| sufficiently large

|G(x)| < (max |xi|)−ε.

Thus we may take σ1 = σ2 = 1.2× 10−2.

We note that throughout our arguments there is some freedom in the choice

of the parameter δ, and we have generally chosen it so as to give roughly the same

permissible values for σ1 and σ2. If so desired, one can alter δ in favor of one exponent

or the other and in fact obtain a region of permissible values similar in shape to (but

smaller than) the region in Theorem 2.1(d). We do not pursue this refinement here.
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2.3 The Davenport-Heilbronn Method

We now set up a two-dimensional version of the Davenport-Heilbronn method,

which we will use to prove Theorem 2.1. We may assume (after rearranging variables)

that the the first m of the µi are zero, that the last n of the λi are zero, and that the

remaining h = s −m − n indices have both λi and µi nonzero. Then when s ≥ 13

we have by conditions (a) and (b) of Theorem 2.1 that

0 ≤ m ≤ 5, 0 ≤ n ≤ 4, and h ≥ 4. (2.6)

Furthermore, we may suppose that λI/λJ and µI/µJ are algebraic irrationals, where

I = m+ h− 2, J = m+ h− 1, and K = m+ h.

Let ε be a small positive number, and choose η > 0 sufficiently small in terms of ε.

Take P to be a large positive number, put R = P η, and let

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R}.

Write α = (α, β), and define generating functions

Fi(α) =
∑

1≤x≤P
e(λiαx

3 + µiβx
2) (2.7)

and

fi(α) =
∑

x∈A(P,R)

e(λiαx
3 + µiβx

2). (2.8)

It will also be convenient to write

gi(α) = fi(α, 0) and Hi(β) = Fi(0, β).

According to Davenport [17], for every integer r there exists a real-valued even kernel

function K of one real variable such that

K(α) ¿ min(1, |α|−r) (2.9)

and

∫ ∞

−∞
e(αt)K(α) dα





= 0, if |t| ≥ 1,

∈ [0, 1], if |t| ≤ 1,

= 1, if |t| ≤ 1
3
.

(2.10)
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We set

K(α) = K(αP−σ1)K(βP−σ2).

Now let N(P ) be the number of solutions of (2.1) with

xi ∈ A(P,R) (i = 1, . . . ,m+ h− 3)

and

1 ≤ xi ≤ P (i = m+ h− 2, . . . , s).

By a familiar argument, N(P ) is bounded below by P−σ1−σ2R(P ), where

R(P ) =

∫ ∞

−∞

∫ ∞

−∞
F(α)G(α)H(α)K(α) dα, (2.11)

F(α) =
m+h−3∏
i=1

fi(α), H(α) =
m+h∏

i=m+h−2

Fi(α), and G(α) =
s∏

i=m+h+1

Fi(α).

We dissect the plane into three main regions, imitating the standard dissection of

the real line used in the treatment of a single inequality. The trivial region is defined

by

t = {α : |α| > P σ1+ε or |β| > P σ2+ε}, (2.12)

the major arc by

M = {α : |α| ≤ P−9/4 and |β| ≤ P−5/4}, (2.13)

and the minor arcs by

m = R2 \ (t ∪M). (2.14)

Our plan is to show that R(P ) À P s−5, with the main contribution coming from the

major arc. For r sufficiently large in terms of ε, it follows easily from (2.9) and (2.12)

that the contribution to R(P ) from the trivial region is o(P s−5). In the next section,

we consider a finer dissection of the minor arcs, which allows us to show that their

contribution to R(P ) is also o(P s−5), provided that σ1 and σ2 are confined to the

region specified in Theorem 2.1. Finally, in Section 2.5, we apply standard methods

to deal with the major arc.
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2.4 The Minor Arcs

We begin by bounding the integral (2.11) in terms of others having somewhat

more standard forms. We start by choosing a finite covering of m by unit squares

of the form [c, c + 1]× [d, d + 1]. For n ⊂ m, let Un denote the square for which the

integral
∫∫

n∩Un

|F(α)G(α)H(α)| dα

is maximal, and write n∗ = n ∩ Un. Then for r > 1 it follows from (2.9) that

∫∫

n

|F(α)G(α)H(α)K(α)| dα¿ P σ1+σ2

∫∫

n∗

|F(α)G(α)H(α)| dα. (2.15)

Furthermore, by arguing as in the proof of Lemma 7.3 of Wooley [61], we see that

∫∫

n∗

|F(α)G(α)| dα¿
∫∫

n∗

|fi(α)|h−3 |gj(α)|m |Hk(β)|n dα (2.16)

for some i, j, and k (depending on n) satisfying

m+ 1 ≤ i ≤ m+ h, 1 ≤ j ≤ m, and m+ h+ 1 ≤ k ≤ s.

In the course of an argument in which n is fixed, we will employ the abbreviations

f = |fi(α)|, g = |gj(α)|, and H = |Hk(β)|.

Finally, on recalling (2.6) and again mimicking the arguments of [61], we obtain

fh−3gmHn ¿ P s−13
(
f 10 + fuH10−u + guH10−u + f 10−ugu

)
(2.17)

whenever 5 ≤ u ≤ 6. For convenience, we introduce the notation

Q = P s−13+σ1+σ2 . (2.18)

We are now in a position to make use of certain mean value estimates developed

in Wooley [61], [72]. Those that we need are recorded for reference in the following

lemma.

Lemma 2.4.1. Suppose that

m+ 1 ≤ i ≤ m+ h, 1 ≤ j ≤ m, and m+ h+ 1 ≤ k ≤ s.

Then for any unit square U = [c, c+ 1]× [d, d+ 1], we have
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(i)
∫∫
U
|fi(α)|10 dα¿ P 17/3+ε,

(ii)
∫∫
U
|fi(α)|6 |Hk(β)|4 dα¿ P 21/4+ε,

(iii)
∫∫
U
|gj(α)|6 |Hk(β)|4 dα¿ P 21/4+ε,

(iv)
∫∫
U
|fi(α)|4 |gj(α)|6 dα¿ P 21/4+ε,

(v)
∫∫
U
|fi(α)|14 dα¿ P 9,

(vi)
∫∫
U
|fi(α)|8 |Hk(β)|5 dα¿ P 8,

(vii)
∫∫
U
|gj(α)|8 |Hk(β)|5 dα¿ P 8,

(viii)
∫∫
U
|fi(α)|6 |gj(α)|8 dα¿ P 9.

Proof. Part (i) follows from Theorem 2 of Wooley [72] on considering the underlying

Diophantine equations and making a change of variables. Parts (iii), (v), and (vii)

follow from the corresponding parts of Lemmata 7.2, 9.1, and 9.4 of Wooley [61] on

making a change of variables and noting that the additional restrictions imposed on

the variable ranges in that paper can be removed without affecting the arguments.

For the remaining parts, we use the idea of the proof of Lemma 9.1(i) of [61] in a

manner typified by (ii): Write

sm(x,y) = (xm1 − ym1 ) + (xm2 − ym2 ) + (xm3 − ym3 )

and

H(β) =
∑

1≤x≤P
e(βx2).

Then on making the change of variables α′ = λiα and β′ = µkβ we have

∫∫

U

|fi(α)|6 |Hk(β)|4 dα¿
∫∫

U ′

∑
x,y

e

(
s3(x,y)α +

µi
µk
s2(x,y)β

)
|H(β)|4 dα dβ,

where the summation is over x and y with xi, yi ∈ A(P,R) and where U ′ = [m3, n3]×
[m2, n2] for some integers mj and nj with nj −mj ¿ 1. If we now let

c(x,y) = e

(
µi
µk
s2(x,y)β

)
,
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then since c(x,y) is unimodular we obtain

∫∫

U

|fi(α)|6 |Hk(β)|4 dα ¿
∫ n2

m2

(∑
x,y

c(x,y)

∫ n3

m3

e(s3(x,y)α)dα

)
|H(β)|4 dβ

¿ P 13/4+ε

∫ 1

0

|H(β)|4 dβ ¿ P 21/4+ε

on using Theorem 4.4 of Vaughan [53] and considering the underlying Diophantine

equations.

Lemma 2.4.1 allows us to handle regions of m on which H is suitably bounded.

Fortunately, when FI , FJ , or FK is large, we also obtain a great deal of information

from a theorem of Baker [5], a special case of which is recorded below.

Lemma 2.4.2. Let P > P0(ε) and A > P 3/4+ε. If |Fi(α)| ≥ A for some i = I, J,

or K, then there exists a natural number q < P 3+εA−3 and integers a and b with

(q, a, b) = 1 such that |λiαq − a| < P εA−3 and |µiβq − b| < P 1+εA−3.

Proof. This is Theorem 5.1 of [5] with T = P 3/4+ε, M = 1, and k = 3.

Lemma 2.4.2 suggests further dissecting m according to the behavior of FI , FJ ,

and FK . Thus we start by defining

e = {α ∈ m : |Fi(α)| ≤ P 3/4+ε for i = I, J,K}.

Now let

f(I) = {α ∈ m : |FI(α)| > P 3/4+ε, max(|FJ(α)| , |FK(α)|) ≤ P 3/4+ε},

define f(J) and f(K) likewise, and put

f = f(I) ∪ f(J) ∪ f(K).

Similarly, let

g(I) = {α ∈ m : |FI(α)| ≤ P 3/4+ε, min(|FJ(α)| , |FK(α)|) > P 3/4+ε},

define g(J) and g(K) likewise, and put

g = g(I) ∪ g(J) ∪ g(K).

Finally, define

h = {α ∈ m : |Fi(α)| > P 3/4+ε for i = I, J,K}.
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The set e can be handled quite easily. Using (2.15)–(2.18) and Lemma 2.4.1, we

obtain
∫∫

e

|FGHK| dα ¿ Q
(
P 3/4+ε

)3
∫∫

Ue

(
f 10 + f 6H4 + g6H4 + f 4g6

)
dα

¿ P s−13+σ1+σ2+9/4+3ε
(
P 17/3+ε + P 21/4+ε

)

= o(P s−5),

provided that σ1 + σ2 < 1/12, since ε can be chosen arbitrarily small.

The rational approximations provided by Lemma 2.4.2 allow us to incorporate

major arc techniques along the lines of Brüdern [11] and [12] in dealing with the sets

f, g, and h. For this we require some additional definitions and lemmata. Define

M(q, a, b) = {α ∈ [0, 1]2 : |qα− a| < P−9/4 and |qβ − b| < P−5/4},

M =
⋃

0≤a,b≤q<P 3/4

(q,a,b)=1

M(q, a, b),

S(q, a, b) =

q∑
x=1

e

(
ax3 + bx2

q

)
,

and

S∗t (q) =
∑

1≤a,b≤q
(q,a,b)=1

∣∣q−1S(q, a, b)
∣∣t .

Lemma 2.4.3. For t > 6, we have

∑
q≤X

S∗t (q) ¿ 1.

Proof. Using Lemma 10.4 of Wooley [61] and proceeding as in Lemma 2.11 of Vaughan

[55], one sees that S∗t (q) is multiplicative, so

∑
q≤X

S∗t (q) ≤
∏
p

(
1 +

∞∑

h=1

S∗t (p
h)

)
. (2.19)

Whenever (ph, a, b) = 1, we have

S(ph, a, b) ¿ p2h/3+ε
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by Theorem 7.1 of Vaughan [55], but in the case that (b, p) = 1 it follows from

Theorem 1 of Loxton and Vaughan [38] that in fact

S(ph, a, b) ¿ ph/2.

Thus we have

S∗t (p
h) = p−ht

∑

1≤a,b≤ph

(p,b)=1

∣∣S(ph, a, b)
∣∣t + p−ht

∑

1≤a,b≤ph

(ph,a,b)=1
(p,b)>1

∣∣S(ph, a, b)
∣∣t

¿ p−ht
(
p2h+ht/2 + p2h−1+2ht/3+tε

)
,

whence for t > 6 we have

∞∑

h=1

S∗t (p
h) ¿ p−1−δ

for some δ > 0, and the result now follows immediately from (2.19).

Write

F (α) =
∑

1≤x≤P
e(αx3 + βx2) (2.20)

and

v(α) =

∫ P

0

e(αγ3 + βγ2) dγ. (2.21)

The following lemma provides a useful refinement of [61], Lemma 9.2.

Lemma 2.4.4. For t > 6, we have

∫∫

M

|F (α)|t dα¿ P t−5.

Proof. When α ∈M(q, a, b), write ξ = (ξ3, ξ2) = (α− a/q, β − b/q) and

V (α) = V (α; q, a, b) = q−1S(q, a, b)v(ξ).

Then for α ∈M(q, a, b) we have by Lemma 4.4 of Baker [5] that

F (α) = V (α) +O(q2/3+ε).
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Hence if M1 denotes the subset of M on which |V (α)| ≤ q2/3+ε, then we have
∫∫

M1

|F (α)|t dα¿
∑

q≤P 3/4

(q2/3+ε)tP−7/2 ¿ P t−5,

provided that t > 9/2. For α ∈M2 = M\M1, we have |V (α)| > q2/3+ε and hence

|F (α)| ¿ |V (α)|. Moreover, by Theorem 7.3 of Vaughan [55], we have

v(ξ) ¿ P (1 + P 2|ξ2|+ P 3|ξ3|)−1/3 ¿ P (1 + P 2|ξ2|)−1/6(1 + P 3|ξ3|)−1/6,

and on combining this with Lemma 2.4.3 we obtain
∫∫

M

|V (α)|tdα¿ P t−5
∑

q≤P 3/4

S∗t (q) ¿ P t−5

whenever t > 6. Thus we have∫∫

M2

|F (α)|tdα¿ P t−5

for t > 6, and this completes the proof.

The sets f and g can now be handled with little difficulty by applying major

arc treatments to one or two of the variables. The key observation is that Baker’s

Theorem (Lemma 2.4.2) allows us to bound an integral of |Fi(α)|t over f(i)∗ or g(j)∗

(j 6= i) in terms of the integral considered in the previous lemma.

Using (2.15)–(2.18) as on e, we obtain for some i = I, J, or K that
∫∫

f

|FGHK| dα¿ Q
(
P 3/4+ε

)2
∫∫

f(i)∗

|Fi|
(
f 10 + f 6H4 + g6H4 + f 4g6

)
dα.

Then by Hölder’s inequality we have

∫∫

f(i)∗

|Fi| f 10dα¿




∫∫

f(i)∗

|Fi|7 dα




1/7 


∫∫

Uf

f 10dα




1/2 


∫∫

Uf

f 14dα




5/14

,

and by Lemma 2.4.1 we have
∫∫

f(i)∗

|Fi|
(
f 6H4 + g6H4 + f 4g6

)
dα¿ P 25/4+ε.

Hence on using Lemmata 2.4.1, 2.4.2, and 2.4.4, together with a change of variables,

we find that∫∫

f

|FGHK| dα ¿ P s−13+σ1+σ2+3/2+2ε
(
P 19/3+ε + P 25/4+ε

)
= o(P s−5),
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provided that σ1 + σ2 < 1/6.

Proceeding similarly but instead taking u = 40/7 in (2.17), we have for some

i 6= j among I, J, and K that
∫∫

g

|FGHK| dα ¿ QP 3/4+ε

∫∫

g(i)∗

|Fj|2
(
f 10 + f

40
7 H

30
7 + g

40
7 H

30
7 + f

30
7 g

40
7

)
dα

¿ QP 3/4+ε




∫∫

g(i)∗

|Fj|7 dα




2/7

(
I 5/7

1 + I 5/7
2 + I 5/7

3 + I 5/7
4

)
,

where

I1 =

∫∫

Ug

f 14dα, I2 =

∫∫

Ug

f 8H6dα,

I3 =

∫∫

Ug

g8H6dα, I4 =

∫∫

Ug

f 6g8dα.

Thus we have
∫∫

g

|FGHK| dα ¿ P s−13+σ1+σ2+3/4+ε
(
P 7

)
= o(P s−5),

provided that σ1 + σ2 < 1/4.

The set h is somewhat more difficult to deal with, and it is here that we make

use of the hypothesis that λI/λJ and µI/µJ are algebraic irrationals. We divide h

into two main components,

h1 = {α ∈ h : |α| ≥ P−9/4+ε} and h2 = h \ h1,

and we further subdivide h∗1 and h∗2 into O ((logP )2) dyadic subsets of the form

hi(A,B) = {α ∈ h∗i : A < |FI(α)| ≤ 2A, B < |FJ(α)| ≤ 2B}.

We also write

h(A,B) = h1(A,B) ∪ h2(A,B).

We now use a method introduced by Baker [4] to give an upper bound for the

Lebesgue measure of hi(A,B). If α ∈ h(A,B), then by Lemma 2.4.2 there exist

natural numbers

qI < P 3+εA−3, qJ < P 3+εB−3, qK < P 3/4 (2.22)
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and integers ai, bi with (qi, ai, bi) = 1 for i = I, J,K such that

|λIαqI − aI | < P εA−3, |µIβqI − bI | < P 1+εA−3; (2.23)

|λJαqJ − aJ | < P εB−3, |µJβqJ − bJ | < P 1+εB−3; (2.24)

and

|λKαqK − aK | < P−9/4, |µKβqK − bK | < P−5/4. (2.25)

Notice that the inequalities (2.23) and (2.24) restrict α to lie in a box BI about

the point (aI/(λIqI), bI/(µIqI)) with

meas(BI) ¿ q−2
I P 1+2εA−6 (2.26)

and at the same time in a box BJ about (aJ/(λJqJ), bJ/(µJqJ)) with

meas(BJ) ¿ q−2
J P 1+2εB−6. (2.27)

We first obtain a lower bound for qIqJ . As in the proof of Lemma 11.1 of Vaughan

[55], it follows from (2.23) and (2.24) that for α ∈ h1 we have

∣∣∣∣
λI
λJ
− aIqJ
aJqI

∣∣∣∣ ¿ P−9/4,

whereas by a well-known theorem of Roth [50] we have

∣∣∣∣
λI
λJ
− aIqJ
aJqI

∣∣∣∣ À
1

|aJqI |2+ε
,

so that |aJqI | À P 9/8−ε. Similarly, for α ∈ h2 we have

1

|bJqI |2+ε
¿

∣∣∣∣
µI
µJ

− bIqJ
bJqI

∣∣∣∣ ¿ P−5/4,

and hence |bJqI | À P 5/8−ε. Thus on using (2.23) and (2.24) and recalling the defin-

itions (2.12)–(2.14) we obtain

qIqJ À



P 9/8−σ1−2ε, if α ∈ h1

P 5/8−σ2−2ε, if α ∈ h2.
(2.28)

Next we observe that when α ∈ h1(A,B) there are O(P 9+3εA−9) corresponding

triples (qI , aI , bI) satisfying (2.22) and (2.23). Alternatively, there are O(P 9+3εB−9)
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triples (qJ , aJ , bJ) satisfying (2.22) and (2.24). On combining this with (2.26), (2.27),

and (2.28) we obtain

meas(h1(A,B)) ¿ P 71/8+σ1+7ε(AB)−15/2. (2.29)

When α ∈ h2(A,B) we necessarily have aI = aJ = 0 for P sufficiently large, so

proceeding as above gives

meas(h2(A,B)) ¿ P 51/8+σ2+6ε(AB)−6. (2.30)

On applying Hölder’s inequality and Lemma 2.4.1 as before and writing L =

(logP )2, we find that for some A and B
∫∫

h1

|FGHK| dα ¿ QL

∫∫

h1(A,B)

|FIFJFK |
(
f 10 + f

40
7 H

30
7 + g

40
7 H

30
7 + f

30
7 g

40
7

)
dα

¿ QP ε




∫∫

h∗1

|FK |
105
16 dα




16
105




∫∫

h1(A,B)

|FIFJ |
15
2 dα




2
15

(
P 9

) 5
7 .

Thus by (2.29) and Lemma 2.4.4 we have
∫∫

h1

|FGHK| dα¿ P s−13+ 45
7

+ 5
21

+ 2
15

( 71
8

)+ 17
15
σ1+σ2+2ε = o(P s−5),

provided that 17
15
σ1 + σ2 <

3
20

.

Since h2 is a thin strip along the β-axis, we save a factor of P σ1 in the analysis

leading to (2.15), but the treatment is otherwise similar to the above. On writing

Q′ = P s−13+σ2 , we have
∫∫

h2

|FGHK| dα ¿ Q′L
∫∫

h2(A,B)

|FIFJFK |
(
f 10 + f

40
7 H

30
7 + g

40
7 H

30
7 + f

30
7 g

40
7

)
dα

¿ P s−13+σ2+ε




∫∫

h∗2

|FK |
42
5 dα




5
42




∫∫

h2(A,B)

|FIFJ |6 dα




1
6

(
P 9

) 5
7 ,

whence by (2.30) we obtain
∫∫

h2

|FGHK| dα¿ P s−13+ 45
7

+ 17
42

+ 1
6
( 51

8
)+ 7

6
σ2+2ε = o(P s−5),

provided that 7
6
σ2 <

5
48

. It is easily seen that these last two inequalities are less

restrictive than the one appearing in condition (d) of Theorem 2.1.
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2.5 The Major Arc

As it stands, the major arc M is too large to allow satisfactory approximation of

the exponential sums fi(α), so we must do some pruning. Specifically, let W be a

parameter at our disposal, and let

N = {α : |α| ≤ WP−3 and |β| ≤ WP−2}. (2.31)

Then as in Lemma 9.2 of Wooley [61], we have for t > 9 that
∫∫

M\N

|Fi(α)|t dα¿ W−σP t−5

for i = I, J,K and some σ > 0. Thus by using (2.17) and Lemma 2.4.1 as in the

treatment of g and h in the previous section, we have for some i = I, J, or K that

∫∫

M\N

|FGHK| dα ¿ P s−13




∫∫

M\N

|Fi(α)|21/2 dα




2/7

P 45/7

¿ P s−5W−σ′ .

It remains to deal with the pruned major arc N. Let

vi(α) =

∫ P

0

e(λiαγ
3 + µiβγ

2) dγ (2.32)

and

wi(α) =

∫ P

R

ρ

(
log γ

logR

)
e(λiαγ

3 + µiβγ
2) dγ, (2.33)

where ρ(x) is Dickman’s function (see Vaughan [55], chapter 12). Then for α ∈ N,

we obtain from Theorem 7.2 of [55] that

Fi(α) = vi(α) +O(W )

and from Lemma 8.5 of [61] that

fi(α) = wi(α) +O(WP/ logP ).

Now on taking W = (logP )1/4 it follows that

∫∫

N

FGHK dα =

∫∫

N

(
m+h−3∏
i=1

wi(α)

)(
s∏

i=m+h−2

vi(α)

)
K(α) dα+O(P s−5W−1).
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Furthermore, we may extend the integration over all of R2, as the bounds for vi and

wi contained in Lemma 8.6 of [61] imply that

∫∫

R2\N

(
m+h−3∏
i=1

wi(α)

)(
s∏

i=m+h−2

vi(α)

)
K(α) dα¿ P s−5W−1.

Thus it remains to show that the singular integral

J =

∫ ∞

−∞

∫ ∞

−∞

(
m+h−3∏
i=1

wi(α)

)(
s∏

i=m+h−2

vi(α)

)
K(α) dα

satisfies J À P s−5. Multiplying out, we have

J =

∫ ∞

−∞

∫ ∞

−∞

∫

B∗
T ∗(γ) e(F (γ)α+G(γ)β)K(αP−σ1)K(βP−σ2) dγ dα dβ,

where

B∗ = [R,P ]m+h−3 × [0, P ]n+3

and

T ∗(γ) =
m+h−3∏
i=1

ρ

(
log γi
logR

)
.

On making the change of variables

γ ′ = γP−1, α′ = αP−σ1 , β′ = βP−σ2

and applying Fubini’s Theorem, we obtain

J = P s+σ1+σ2

∫

B
T (γ) K̂(F (γ)P 3+σ1)K̂(G(γ)P 2+σ2) dγ, (2.34)

where we have written

B = P−1B∗, T (γ) = T ∗(Pγ),

and

K̂(t) =

∫ ∞

−∞
e(αt)K(α) dα.

Now by condition (c) of Theorem 2.1 and the argument of Lemma 6.2 of Wooley

[61], we can find a non-singular solution η to the equations F = G = 0 such that each

ηi is non-zero. Then, after replacing λi by −λi if necessary and using homogeneity,
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we may assume that η ∈ (0, 1)s and hence that η lies in the interior of B when P is

sufficiently large. Suppose that 6ηjηk(λjµkηj − λkµjηk) 6= 0, and consider the map

φ : Rs → Rs defined by

φj = F (γ), φk = G(γ), and φi = γi (i 6= j, k). (2.35)

By the inverse function theorem, there exist neighborhoods U of η and V of φ(η)

such that φ maps U injectively onto V , and we may assume that U ⊂ B. Now by

(2.10) and the nonnegativity of ρ, the integrand in (2.34) is nonnegative, so we may

restrict the integration over γ to the set U . Then on writing z = φ(γ), where φ is

as in (2.35), we have by the change of variables theorem that

J ≥ P s+σ1+σ2

∫

V

T (φ−1(z))K̂(zjP
3+σ1)K̂(zkP

2+σ2)

∣∣∣∣
dγ

dz

∣∣∣∣ dz. (2.36)

Since meas(V ) À 1, the projection of V onto zj contains the interval [0, 1
3
P−3−σ1 ],

and the projection of V onto zk contains the interval [0, 1
3
P−2−σ2 ], provided that P

is sufficiently large. Hence on restricting the range of integration in (2.36) and using

(2.10) again, we obtain

J À P s+σ1+σ2

∫

S
T (φ−1(z))dz,

where meas(S) À P−5−σ1−σ2 . Finally, on noting that T (γ) À ρ(1/η)m+h−3 À 1 for

γ ∈ B, we obtain J À P s−5 as required. This completes the proof of Theorem 2.1.

2.6 A Discussion of Possible Improvements

Here we discuss the possibility of weakening some of the conditions imposed on

the forms F and G in Theorems 2.1 and 2.2. In view of the discussion of Wooley [61],

§5, where it is shown that many conditions similar to ours are essentially best possible

for the corresponding problem on equations, our observations will leave something

to be desired. Nevertheless, we can show that at least some minimal conditions are

necessary to ensure the solubility of (2.1).

For example, let

F (x) = λ3x3
1 − x3

2 and G(x) = µ2x2
3 − x2

4,

where λ and µ are positive real algebraic of degree 3 and 2, respectively, such that λ3

and µ2 are irrational. For instance, we may take λ = 1 + 3
√

2 and µ = 1 +
√

2. Then

it follows easily from Liouville’s Theorem that, for sufficiently small τ > 0, neither

of the inequalities

|F (x)| < τ, |G(x)| < τ
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has a non-trivial solution in rational integers. Of course, this example is easily

generalized to produce forms F1, . . . , Ft of degrees k1, . . . , kt in 2t variables that do

not take arbitrarily small values. Therefore, we must minimally require either s ≥ 5

total variables or at least 3 variables explicit in one of the two forms.

More realistically, in light of [72], Theorem 1, one might hope to be able to prove

Theorem 2.1 with s = 13 but conditions (a) and (b) weakened so that F and G

need only have 7 and 5 variables explicit, respectively, rather than 9 and 8. The

latter numbers arise from the inequalities (2.6), on which the analytic argument in

Sections 2.3–2.5 depends, but one may attempt to reduce these in the manner of [61]

and [72] by using Theorem 2.2. Unfortunately, there are some difficulties with this

approach in our situation. If F has exactly 7 or 8 variables explicit, then we may

apply Theorem 2.2 to solve (2.1), but we must settle for the inferior values of σ1 and

σ2 allowed by condition (d)(i) of that theorem, and we forfeit our estimate for the

density of solutions. Moreover, if G has exactly 7 variables explicit and F has at

least 10 variables explicit, then neither Theorem 2.1 nor Theorem 2.2 applies with

s = 13. To avoid this difficulty, we may hope to reduce the number of zero coefficients

required by condition (d)(ii) of the latter from 7 to 6, and we saw in Section 2.2 that

a conditional result of this type could be obtained using hypothetical results on small

solutions of cubic inequalities in 7 variables.

As mentioned in Section 2.1, condition (b) of Theorem 2.2 can be eliminated from

the stated version of the theorem, but some form of it is likely to be necessary for

any desirable refinement of (d)(ii). If a quantitative version of the result of Margulis

[39] on the Oppenheim conjecture were available, then we could reduce the 5 to 3

in condition (b) of our hypothetical version of Theorem 2.2, provided we assumed

additionally that G is not a multiple of a form with integer coefficients. However,

the methods of [39] do not seem to hold much promise for obtaining such a result.

We can also investigate the possibility of reducing the total number of variables

required. Although Theorem 2.1 could conceivably hold with as few as 5 variables,

it does not seem possible for an analytic argument of the flavor given in Sections

2.3–2.5 to be successful with fewer than 11 variables. In the “ideal” situation that

the first four mean values in Lemma 2.4.1 were bounded by P 5+ε, a simplified version

of our analysis would allow us to prove a version of the theorem for s ≥ 12, possibly

with a slightly different range of permissible values for σ1 and σ2.

Next we note that the existence of a non-trivial real solution to the equations

F = G = 0 is a necessary condition for the system (2.1) to have infinitely many

integer solutions. For, if the latter holds, then for arbitrary τ > 0 we can obtain

(by rescaling an integer solution x with max |xi| sufficiently large) a real solution
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η(τ) ∈ [−1, 1]s of the inequalities |F | < τ, |G| < τ such that |ηi| = 1 for some i.

But the set

S = {η ∈ [−1, 1]s : |ηi| = 1 for some i}

is compact, whence its image in R2 under the continuous map φ defined by F and

G is compact. Hence φ(S) must contain the limit point (0, 0), which shows that the

equations F = G = 0 have a non-trivial real solution.

Now let p be a prime with p ≡ 1 (mod 3), let c be a cubic nonresidue (mod p),

and consider the forms

F (x) =
√

2x3
1 + x3

2 + · · ·+ x3
7 + (x3

8 + cx3
9) + p(x3

10 + cx3
11) + p2(x3

12 + cx3
13),

G(x) =
√

2x2
1 + x2

2 + · · ·+ x2
7 + x2

8.

It is easily checked that F and G satisfy all the conditions of Theorem 2.1, except

that all real solutions to the simultaneous equations F = G = 0 are singular. More-

over, the discussion of example (5.1) in Wooley [61] shows that the simultaneous

inequalities

|F (x)| < 1, |G(x)| < 1

have no nontrivial integer solutions. Therefore, condition (c) of Theorem 2.1 cannot

be weakened.

We conclude with some remarks on the assumption regarding algebraic irrational

coefficient ratios in Theorem 2.1. First of all, if neither F nor G is a multiple of a

form with integer coefficients and all the coefficients of F and G are nonzero, then it

is easy to see that there is a pair of indices i and j such that both λi/λj and µi/µj

are irrational. Next, if exactly one of the forms is a multiple of an integral form and

this form has no zero coefficients, then we can solve the problem by obtaining a lower

bound for the integral

R1(P ) =

∫ ∞

−∞

∫ 1

0

F(α)G(α)H(α)K(αP−σ1) dβ dα

or

R2(P ) =

∫ ∞

−∞

∫ 1

0

F(α)G(α)H(α)K(βP−σ2) dα dβ,

as the case may be, using a simplified version of our analysis, along with techniques

from the one-dimensional Hardy-Littlewood and Davenport-Heilbronn methods. If F

and G are both multiples of integral forms, then we may simply apply the argument
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of Wooley [72] to deduce Theorem 2.1. Thus in particular we observe that if all the

coefficients of F and G are algebraic and nonzero, then no irrationality assumption

on the coefficients is needed.

The algebraicity assumption allows us to use Roth’s Theorem in Section 2.4 to

obtain the lower bounds (2.28), which are critical to our analysis of the sets hi(A,B).

The preferred approach to (2.28) would involve restricting P in terms of the denom-

inators of simultaneous rational approximations λI/λJ ∼ a/q and µI/µJ ∼ b/q and

then combining these approximations with (2.23) and (2.24), in analogy with the

proof of [55], Lemma 11.1. However, a difficulty arises from the possibility that

(a, q) or (b, q) may be large, even though we can ensure that (q, a, b) = 1. It tran-

spires that in this problematic case we can reduce the task to one of obtaining small

solutions to “mixed” systems of the form

|F (x)| < (max |xi|)−σ1 ,

s∑
i=1

bix
2
i = 0

or

|G(x)| < (max |xi|)−σ2 ,

s∑
i=1

aix
3
i = 0,

where the ai and bi are integers. Under suitable conditions, the number of solutions

to these systems can be estimated as described above, using integrals like R1(P )

and R2(P ). However, in order to obtain bounds for the solutions in terms of the

coefficients of the forms, we must now keep track of constants that were previously

left implicit, and this would seem to require additional information regarding the

nature of a real solution to the corresponding system of equations.



CHAPTER III

Mean Values of Multiple Exponential Sums

3.1 Overview

In this chapter, we obtain estimates for mean values of certain multiple exponen-

tial sums over smooth numbers by extending the ideas of Vaughan [53] and Wooley

[61], [69]. When P and R are positive integers, write

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R}

for the set of R-smooth numbers up to P , and define the exponential sum

f(α;P,R) =
∑

x,y∈A(P,R)

e(α0x
k + α1x

k−1y + · · ·+ αky
k). (3.1)

Further, define the mean value

Ss(P,R) =

∫

Tk+1

|f(α;P,R)|2sdα,

which, by orthogonality, counts the number of solutions of the auxiliary system

s∑
m=1

(xk−im yim − x̃k−im ỹim) = 0 (0 ≤ i ≤ k) (3.2)

with

xm, ym, x̃m, ỹm ∈ A(P,R) (1 ≤ m ≤ s). (3.3)

When R is a power of P , one has the lower bound

Ss(P,R) À P 2s + P 4s−k(k+1),

so when s ≥ 1
2
k(k+1) we hope to obtain upper bounds that are not too much larger

than P 4s−k(k+1). If for every ε > 0 there exists η = η(s, k, ε) such that the estimate

Ss(P,R) ¿ P 4s−k(k+1)+∆s+ε

43
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holds whenever R ≤ P η, then we call ∆s an admissible exponent.

After discussing some preliminary results in Section 3.2, we develop our version

of the Vaughan-Wooley iterative method in Sections 3.3 and 3.4. In Section 3.5, we

are able to establish the following result using only single efficient differencing.

Theorem 3.1. Let k ≥ 2 be a positive integer, and put r =
[
k+1
2

]
. Further, write

s1 = k2

(
1− 1

2k

)−1

+ r,

and let s be a positive integer with s ≥ s1. Then the exponent

∆s = k(k + 1)

(
1− 1

2k

)(s−s1)/r

.

is admissible.

Notice in particular that if s ≥ 2k2 log k then admissible exponents obtained from

Theorem 3.1 satisfy ∆s ∼ k2e−s/k
2 ≤ 1.

Finally, in Section 3.6, we make full use of the repeated efficient differencing

apparatus to obtain the following sharper result.

Theorem 3.2. Write r =
[
k+1
2

]
, and put

s0 = k(k + 1) and s1 = 4
3
rk (log(4rk)− 2 log log k) .

Further, define

∆s =





4rke2−3(s−s0)/4rk, when 1 ≤ s ≤ s1,

e4(log k)2
(
1− 1

2k

)(s−s1)/r
, when s > s1.

Then there exists a constant K such that the exponent ∆s is admissible whenever

k ≥ K.

Notice that the admissible exponents obtained from Theorem 3.2 decay in many

cases of interest roughly like k2e−3s/2k2
, whereas those obtained from Theorem 3.1

decay only like k2e−s/k
2
. Therefore, we will primarily rely on Theorem 3.2 when

discussing the various applications of our mean value estimates for large k in Chapter

4. On the other hand, the ideas underlying Theorem 3.1 often suffice for smaller

values of k, as we shall see in Chapter 5.

This chapter and the next are based on the author’s submitted manuscript [46].
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3.2 Preliminary Lemmata

Before embarking on the proofs of our mean value estimates, we need to make

some preliminary observations. We start by showing that solutions of (3.2) in which

some xj and yj or some x̃j and ỹj have a large common factor can effectively be

ignored. When γ > 0, let Ss(P,R; γ) be the number of solutions of (3.2) with

(xj, yj) ≤ P γ and (x̃j, ỹj) ≤ P γ for all j.

Lemma 3.2.1. For every γ > 0, one has Ss(P,R) ¿ P 2s+ε + Ss(P,R; γ).

Proof. Write S ′s(P,R; γ) for the number of solutions of (3.2) with (xj, yj) > P γ or

(x̃j, ỹj) > P γ for some j, so that Ss(P,R) = Ss(P,R; γ) + S ′s(P,R; γ). Then we have

S ′s(P,R; γ) =
∑

d>Pγ

∫

Tk+1

f(dkα;P/d,R)f(−α;P,R)|f(α;P,R)|2s−2 dα. (3.4)

Now suppose that S ′s(P,R; γ) ≥ Ss(P,R; γ), so that Ss(P,R) ≤ 2S ′s(P,R; γ), and let

λs = inf{λ : Ss(P,R) ¿ P λ}.

If λs ≤ 2s, then we are done, so we may assume that λs > 2s. By applying Hölder’s

inequality to (3.4), we obtain

Ss(P,R) ¿
∑

d>Pγ

(∫

Tk+1

|f(dkα;P/d,R)|2s dα
)1/2s (∫

Tk+1

|f(α;P,R)|2s dα
)1−1/2s

,

from which we deduce that

Ss(P,R) ¿
( ∑

d>Pγ

Ss(P/d,R)1/2s

)2s

¿ P λs+γ(2s−λs)+ε

for all ε > 0, since λs > 2s. This provides a contradiction for ε sufficiently small, so in

fact we have S ′s(P,R; γ) < Ss(P,R; γ), and the conclusion of the lemma follows.

We next record an estimate for the number of solutions of an associated system

of congruences. When f1, . . . , ft are polynomials in Z[x1, . . . , xt], write Bt(q, p;u; f)

for the set of solutions modulo qkpk of the simultaneous congruences

fj(x1, . . . , xt) ≡ uj (mod qk−j+1pj−1) (1 ≤ j ≤ t) (3.5)

with (Jt(f ;x), pq) = 1, where

Jt(f ;x) = det

(
∂fi
∂xj

(x)

)

1≤i,j≤t
. (3.6)
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Lemma 3.2.2. Suppose that f1, . . . , f2r ∈ Z[x1, . . . , x2r] have degrees bounded in

terms of k. Then whenever 2r ≤ k + 1 we have

card(B2r(q, p;u; f)) ¿ε,k (pq)r(2r−1)+ε(q, p)2r(2k−2r+1).

Proof. Write q̃ = q/(q, p) and p̃ = p/(q, p), so that (q̃, p̃) = 1. Then by considering

the jth congruence in (3.5) modulo q̃ k−j+1, we obtain from Lemma 2.2 of Wooley

[69] that the number of solutions modulo q̃ k is Oε,k(q̃
r(2r−1)+ε). Similarly, the num-

ber of solutions modulo p̃ k is Oε,k(p̃
r(2r−1)+ε). Hence by the Chinese Remainder

Theorem the number of solutions modulo q̃ kp̃ k is Oε,k((p̃q̃)
r(2r−1)+ε). Trivially, each

of these solutions lifts in at most (q, p)4kr ways to Z/(qkpk), and the lemma follows

immediately.

We now develop some notation for analyzing real singular solutions of systems

such as (3.2). Let ψ1, . . . , ψ2r be non-trivial polynomials in Z[x, y] of total degree

at most k. When I,J ⊂ {1, 2, . . . , 2r} with card(J ) = 2 card(I) and z,w ∈ Z2r,

define the Jacobian

J(I,J ;ψ) = det

(
∂ψj

∂zi
(zi, wi)

∂ψj

∂wi
(zi, wi)

)

i∈I,j∈J
.

Write Jd = {1, . . . , d}, and let I∗d denote the set of all subsets of J2r of size d.

We will call the 4r-tuple of integers (z1, w1, . . . , z2r, w2r) highly singular for ψ if

J(I,J2r;ψ) = 0 for each I ∈ I∗r . Also write

di,j(z, w;ψ) = det

(
∂ψi

∂z
(z, w)

∂ψj

∂z
(z, w)

∂ψi

∂w
(z, w)

∂ψj

∂w
(z, w)

)
,

and let Sr(P ;ψ) denote the set of all integral 4r-tuples (z1, w1, . . . , z2r, w2r) with

1 ≤ zi, wi ≤ P that are highly singular for ψ.

Lemma 3.2.3. Suppose that ψ1, . . . , ψ2r satisfy the condition that d1,2 is non-trivial

and degw(di,j) < degw(di′,j′) whenever i+ j < i′ + j′. Then we have

card(Sr(P ;ψ)) ¿k P
3r−1.

Proof. Let T0(P ;ψ) denote the set of integral 4r-tuples (z,w) with 1 ≤ zi, wi ≤ P

and

d1,2(zi, wi;ψ) = 0 (3.7)

for i = 1, . . . , 2r. For a 4r-tuple counted by T0(P ;ψ) and a given i, there are at

most O(P ) choices for zi and wi satisfying (3.7), since we have assumed that d1,2 is

non-trivial, and it follows that card(T0(P ;ψ)) ¿ P 2r.
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Now for 1 ≤ d ≤ r − 1, we say that (z,w) ∈ Td(P ;ψ) if

J(I,J2d;ψ) 6= 0 (3.8)

for some I ∈ I∗d but

J(I ∪ {i},J2d+2;ψ) = 0 (3.9)

for all i ∈ J2r \ I. Consider a 4r-tuple counted by Td(P ;ψ), where 1 ≤ d ≤ r − 1.

There are O(1) choices for I and O(P 2d) choices for the zi and wi with i ∈ I. Now

we fix i ∈ J2r \ I and expand the determinant in (3.9) using 2× 2 blocks along the

rows containing zi and wi. Then on using (3.8), together with our hypothesis on ψ,

we see that the relation (3.9) is a non-trivial polynomial equation in the variables zi

and wi and hence has O(P ) solutions. Thus we have

card(Td(P ;ψ)) ¿ P 2d+(2r−d) = P 2r+d

and hence

card(Sr(P ;ψ)) ≤
r−1∑

d=0

card(Td(P ;ψ)) ¿ P 3r−1,

as desired.

Finally, we recall an estimate of Wooley [62] for the number of integers in an

interval with a given square-free kernel s0.

Lemma 3.2.4. Suppose that L is a positive real number and that r is a positive

integer with log r ¿ logL. Then for each ε > 0, one has

card{y ≤ L : s0(y) = s0(r)} ¿ε L
ε.

Proof. This is Lemma 2.1 of Wooley [62].

3.3 The Fundamental Lemma

For 0 ≤ i ≤ k, let ψi(z, w; c) be polynomials with integer coefficients in the vari-

ables z, w, c1, . . . , cu and satisfying the conditions of Lemma 3.2.3. Further, suppose

that Ci and C ′i satisfy 1 ≤ C ′i ≤ Ci ¿ P , write C̃ =
∏u

i=1Ci, and let Di(c) be polyno-

mials with total degrees bounded in terms of k such that Di(c) 6= 0 for C ′i ≤ ci ≤ Ci.

Throughout the remainder of this chapter, ε, η, and γ will denote small positive

numbers, whose values may change from statement to statement. Generally, η and

γ will be chosen sufficiently small in terms of ε, and the implicit constants in our
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analysis may depend at most on ε, η, γ, s, and k. Since our methods will involve only

a finite number of steps, all implicit constants that arise remain under control, and

the values assumed by η and γ throughout the arguments remain uniformly bounded

away from zero.

When r ≤ [
k+1
2

]
, let Ss,r(P,Q,R;ψ) = Ss,r(P,Q,R;ψ;C,D; γ) be the number of

solutions of the system

r∑
n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c))

+Di(c)
s∑

m=1

(xk−im yim − x̃k−im ỹim) = 0 (0 ≤ i ≤ k)

(3.10)

with

xm, ym, x̃m, ỹm ∈ A(Q,R) (1 ≤ m ≤ s), (3.11)

(xm, ym) ≤ P γ and (x̃m, ỹm) ≤ P γ (1 ≤ m ≤ s), (3.12)

1 ≤ zn, wn, z̃n, w̃n ≤ P and ηn ∈ {±1} (1 ≤ n ≤ r), (3.13)

and

C ′j ≤ cj ≤ Cj (1 ≤ j ≤ u). (3.14)

Further, write S̃s,r(P,Q,R;ψ) for the number of solutions of (3.10) with (3.11),

(3.12), (3.13), (3.14), and

J2r(z,w; c) 6= 0 and J2r(z̃, w̃; c) 6= 0, (3.15)

where (recalling the notation of the previous section) we have put

J2r(z,w; c) = J(Jr,J2r,ψ(z,w; c)).

Finally, let Ts,r(P,Q,R, θ;ψ) denote the number of solutions of

r∑
n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c))

+Di(c)q
k−ipi

s∑
m=1

(uk−im vim − ũk−im ṽim) = 0 (0 ≤ i ≤ k)

(3.16)

with (3.13), (3.14),

P θ < p, q ≤ P θR and (q, p) ≤ P γ, (3.17)
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um, vm, ũm, ṽm ∈ A(QP−θ, R) (1 ≤ m ≤ s), (3.18)

(um, vm) ≤ P γ and (ũm, ṽm) ≤ P γ (1 ≤ m ≤ s), (3.19)

and

(J2r(z,w; c), pq) = (J2r(z̃, w̃; c), pq) = 1. (3.20)

Lemma 3.3.1. Given ε > 0, there exists a positive number η = η(ε, s, k) such that

whenever R ≤ P η one has

Ss,r(P,Q,R;ψ) ¿ C̃P 3r−1Ss(Q,R) + C̃Q3sP 2r+sθ+ε + P (4s−2)θ+εTs,r(P,Q,R, θ;ψ).

Proof. Let S1 denote the number of solutions counted by Ss,r(P,Q,R;ψ) such that

(z,w, z̃, w̃) is highly singular for ψ, and let S2 denote the number of solutions such

that (z,w, z̃, w̃) is not highly singular for ψ, so that Ss,r(P,Q,R;ψ) = S1 + S2.

(i) Suppose that S1 ≥ S2, so that Ss,r(P,Q,R;ψ) ≤ 2S1. By Lemma 3.2.3, we

see that there are O(P 3r−1) permissible choices for z,w, z̃, and w̃. Now let

fc(α;Q,R) =
∑

x,y∈A(Q,R)
(x,y)≤P γ

e

(
k∑
i=0

αiDi(c)x
k−iyi

)
.

For a fixed choice of z,w, z̃, w̃, c, and η, the number of possible choices for x,y, x̃,

and ỹ is at most

∫

Tk+1

|fc(α;Q,R)|2sdα ≤ Ss(Q,R),

so we have S1 ¿ P 3r−1C̃Ss(Q,R), which establishes the lemma in this case.

(ii) Suppose that S2 ≥ S1, so that Ss,r(P,Q,R;ψ) ≤ 2S2. By rearranging vari-

ables, we see that Ss,r(P,Q,R;ψ) ¿ S3, where S3 denotes the number of solutions

of (3.10) with (3.11), (3.12), (3.13), and (3.14), and J2r(z,w; c) 6= 0. Then by using

the Cauchy-Schwarz inequality as in the corresponding argument of Wooley [69] to

manipulate the underlying mean values, we see that

Ss,r(P,Q,R;ψ) ¿ S4,

where S4 denotes the number of solutions of (3.10) with (3.11), (3.12), (3.13), (3.14),

J2r(z,w; c) 6= 0, and J2r(z̃, w̃; c) 6= 0.
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We now further classify the solutions counted by S4. Write x D(L) y if there is

some divisor d of x with d ≤ L such that x/d has all of its prime divisors amongst

those of y. Let S5 denote the number of solutions counted by S4 for which

xj D(P θ) J2r(z,w; c) or x̃j D(P θ) J2r(z̃, w̃; c) (3.21)

or

yj D(P θ) J2r(z,w; c) or ỹj D(P θ) J2r(z̃, w̃; c) (3.22)

for some j, and let S6 denote the number of solutions for which neither (3.21) nor

(3.22) holds for any j. Then we have

Ss,r(P,Q,R;ψ) ¿ S5 + S6,

and we divide into further cases.

(iii) Suppose that S5 ≥ S6, and further suppose that (3.21) holds. Write

S(z,w; c) = {x ∈ A(Q,R) : x D(P θ) J2r(z,w; c)},

and let

H̃c,η(α;P,Q,R) =
∑
z,w

J2r(z,w;c)6=0

∑

x∈S(z,w;c)
y∈A(Q,R)
(x,y)≤P γ

e(Ξ(α;x, y, z,w; c,η)),

where

Ξ(α; x, y, z,w; c,η) =
k∑
i=0

αi(Di(c)x
k−iyi + η1ψi(z1, w1; c) + · · ·+ ηrψi(zr, wr; c)).

Then

S5 ¿
∑
c,η,ω

∫

Tk+1

|H̃c,η(α;P,Q,R)F̃ ∗c,ω(α;P )fc(α;Q,R)2s−1| dα,

where

F̃ ∗c,ω(α;P ) =
∑
z,w

J2r(z,w;c)6=0

e(Ξ(α; 0, 0, z,w; c,ω)).

By using the Cauchy-Schwarz inequality and considering the underlying Diophantine

equations as in [69], we deduce that

Ss,r(P,Q,R;ψ) ¿
∑

g,h,c

V (g, h; c),
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where V (g, h; c) denotes the number of solutions of the system

r∑
n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c)) +Di(c)
s−1∑
m=1

(xk−im yim − x̃k−im ỹim)

= Di(c)((ex̃)
k−iỹi − (dx)k−iyi) (0 ≤ i ≤ k)

with (3.11), (3.12), (3.13), (3.14), and

J2r(z,w; c) 6= 0, J2r(z̃, w̃; c) 6= 0, g|J2r(z,w; c), h|J2r(z̃, w̃; c),

1 ≤ d, e ≤ P θ, x ≤ Q/d, x̃ ≤ Q/e, y, ỹ ≤ Q, s0(x) = g, s0(x̃) = h.

Write

Gc,η,g(α;P ) =
∑
z,w

g|J2r(z,w;c)6=0

e(Ξ(α; 0, 0, z,w; c,η))

and

Gc,η(α) =
∑
g≤Q

Gc,η,g(α;P )
∑

d≤P θ

∑

x≤Q/d
s0(x)=g
y≤Q

e

(
k∑
i=0

αiDi(c)(dx)
k−iyi

)
.

Then

Ss,r(P,Q,R;ψ) ¿
∑
c,η

∫

Tk+1

|Gc,η(α)2fc(α;Q,R)2s−2| dα. (3.23)

By Cauchy’s inequality, we have

|Gc,η(α)|2 ≤ H1,c,η(α)H2,c(α), (3.24)

where

H1,c,η(α) =
∑
g≤Q

|Gc,η,g(α;P )|2

and

H2,c(α) =
∑
g≤Q

∣∣∣∣∣∣∣∣

∑

d≤P θ

∑

x≤Q/d
s0(x)=g

∑
y≤Q

e

(
k∑
i=0

αiDi(c)(dx)
k−iyi

)
∣∣∣∣∣∣∣∣

2

.
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Now by interchanging the order of summation and using Cauchy’s inequality together

with Lemma 3.2.4 as in [69], we obtain

H2,c(α) =
∑
g≤Q

∣∣∣∣∣∣∣∣

∑
x,y≤Q
s0(x)=g

∑

d≤P θ

d≤Q/x

e

(
k∑
i=0

αiDi(c)(dx)
k−iyi

)
∣∣∣∣∣∣∣∣

2

¿
∑
g≤Q

Q1+ε
∑
x,y≤Q
s0(x)=g

P θQ/x

¿ Q3P θ+ε. (3.25)

Thus an application of Hölder’s inequality in (3.23) gives

Ss,r ¿
(∑

c,η

∫

Tk+1

|H1,c,η(α)fc(α)2s|dα
)1− 1

s
(∑

c,η

∫

Tk+1

|H1,c,η(α)H2,c(α)s|dα
)1

s

¿ Q3P θ+ε

(∑
c,η

∑
g≤Q

∫

Tk+1

|Gc,η,g(α;P )|2dα
)1

s

Ss,r(P,Q,R;ψ)1− 1
s ,

where we have written fc(α) for fc(α;Q,R) and used a standard estimate for the

divisor function. But for a fixed choice of c,η, z̃, and w̃, the Inverse Function The-

orem, in combination with Bézout’s Theorem, shows that there are O(1) choices of

z and w satisfying

r∑
n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c)) = 0 (0 ≤ i ≤ k)

with J2r(z,w; c) 6= 0. Hence by another divisor estimate we see that

∑
c,η

∑
g≤Q

∫

Tk+1

|Gc,η,g(α;P )|2dα¿ C̃P 2r+ε,

and the result follows in the case where (3.21) holds. The case where (3.22) holds is

handled in exactly the same manner.

(iv) Suppose that S6 ≥ S5, and consider a solution counted by S6. For a given

index j, let q and p denote the largest divisors of xj and yj, respectively, with

(q, J2r(z,w; c)) = (p, J2r(z,w; c)) = 1.

Then, since neither (3.21) nor (3.22) holds, we have q > P θ and p > P θ. Thus

we can find divisors qj of xj and pj of yj such that P θ < qj, pj ≤ P θR and

(qjpj, J2r(z,w; c)) = 1, and we proceed similarly with the x̃j and ỹj, except that
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we replace J2r(z,w; c) by J2r(z̃, w̃; c). Hence we see that S6 ¿ V1, where V1 denotes

the number of solutions of

r∑
n=1

ηn(ψi(zn, wn; c)− ψi(z̃n, w̃n; c))

+ Di(c)
s∑
j=1

((qjuj)
k−i(pjvj)i − (q̃jũj)

k−i(p̃j ṽj)i) = 0 (0 ≤ i ≤ k).

with (3.13), (3.14), and for 1 ≤ j ≤ s

P θ < qj, pj, q̃j, p̃j ≤ P θR, (qj, pj), (q̃j, p̃j) ≤ P γ, (3.26)

uj, vj, ũj, ṽj ∈ A(QP−θ, R), (uj, vj), (ũj, ṽj) ≤ P γ,

and

(qjpj, J2r(z,w; c)) = (q̃j p̃j, J2r(z̃, w̃; c)) = 1.

Now write

Fc,η,q(α;P,R) =
∑
z,w

(q,J2r(z,w;c))=1

e(Ξ(α; 0, 0, z,w; c,η))

and

Fc,j(α) = fc(qjpjα;QP−θ, R)fc(−q̃jp̃jα;QP−θ, R),

where

qjpjα = (α0q
k
j , α1q

k−1
j pj, . . . , αkp

k
j ) and q̃jp̃jα = (α0q̃

k
j , α1q̃

k−1
j p̃j, . . . , αkp̃

k
j ).

Then we have

V1 ≤
∑
c,η

∫

Tk+1

∑
q,p,q̃,p̃

Fc,η,π(α;P,R)Fc,η,π̃(−α;P,R)
s∏
i=1

Fc,j(α) dα, (3.27)

where

π = q1 · · · qsp1 · · · ps and π̃ = q̃1 · · · q̃sp̃1 · · · p̃s,

and where the sum is over q, p, q̃, p̃ satisfying (3.26). Let

Xc,η,j(α) =
∣∣Fc,η,π(α;P,R)2fc(qjpjα;QP−θ, R)2s

∣∣,
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and let Yc,η,j(α) be the analogous function for the q̃j and p̃j. Then by (3.27) and

two applications of Hölder’s inequality (as in [69]), we obtain

S6 ¿
∑

q,p,q̃,p̃

s∏
j=1

(∑
c,η

∫

Tk+1

Xc,η,j(α) dα

)1/2s (∑
c,η

∫

Tk+1

Yc,η,j(α) dα

)1/2s

.

Now we observe that
∑
c,η

∫

Tk+1

Xc,η,j(α) dα = W (P,Q,R, qj, pj),

where W (P,Q,R, q, p) denotes the number of solutions of (3.16) with (3.13), (3.14),

(3.18), (3.19), and (3.20). Thus we have

S6 ¿
∑

q,p,q̃,p̃

s∏
j=1

W (P,Q,R, qj, pj)
1/2sW (P,Q,R, q̃j, p̃j)

1/2s,

whence by Hölder’s inequality

S6 ¿
( ∑

q,p,q̃,p̃

1

)1−1/2s ( ∑
q,p,q̃,p̃

s∏
j=1

W (P,Q,R, qj, pj)W (P,Q,R, q̃j, p̃j)

)1/2s

¿ (P θR)4s−2

(
2s∏
j=1

∑
q,p

W (P,Q,R, qj, pj)

)1/2s

¿ (P θR)4s−2 Ts,r(P,Q,R, θ;ψ),

and this completes the proof of the lemma.

The following modification of Lemma 3.3.1 may be more useful for smaller values

of k.

Lemma 3.3.2. Given ε > 0, there exists a positive number η = η(ε, s, k) such that

whenever R ≤ P η one has

Ss,r(P,Q,R;ψ) ¿ C̃P 3r−1Ss(Q,R) +Q3P θ+εS̃s−1,r(P,Q,R;ψ)

+ P (4s−2)θ+ε Ts,r(P,Q,R, θ;ψ).

Proof. The only change occurs in part (iii) of the proof, where the number of solutions

counted by S5 is estimated. Substituting the bounds (3.24) and (3.25) into (3.23),

we obtain

Ss,r(P,Q,R;ψ) ¿ Q3P θ+ε
∑
c,η

∑
g≤Q

∫

Tk+1

|Gc,η,g(α;P )2fc(α;Q,R)2s−2| dα,

and the lemma follows on considering the underlying Diophantine equations and

recalling a standard estimate for the divisor function.
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Now let T̃s,r(P,Q,R, θ;ψ) denote the number of solutions of (3.16) with (3.13),

(3.14), (3.17), (3.18), (3.19) and also

zn ≡ z̃n (mod qkpk) and wn ≡ w̃n (mod qkpk) (1 ≤ n ≤ r). (3.28)

Lemma 3.3.3. Given ε > 0, there exists a positive number γ0 = γ0(ε, s, k) such that

whenever γ ≤ γ0 one has

Ts,r(P,Q,R, θ;ψ) ¿ (P θR)2r(2r−1)+εT̃s,r(P,Q,R, θ;ψ).

Proof. When q and p satisfy (3.17), let Bq,p(u; c,η) denote the set of solutions (z,w)

of the system of congruences

Υi(z,w; c,η) ≡ ui (mod qk−ipi) (0 ≤ i ≤ k) (3.29)

with 1 ≤ zn, wn ≤ (qp)k and (qp, J2r(z,w; c)) = 1, where

Υi(z,w; c,η) =
r∑

n=1

ψi(zn, wn; c).

By Lemma 3.2.2 we have

card(Bq,p(u; c,η)) ¿ (pq)r(2r−1)+ε,

on taking γ sufficiently small in terms of ε. Now observe that for each solution

counted by Ts,r(P,Q,R, θ;ψ) we have

Υi(z,w; c,η) ≡ Υi(z̃, w̃; c,η) (mod qk−ipi),

so for each i we can classify the solutions of (3.16) according to the common residue

class modulo qk−ipi of Υi(z,w; c,η) and Υi(z̃, w̃; c,η). Let

Hq,p(α; z,w; c,η) =
∑

x∈[1,P ]r

xn≡zn(qkpk)

∑

y∈[1,P ]r

yn≡wn(qkpk)

e

(
k∑
i=0

αiΥi(x,y; c,η)

)
.

Then

Ts,r(P,Q,R, θ;ψ) ¿
∑
q,p

∑
c,η

∫

Tk+1

H̃q,p(α; c,η)|f̃c,q,p(α;QP−θ, R)|2sdα,

where

H̃q,p(α; c,η) =

qk∑
u0=1

qk−1p∑
u1=1

· · ·
pk∑

uk=1

∣∣∣∣∣∣
∑

(z,w)∈Bq,p(u;c,η)

Hq,p(α; z,w; c,η)

∣∣∣∣∣∣

2
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and

f̃c,q,p(α;L,R) =
∑

x,y∈A(L,R)
(x,y)≤P γ

e

(
k∑
i=0

αiDi(c)(qx)
k−i(py)i

)
.

Now by Cauchy’s inequality,

H̃q,p(α; c,η) ≤
qk∑

u0=1

qk−1p∑
u1=1

· · ·
pk∑

uk=1

card(Bq,p(u; c,η))
∑

(z,w)∈Bq,p(u;c,η)

|Hq,p(α; z,w; c,η)|2,

and thus

Ts,r(P,Q,R, θ;ψ) ¿ (P θR)2r(2r−1)+ε
∑
q,p
c,η

∑
z,w

1≤zn≤qkpk

1≤wn≤qkpk

∫

Tk+1

|Hq,p|2|f̃c,q,p|2sdα

¿ (P θR)2r(2r−1)+ε T̃s,r(P,Q,R, θ;ψ).

This completes the proof.

3.4 Efficient Differencing

Define the difference operator ∆∗
j recursively by

∆∗
1(f(x, y);h; g) = f(x+ h, y + g)− f(x, y)

and

∆∗
j+1(f(x, y);h1, . . . , hj+1; g1, . . . , gj+1)

= ∆∗
1(∆

∗
j(f(x, y);h1, . . . , hj; g1, . . . , gj);hj+1; gj+1),

with the convention that

∆∗
0(f(x, y);h;g) = f(x, y).

Further, write

ψi,j(z, w;h,g;m,n) = ∆∗
j(z

k−iwi;h′1, . . . , h
′
j; g

′
1, . . . , g

′
j),

where

h′i = hi(mini)
k and g′i = gi(mini)

k, (3.30)
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and put

rj =

[
k − j + 1

2

]
. (3.31)

Our first task is to show that the polynomials ψi,j satisfy the conditions of Lemma

3.2.3, so that the results of the previous section may be applied. We start by ex-

pressing ∆∗
j in terms of the more familiar difference operators ∆j defined by

∆1(f(x);h) = f(x+ h)− f(x)

and

∆j+1(f(x);h1, . . . , hj+1) = ∆1(∆j(f(x);h1, . . . , hj);hj+1).

For simplicity, we introduce the functions

χi,j(z, w;h;g) = ∆∗
j(z

k−iwi;h1, . . . , hj; g1, . . . , gj) (3.32)

and observe that

ψi,j(z, w;h,g;m,n) = χi,j(z, w;h′,g′),

where h′ and g′ are defined by (3.30). As in Section 3.2, we write Jd for the set

{1, . . . , d}, and also write Ãd for the set Jd \ A. When A = {i1, . . . , im} ⊂ Jj with

i1 < · · · < im, define

q(i)
m (w;g,A) = ∆m(wi; gi1 , . . . , gim), (3.33)

and when A is as above and B = {j1, . . . , jt} ⊂ Jj with j1 < · · · < jt, define

p
(i)
t (z;h,A,B) = ∆t((z + hi1 + · · ·+ him)k−i;hj1 , . . . , hjt). (3.34)

Lemma 3.4.1. We have

χi,j(z, w;h;g) =

j∑
m=0

∑
A⊂Jj

|A|=m

p
(i)
j−m(z;h,A, Ãj)q

(i)
m (w;g,A).

Proof. We fix i, h, and g and proceed by induction on j. For brevity, we write

χi,j(z, w), qm(w;A), and pt(z;A,B) for the functions defined by (3.32), (3.33), and

(3.34), respectively. For j = 0 we have

χi,0(z, w) = zk−iwi = p0(z; ∅, ∅)q0(w; ∅).
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Now assume the result holds for j − 1. Then we have

χi,j(z, w) = χi,j−1(z + hj, w + gj)− χi,j−1(z, w),

so by the inductive hypothesis we obtain

χi,j(z, w) =

j−1∑
m=0

∑
A⊂Jj−1

|A|=m

θi,j(z, w;m;A),

where

θi,j = pj−1−m(z + hj;A, Ãj−1)qm(w + gj;A)− pj−1−m(z;A, Ãj−1)qm(w;A).

The above expression can be rewritten as

θi,j = pj−m(z;A, Ãj)qm(w;A) + pj−1−m(z + hj;A, Ãj−1)qm+1(w;A ∪ {j}),

so we have

χi,j =

j−1∑
m=0

( ∑
A⊂Jj−1

|A|=m

pj−m(z;A; Ãj)qm(w;A) +
∑
A⊂Jj

|A|=m+1
j∈A

pj−(m+1)(z;A; Ãj)qm+1(w;A)

)

=

j−1∑
m=0

∑
A⊂Jj

|A|=m
j/∈A

pj−m(z;A; Ãj)qm(w;A) +

j∑
m=1

∑
A⊂Jj

|A|=m
j∈A

pj−m(z;A; Ãj)qm(w;A),

and the lemma follows.

Now we show that the 2 × 2 Jacobians satisfy the condition imposed in Lemma

3.2.3.

Lemma 3.4.2. Suppose that 0 ≤ j < k and i1 < i2 ≤ k − j Then we have

di1,i2(z, w;χj) = p(z)wi1+i2−1 +Oz(w
i1+i2−2),

where p(z) is a non-trivial polynomial of degree at most 2k.

Proof. When i < k − j, we have by Lemma 3.4.1 that

∂χi,j
∂z

=
∂

∂z

(
∆j(z

k−i;h1, . . . , hj)
)
wi +Oz(w

i−1)

and

∂χi,j
∂w

= i∆j(z
k−i;h1, . . . , hj)w

i−1 +Oz(w
i−2),



59

and we recall (see for example Exercise 2.1 of Vaughan [55]) that

∆j(z
k;h1, . . . , hj) = k(k − 1) · · · (k − j + 1)h1 · · ·hjzk−j +O(zk−j−1).

Hence if i2 < k − j then we have

di1,i2(z, w,χ) = p(z)wi1+i2−1 +Oz(w
i1+i2−2),

where the leading term of p(z) is

(h1 · · ·hj)2(k − i1)!(k − i2)!

(k − i1 − j)!(k − i2 − j)!
((k − i1 − j)i2 − (k − i2 − j)i1)z

2k−i1−i2−2j−1,

and the lemma follows in this case on noting that

(k − i1 − j)i2 − (k − i2 − j)i1 = (k − j)(i2 − i1) 6= 0.

Now if i = k − j we obtain from Lemma 3.4.1 that

∂χi,j
∂z

= Oz(w
i−1)

and

∂χi,j
∂w

= i(k − i)!h1 · · ·hjwi−1 +Oz(w
i−2).

Thus if i2 = k − j then we have

di1,i2 =

(
i2(h1 · · ·hj)2(k − i1)!(k − i2)!

(k − i1 − j − 1)!
zk−i1−j−1 +O(zk−i1−j−2)

)
wi1+i2−1

+ Oz(w
i1+i2−2),

and this completes the proof.

We now consider the effect of substituting ψi,j(z, w;h,g;m,n) for ψi(z, w; c) in

the analysis of Section 3.3. For 1 ≤ j ≤ k, suppose that 0 ≤ φj ≤ 1/2k, and put

Mj = P φj , Hj = PM−2k
j , and Qj = P (M1 · · ·Mj)

−1.

Further, write

M̃j =

j∏
i=1

Mi and H̃j =

j∏
i=1

Hi.

We replace (3.14) by the conditions

1 ≤ hi, gi ≤ Hi (1 ≤ i ≤ j), (3.35)
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Mi < mi, ni ≤MiR, and (mi, ni) ≤ P γ (1 ≤ i ≤ j), (3.36)

and take

Di(m,n) =

j∏

l=1

mk−i
l nil.

On replacing hi by hi(mini)
k and gi by gi(mini)

k in the above results, we see that

ψ0,j, . . . , ψ2r−1,j satisfy the hypotheses of Lemma 3.2.3 whenever r ≤ rj. Thus we

may apply Lemma 3.3.1 to relate Ss,rj(P,Qj, R;ψj) to Ts,rj(P,Qj, R, φj+1;ψj). The

following lemma then relates Ts,rj(P,Qj, R, φj+1;ψj) to Ss,rj+1
(P,Qj, R;ψj+1) and

hence allows us to repeat the differencing process.

Lemma 3.4.3. Suppose that r ≤ 2w and 0 ≤ j < k. Then given ε > 0, there exists

η = η(ε, s, k) such that whenever R ≤ P η one has

T̃s,r(P,Qj, R, φj+1;ψj) ¿ P (3−2kφj+1)r+εH̃2
j M̃

2
j+1Ss(Qj+1, R)

+ P εH2r−2
j+1

(
H̃2
j+1M̃

2
j+1Ss(Qj+1, R)

)1−r/2w(
Ss,w(P,Qj+1, R;ψj+1)

)r/2w
.

Proof. Write θ = φj+1, and define

La,b,d(α;h,g;m,n) =
∑

1≤z≤P
z≡a (d)

∑
1≤w≤P
w≡b (d)

e

(
k∑
i=0

αiψi,j(z, w;h,g;m,n)

)
,

Kd(α;h,g;m,n) =
d∑
a=1

d∑

b=1

|La,b,d(α;h,g;m,n)|2,

and

gq,p(α;m,n) =
∑

x,y∈A(Qj+1,R)
(x,y)≤P γ

e

(
k∑
i=0

αiDi(m,n)(qx)k−i(py)i
)
.

Then on considering the underlying Diophantine equations, we have

T̃s,r ³
∑

h,g,m,n

∑
Mj+1<p,q≤Mj+1R

(p,q)≤P γ

∫

Tk+1

Kqkpk(α;h,g;m,n)r|gq,p(α;m,n)|2sdα.

Let U0 be the number of solutions counted by T̃s,r with zn = z̃n or wn = w̃n for

some n, and let U1 be the number of solutions in which zn 6= z̃n and wn 6= w̃n for all

n, so that T̃s,r = U0 + U1.
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First suppose that U0 ≥ U1, so that T̃s,r ¿ U0. Then

U0 ¿ P 3−2kφj+1

∑

h,g,m,n

∑
Mj+1<p,q≤Mj+1R

∫

Tk+1

Kqkpk(α;h,g;m,n)r−1|gq,p(α;m,n)|2sdα,

and by using Hölder’s inequality twice as in [69], we find that

T̃s,r ¿ P (3−2kφj+1)r+εH̃2
j M̃

2
j+1Ss(Qj+1, R). (3.37)

Now suppose that U1 ≥ U0, so that T̃s,r ¿ U1. Note that for each solution

counted by U1 we can write

z̃n = zn + h̃nq
kpk and w̃n = wn + g̃nq

kpk

for 1 ≤ n ≤ r, where h̃n, g̃n are integers satisfying 1 ≤ |h̃n|, |g̃n| ≤ Hj+1. Thus we see

that

U1 ≤
∑

η∈{±1}r

U2(η),

where U2(η) is the number of solutions of the system

r∑

l=1

ηlψi,j+1(zl, wl;h, h̃l;g, g̃l;m, q;n, p)

+ Di(m,n)qk−ipi
s∑

m=1

(uk−im vim − ũk−im ṽim) = 0 (0 ≤ i ≤ k)

with z,w,u,v, ũ, ṽ,h,g,m,n satisfying (3.13), (3.18), (3.19), (3.35), and (3.36), and

with

1 ≤ h̃l, g̃l ≤ Hj+1 (1 ≤ l ≤ r),

Mj+1 < p, q ≤Mj+1R, and (q, p) ≤ P γ.

On writing

G(α; h̃, g̃; q, p) =
∑

1≤z,w≤P
e

(
k∑
i=0

αiψi,j+1(z, w;h, h̃;g, g̃;m, q;n, p)

)
,

we have by Hölder’s inequality that

U2(η) ¿
∑

h,g,m,n

∑
q,p

∫

Tk+1

∣∣∣∣∣∣
∑

1≤g̃,h̃≤Hj+1

G(α; h̃, g̃, q, p)

∣∣∣∣∣∣

r

|gq,p(α;m,n)|2s dα

¿ H2r−2
j+1

∑

h,g,m,n

∑

q,p,h̃,g̃

∫

Tk+1

|G(α; h̃, g̃, q, p)|r|gq,p(α;m,n)|2sdα.
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Thus on using Hölder’s inequality twice more and considering the underlying Dio-

phantine equations, we see that

U2(η) ¿ H2r−2
j+1

∑

h,g,m,n

q,p,h̃,g̃

(∫

Tk+1

|G|2w|gq,p|2sdα
)r/2w (∫

Tk+1

|gq,p|2sdα
)1−r/2w

¿ H2r−2
j+1

(∑ ∫

Tk+1

|G|2w|gq,p|2sdα
)r/2w (∑∫

Tk+1

|gq,p|2sdα
)1−r/2w

¿ H2r−2
j+1

(
Ss,w(P,Qj+1, R;ψj+1)

)r/2w(
P εH̃2

j+1M̃
2
j+1Ss(Qj+1, R)

)1−r/2w
,

and the lemma follows on combining this with (3.37).

In analogy with Lemma 4.2 of [69], one might hope to refine the above argument

to allow the factor of P (3−2kφj+1)r in the first term of the estimate to be replaced by

P 2r, but it is not clear that this can be achieved. As will be seen in Section 3.6,

such an improvement would have a significant impact on the strength of our repeated

efficient differencing procedure.

3.5 Mean Value Estimates Based on Single Differencing

In this section, we consider estimates for Ss(P,R) arising from a single efficient

difference, reserving the full power of the preceding analysis for Section 3.6.

Suppose that 0 < θ ≤ 1/2k, write r = r0 =
[
k+1
2

]
, and put

M = P θ, H = PM−2k, and Q = PM−1.

Further, let

F (α;P ) =
∑

1≤z,w≤P
e(α0z

k + α1z
k−1w + · · ·+ αkw

k),

G(α; q, p) =
∑

1≤h,g≤H

∑
1≤z,w≤P

e

(
k∑
i=0

αiψi,1(z, w;h, g; q, p)

)
,

gq,p(α;P,Q,R) =
∑

x,y∈A(Q,R)
(x,y)≤P γ

e

(
k∑
i=0

αi(qx)
k−i(py)i

)
,

and

Ms,r(P,Q,R) =
∑

M≤p,q≤MR

∫

Tk+1

∣∣G(α; q, p)rgq,p(α;P,Q,R)2s
∣∣ dα.
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We say that λs is a permissible exponent if for every ε > 0 there exists η =

η(ε, s, k) such that Ss(P,R) ¿ε P
λs+ε whenever R ≤ P η. Further, we recall that the

exponent ∆s admissible if λs = 4s− k(k + 1) + ∆s is permissible.

Lemma 3.5.1. Let θ = 1/2k, and suppose that s ≥ k2/(1− θ). If ∆s ≤ k(k + 1) is

an admissible exponent, then the exponent ∆s+r = ∆s(1− θ) is admissible.

Proof. By Lemmata 3.3.1 and 3.3.3, we have

Ss,r(P, P,R;ψ0) ¿ P 3r−1Ss(P,R) + P (3+θ)s+2r+ε

+P εM4s−2+2r(2r−1)T̃s,r(P, P,R, θ;ψ0)
(3.38)

for γ sufficiently small, and by the argument of the proof of Lemma 3.4.3 we have

T̃s,r(P, P,R, θ;ψ0) ¿ P (3−2kθ)r+εM2Ss(Q,R) +Ms,r(P,Q,R). (3.39)

Since θ = 1/2k, we have H = 1, so by a trivial estimate we obtain

Ms,r(P,Q,R) ¿M2P 2r+εSs(Q,R).

Hence on recalling Lemma 3.2.1 and considering the underlying Diophantine equa-

tions, we obtain from (3.38) and (3.39) that

Ss+r(P,R) ¿ P 2s+2r+ε + Ss,r(P, P,R;ψ0) ¿ P 3r−1Ss(P,R)

+P (3+θ)s+2r+ε + P 2r+εM4s+2r(2r−1)Ss(Q,R).
(3.40)

Thus, since λs = 4s− k(k + 1) + ∆s is permissible, we have

Ss+r(P,R) ¿ PΛ1+ε + PΛ2+ε + PΛ3+ε,

where

Λ1 = 4(s+ r)− k(k + 1)− (r + 1) + ∆s,

Λ2 = 4(s+ r)− k(k + 1)− s(1− θ)− 2r + k(k + 1),

and

Λ3 = 4(s+ r)− k(k + 1) + ∆s(1− θ).

Now since r+ 1 ≥ k+1
2

and ∆s ≤ k(k + 1), we have ∆sθ ≤ r+ 1 and hence Λ1 ≤ Λ3.

Furthermore, since s(1 − θ) ≥ k2 and 2r ≥ k, we have Λ2 ≤ Λ3. Therefore, the

exponent ∆s+r = ∆s(1− θ) is admissible, and this completes the proof.
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Proof of Theorem 3.1. Let s1 be as in the statement of the theorem, and suppose

that s ≥ s1. Choose an integer t with s ≡ t (mod r) and s1− r < t ≤ s1. Then since

∆t = k(k + 1) is trivially admissible, we find by repeated use of Lemma 3.5.1 that

the exponent

∆s = k(k + 1)

(
1− 1

2k

)(s−t)/r
≤ k(k + 1)

(
1− 1

2k

)(s−s1)/r

is admissible, and this completes the proof.

3.6 Estimates Arising from Repeated Differencing

In this section, we explore the possibility of obtaining improved mean value esti-

mates by employing our efficient differencing procedure repeatedly. As we take more

differences, we must reduce the number of variables taken in a complete interval, so

that the difference polynomials ψj will satisfy the hypotheses of Lemma 3.2.3. This

complicates the recursion for generating admissible exponents and therefore requires

some additional notation. Recall the definition of rj from (3.31), and write

Ωj =
∑

2rj<l≤k+1

(k − l + 1) = 1
2
(k − 2rj + 1)(k − 2rj). (3.41)

For convenience, we also write r = r0 =
[
k+1
2

]
. Throughout this section, we will

assume that k is taken to be sufficiently large.

Lemma 3.6.1. Suppose that u ≥ k(k + 1) and that ∆u ≤ k(k + 1) is an admissible

exponent. For any integer j with 1 ≤ j ≤
√
k, define φ(j, s, J) recursively for

s = u+ lr and J = j, . . . , 2 by φ(j, s, j) = 1/2k,

φ∗(j, s, J − 1) =
1

4k
+

(
1

2
+

2ΩJ−1 −∆s−r
8krJ−1

)
φ(j, s, J), (3.42)

and

φ(j, s, J) = min(1/2k, φ∗(j, s, J)),

where

∆s = ∆s−r(1− θs) + r(2kθs − 1) (3.43)

and

θs = min
1≤j≤k

φ(j, s, 1).

Then ∆s is an admissible exponent for s = u+ lr (l ∈ N).
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Proof. We start by noting that 0 < θs ≤ 1/2k and that θs is an increasing function

of s. Now let j denote the least integer with φ(j, s + r, 1) = θs+r and write φJ =

φ(j, s + r, J). As in the proof of [69], Theorem 6.1, we have φJ < 1/2k whenever

J < j. In particular, it follows that whenever J < j we have 2ΩJ − ∆s < 0 and

φJ = φ∗(j, s + r, J). We claim that φJ ≤ φJ+1 for J < j. By (3.42) and the above

remarks, this is equivalent to

φJ+1

(
1

2
+

∆s − 2ΩJ

8krJ

)
≥ 1

4k
, (3.44)

and this is immediate when J = j−1, since ∆s−2Ωj−1 > 0 and φj = 1/2k. Assuming

the claim holds for J , then we see from (3.42) that

φJ

(
1

2
+

∆s − 2ΩJ−1

8krJ−1

)(
1

2
+

∆s − 2ΩJ

8krJ

)
≥ 1

4k

(
1

2
+

∆s − 2ΩJ−1

8krJ−1

)
,

and it follows on using (3.41) that

φJ

(
1

2
+

∆s − 2ΩJ−1

8krJ−1

)
≥ 1

4k

(
rJ
rJ−1

)
2rJ−1(4k + 1) + ∆s − k(k + 1)

2rJ(4k + 1) + ∆s − k(k + 1)
.

Since ∆s ≤ k(k + 1) and rJ ≤ rJ−1, we see that (3.44) holds with J replaced by

J − 1, and our claim follows.

For 1 ≤ i ≤ j, we write

Mi = P φi , Hi = PM−2k
i , and Qi = P (M1 · · ·Mi)

−1,

with the convention that Q0 = P . We prove the lemma by induction on l, the case

l = 0 having been assumed. Suppose that ∆s is admissible, so that Ss(Q,R) ¿
Qλs+ε, where λs = 4s− k(k + 1) + ∆s. We show inductively that

T̃s,rJ (P,QJ , R, φJ+1;ψJ) ¿ P (3−2kφJ+1)rJ+εH̃2
JM̃

2
J+1Q

λs
J+1 (3.45)

for J = j − 1, . . . , 0. By Lemma 3.4.3 with j replaced by j − 1, r = rj−1 and w = rj,

we have that

T̃s,rj−1
(P,Qj−1, R, φj;ψj−1) ¿ P (3−2kφj)rj−1+εH̃2

j−1M̃
2
j Ss(Qj, R)

+ P εH
2rj−1−2
j (H̃2

j M̃
2
j Ss(Qj, R))1−β(Ss,rj(P,Qj, R,ψj))

β,

where β = rj−1/(2rj). Then on making the trivial estimate

Ss,rj(P,Qj, R;ψj) ¿ P 4rj+εH̃2
j M̃

2
j Ss(Qj, R)
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and noting that φj = 1/2k and hence Hj = 1, we obtain

T̃s,rj−1
(P,Qj−1, R, φj;ψj−1) ¿ P 2rj−1+εH̃2

j−1M̃
2
j Ss(Qj, R)

¿ P 2rj−1+εH̃2
j−1M̃

2
jQ

λs
j ,

on using the outer induction hypothesis. Thus (3.45) holds in the case J = j − 1.

Now suppose that (3.45) holds for J . Then, for γ sufficiently small, we have by

Lemmata 3.3.1 and 3.3.3 that

Ss,rJ (P,QJ , R;ψJ) ¿ P εH̃2
JM̃

2
J

(
PΛ1 + PΛ2 + PΛ3

)
,

where

Λ1 = 3rJ − 1 + λs(1− φ1 − · · · − φJ), (3.46)

Λ2 = 3s(1− φ1 − · · · − φJ) + sφJ+1 + 2rJ , (3.47)

and

Λ3 = (4s+ 2rJ(2rJ − 1))φJ+1 + (3− 2kφJ+1)rJ + λs(1− φ1 − · · · − φJ+1). (3.48)

Now since J ≤
√
k, we have rJ ∼ k/2, and it follows easily that Λ1 ≤ Λ3 and Λ2 ≤ Λ3

for s ≥ k(k + 1) and k sufficiently large. Hence by Lemma 3.4.3 we have

T̃s,rJ−1
(P,QJ−1, R, φJ ;ψJ−1) ¿ P (3−2kφJ )rJ−1+εH̃2

J−1M̃
2
JQ

λs
J

+P εH
2rJ−1−2
J

(
H̃2
JM̃

2
JQ

λs
J

)1−β′(
P (3−2kφJ+1)rJ+εM

4s−2+2rJ (2rJ−1)
J+1 H̃2

JM̃
2
J+1Q

λs
J+1

)β′
,

where β′ = rJ−1/(2rJ). The second term here is

H̃2
J−1M̃

2
JQ

λs
J P

Λ+ε,

where

Λ = 2rJ−1(1− 2kφJ) +
rJ−1

2rJ

[
(3− 2kφJ+1)rJ + (4s+ 2rJ(2rJ − 1)− λs)φJ+1

]
.

By (3.41) and (3.42), we have

(4s+ 2rJ(2rJ − 1)− λs)φJ+1 = (4krJ + 2ΩJ −∆s)φJ+1 = 8krJφJ − 2rJ ,

and hence

Λ = (5
2
− kφJ+1)rJ−1 ≤ (3− 2kφJ)rJ−1 + rJ−1(kφJ − 1

2
) ≤ (3− 2kφJ)rJ−1,
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since φJ+1 ≥ φJ and φJ ≤ 1/2k. Thus (3.45) holds with J replaced by J − 1, so this

completes the inner induction. Now we apply (3.45) with J = 0 to obtain

T̃s,r(P, P,R, φ1;ψ0) ¿ P (3−2kφ1)r+2φ1+λs(1−φ1)+ε,

whence by Lemmata 3.2.1, 3.3.1, and 3.3.3 we have (for γ sufficiently small) that

Ss+r(P,R) ¿ P 2s+ε + Ss,r(P, P,R;ψ0) ¿ PΛ1+ε + PΛ2+ε + PΛ3+ε,

where Λ1,Λ2, and Λ3 are given by (3.46), (3.47), and (3.48) with J = 0. Therefore,

the exponent

λs+r = 4(s+ r)− k(k + 1) + ∆s(1− θs+r) + r(2kθs+r − 1)

is permissible, and the desired conclusion holds with s replaced by s + r. This

completes the proof of the lemma.

Next we investigate the size of the admissible exponents supplied by Lemma 3.6.1.

Lemma 3.6.2. Suppose that s > k(k+1)+r and that ∆s−r is an admissible exponent

satisfying

(log k)2 < ∆s−r ≤ 2rk.

Write δs−r = ∆s−r/4rk, and define δs to be the unique positive solution of the equa-

tion

δs + log δs = δs−r + log δs−r − 3

4k
+

1

k(log k)3/2
. (3.49)

Then the exponent ∆s = 4rkδs is admissible.

Proof. The proof is nearly identical to that of [69], Lemma 6.2. In view of (3.43), we

may assume that 0 ≤ ∆s ≤ 2rk and hence that 0 ≤ δs ≤ 1
2
. By Lemma 3.6.1 with

j =

[
1

2
(log k)1/4

]
+ 1, (3.50)

we see that the exponent

∆s = ∆s−r(1− θ) + r(2kθ − 1) = 4krδs−r − r + 2rk(1− 2δs−r)θ, (3.51)

is admissible, where θ = θs = φ(j, s, 1). We note that for 1 ≤ J < j one has

ΩJ ≤ 1
2
J(J + 1) < 1

2
(log k)1/2,
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so on writing φJ for φ∗(j, s, J) we have

φJ−1 ≤ 1

4k
+

1

2
(1− δ′)φJ , (3.52)

where

δ′ =
∆s−r − (log k)1/2

4kr
≥ δs−r(1− (log k)−3/2). (3.53)

An easy induction using (3.52) shows that

φJ ≤ 1

2k(1 + δ′)

(
1 + δ′

(
1− δ′

2

)j−J)
(1 ≤ J ≤ j),

and therefore

θ = φ1 ≤ 1 + 21−jδ′

2k(1 + δ′)
.

Write L = (log k)−3/2. Since the expression on the right hand side of the above

inequality is a decreasing function of δ′, we see from (3.50) and (3.53) that

θ ≤ 1 + 21−jδs−r(1− L)

2k(1 + δs−r(1− L))
≤ 1 + δs−rL+ 21−jδs−r

2k(1 + δs−r)
≤ 1 + 2δs−rL

2k(1 + δs−r)

for k sufficiently large. It now follows from (3.51) that

∆s

4rk
≤ δs−r

(
1−

3
2
− w

2k(1 + δs−r)

)
,

where

w = (1− 2δs−r)(log k)−3/2.

Hence if δs is defined by (3.49), then since log(1− x) ≤ −x for 0 < x < 1, we have

∆s

4rk
+ log

∆s

4rk
≤ δs−r

(
1−

3
2
− w

2k(1 + δs−r)

)
+ log δs−r −

3
2
− w

2k(1 + δs−r)

≤ δs−r + log δs−r − 3

4k
+

1

k(log k)3/2

= δs + log δs,

so that δs ≥ ∆s/4rk, since δ + log δ is an increasing function of δ. It follows that

4rkδs is admissible, and this completes the proof of the lemma.
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We are now fully equipped to prove Theorem 3.2.

Proof of Theorem 3.2. We first note that the theorem is trivial when 1 ≤ s ≤ s0.

Now when s > s0, define δs to be the unique positive solution of the equation

δs + log δs = 1− 3(s− s0)

4rk
+

s− s0

rk(log k)3/2
. (3.54)

We show by induction that the exponent ∆s = 4krδs is admissible whenever s0 <

s ≤ s1. First suppose that s0 < s ≤ s0 + r, and observe that the exponent

∆s = k(k + 1) ≤ 2r(k + 1)

is trivially admissible. Then we have

∆s

4rk
≤ 1

2
+

1

2k
,

and hence

∆s

4rk
+ log

∆s

4rk
≤ 3

4
+ log

3

4
<

1

2
≤ 1− 3

4k
≤ δs + log δs

for k ≥ 2. It it follows that the exponent 4rkδs is admissible, since δ + log δ is an

increasing function of δ. Now suppose that ∆s−r = 4krδs−r is admissible, where

s0 + r < s ≤ s1. We have by (3.54) that δs−r ≤ 1 and

δs−r + log δs−r ≥ 1− 3(s1 − s0)

4rk
> 1− log(4rk) + 2 log log k,

from which it follows that

δs−r >
(log k)2

4rk
.

Thus Lemma 3.6.2 shows that ∆s = 4rkγs is admissible, where γs is the unique

positive solution of

γs + log γs = δs−r + log δs−r − 3

4k
+

1

k(log k)3/2
.

Applying (3.54) with s replaced by s − r now shows that γs + log γs = δs + log δs,

whence γs = δs, and the induction is complete.

The theorem now follows immediately in the case where 1 ≤ s ≤ s1, since from

(3.54) and the definition of s1 we see that

log δs ≤ 2− 3(s− s0)

4rk

for k sufficiently large.
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Now suppose that s > s1, and let U denote the largest integer with s ≡ U

(mod r) and U ≤ s1, so that U ≥ s1 − r. Then the exponent

∆U = 4rke2−3(U−s0)/4rk < e4(log k)2

is admissible, and the theorem follows on applying Lemma 3.5.1 repeatedly.

We note that in the presence of the refined version of Lemma 3.4.3 discussed at

the end of Section 3.4, we could replace the factor of r in the second term of (3.43) by

2r and the 3/4k term in (3.49) by 1/k. Hence we would obtain admissible exponents

that decay like k2e−2s/k2
in many cases of interest.



CHAPTER IV

Applications of the Mean Value Theorems

4.1 Overview

The technical apparatus developed in the previous chapter, culminating in the

mean value estimates of Theorems 3.1 and 3.2, allows us to consider a variety of

Diophantine problems that would not otherwise be accessible. In this chapter, we

are primarily concerned with problems involving forms of large degree, while the

application of our methods to cubic forms is illustrated in Chapter 5.

In applications involving the circle method, the mean value estimates of Chapter

3 are of fundamental importance to the treatment of the minor arcs, but we also

require Weyl estimates in order to proceed with the analysis. Fortunately, our mean

value estimates themselves give rise to Weyl estimates by way of the large sieve

inequality. Thus in Section 4.2 we will be able to prove

Theorem 4.1. For µ > 0, define mµ to be the set of α ∈ Rk+1 such that whenever

ai ∈ Z and q ∈ N satisfy

(a0, . . . , ak, q) = 1 and |qαi − ai| ≤ P µ−kRk (0 ≤ i ≤ k)

one has q > P µRk+1. Suppose that 0 < λ ≤ 1
2

and that ∆s denotes an admissible

exponent. Then given ε > 0 there exists η = η(ε, k) such that whenever R ≤ P η one

has

sup
α∈mλ(k+1)

|f(α;P,R)| ¿ P 2−σ(λ)+ε,

where

σ(λ) = max
2s≥k+1

λ− (1− λ)∆s

2s
. (4.1)

The following special case of Theorem 4.1 will be sufficient for most of our appli-

cations in this chapter.

71
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Corollary 4.1.1. Given ε > 0, there exists η = η(ε, k) such that whenever R ≤ P η

one has

sup
α∈m1/2

|f(α;P,R)| ¿ P 2−σ1(k)+ε,

where

σ1(k)
−1 ∼ 28

3
k3 log k as k →∞.

The estimates contained in Theorem 4.1 have immediate applications to the prob-

lem of giving localized bounds for the fractional parts of polynomials in two variables.

Thus in Section 4.3 we are able to establish the following result.

Theorem 4.2. Suppose that α ∈ Rk+1, and let ∆s denote an admissible exponent.

Then given ε > 0, there exists N0 = N0(ε, k) such that whenever N > N0 one has

min
1≤m,n≤N

||α0m
k + α1m

k−1n+ · · ·+ αkn
k|| < N ε−τ(k),

where

τ(k) = max
2s≥k+1

1− k∆s

2s(k + 1) + 1 + ∆s

.

In particular, we have

Corollary 4.2.1. Given α ∈ Rk+1 and ε > 0, there exists N0 = N0(ε, k) such that

whenever N > N0 one has

min
1≤m,n≤N

||α0m
k + α1m

k−1n+ · · ·+ αkn
k|| < N ε−ρ(k),

where

ρ(k)−1 ∼ 14
3
k3 log k as k →∞.

As remarked in the introduction, Theorem 4.2 and Corollary 4.2.1 are primarily of

interest when both α0 and αk are non-zero, since one may otherwise obtain superior

results by specializing one variable and applying single-variable methods.

Our remaining applications require the use of the Hardy-Littlewood method, so in

Section 4.4 we take a brief detour to develop the necessary major arc approximations

for our exponential sums.

In Section 4.5, we consider the multidimensional analogue of Waring’s problem

discussed in the introduction. Let Ws(n, P ) denote the number of solutions of the

system of equations

xk−j1 yj1 + · · ·+ xk−js yjs = nj (0 ≤ j ≤ k) (4.2)

with xi, yi ∈ [1, P ] ∩ Z. The following result quantifies Theorem 6 by providing a

lower bound for Ws(n, P ).
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Theorem 4.3. Suppose that

s ≥ 14
3
k2 log k + 10

3
k2 log log k +O(k2),

and fix real numbers µ0, . . . , µk with the property that the system

ηk−j1 ξj1 + · · ·+ ηk−js ξjs = µj (0 ≤ j ≤ k) (4.3)

has a non-singular real solution with 0 < ηi, ξi < 1. Suppose also that the system

(4.2) has a non-singular p-adic solution for all primes p. Then there exist positive

numbers δ = δ(s, k,µ) and P0 = P0(s, k,µ) such that, whenever

|nj − P kµj| < δP k (0 ≤ j ≤ k) (4.4)

and P > P0, one has

Ws(n, P ) À P 2s−k(k+1).

Finally, in Section 4.6, we consider the problem of counting rational lines on the

hypersurface defined by an additive equation. Let c1, . . . , cs be nonzero integers, and

write Ns(P ) for the number of solutions of the polynomial equation

c1(x1t+ y1)
k + · · ·+ cs(xst+ ys)

k = 0 (4.5)

with xi, yi ∈ [−P, P ] ∩ Z. Equivalently, by the binomial theorem, Ns(P ) is the

number of solutions of the system of equations

c1x
k−j
1 yj1 + · · ·+ csx

k−j
s yjs = 0 (0 ≤ j ≤ k) (4.6)

with xi, yi ∈ [−P, P ] ∩ Z.

Theorem 4.4. Suppose that

s ≥ 14
3
k2 log k + 10

3
k2 log log k +O(k2),

and that the system of equations (4.6) has a non-singular real solution and a non-

singular p-adic solution for all primes p. Then for P sufficiently large one has

Ns(P ) À P 2s−k(k+1).

Given a line ` : xt+y, we define the height of ` by h(`) = max(|xi|, |yi|). Among

the solutions counted by Ns(P ), we may of course have several that correspond to

the same line, so Theorem 4.4 does not directly yield a lower bound for the number

of lines on the hypersurface

c1z
k
1 + · · ·+ csz

k
s = 0 (4.7)
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with h(`) ≤ P . In Section 4.6, however, we will actually derive the estimate of

Theorem 4.4 with the variables restricted to dyadic-type intervals and then show

that in this situation the number of solutions of (4.6) corresponding to any particular

line is at most O(1). Thus we will prove

Theorem 4.5. Let Ls(P ) denote the number of distinct rational lines ` lying on the

hypersurface (4.7) and satisfying h(`) ≤ P . Then, under the hypotheses of Theorem

4.4, one has

Ls(P ) À P 2s−k(k+1).

It is worth remarking that the p-adic solubility conditions imposed in the above

theorems in fact need only be checked for finitely many primes p, as we will see

in Sections 4.5 and 4.6 that primes sufficiently large in terms of k are dealt with

unconditionally using exponential sums.

Throughout this chapter, any statement involving ε and R is taken to mean that

for every ε > 0 there exists a positive number η = η(ε, s, k) such that the result holds

whenever R ≤ P η.

4.2 Weyl Estimates

Here we obtain the estimates for smooth Weyl sums quoted in Theorem 4.1 by

making simple modifications in the corresponding argument of Wooley [69]. In the

end, a standard application of the large sieve inequality shows that these estimates

follow from the mean value estimates of Theorems 3.1 and 3.2. Let

Cq(Q) = {x ∈ Z ∩ [1, Q] : s0(x)|s0(q)}, (4.8)

write

ψ(x, y;α) =
k∑
i=0

αix
k−iyi, (4.9)

and define the exponential sum

hr,v,v′(α;L,L′, R,R′; θ, θ′) =
∑

u∈A(L,R)
(u,r)=1

∑

u′∈A(L′,R′)
(u′,r)=1

e(ψ(uv, u′v′;α) + θu+ θ′u′).

Also, when π is a prime, we define a set of modified smooth numbers

B(M,π,R) = {v ∈ N : M < v ≤Mπ, π|v, and p|v ⇒ π ≤ p ≤ R}. (4.10)

We have the following analogue of [69], Lemma 7.2.
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Lemma 4.2.1. Suppose that α ∈ Rk+1 and r ∈ N. Then, whenever

R ≤M < Q¿ P and R ≤M ′ < Q′ ¿ P,

we have
∑

x∈A(Q,R)
y∈A(Q′,R)
(xy,r)=1

e(ψ(x, y;α)) ¿ P ε max
π,π′≤R
π,π′prime

sup
θ,θ′∈[0,1]

∑

v∈B(M,π,R)
v′∈B(M ′,π′,R)

(vv′,r)=1

|hr,v,v′(α;T, T ′, π, π′; θ, θ′)|+ E,

where T = Q/M , T ′ = Q′/M ′, and E ¿ Q′M +QM ′.

Proof. By Lemma 10.1 of Vaughan [53], we have
∑

x∈A(Q,R)
y∈A(Q′,R)
(xy,r)=1

e(ψ(x, y;α)) =
∑

M<x≤Q
x∈A(Q,R)
(x,r)=1

∑

M ′<y≤Q′
y∈A(Q′,R)

(y,r)=1

e(ψ(x, y;α)) +O(Q′M +QM ′)

=
∑

π,π′≤R
π,π′prime
(r,ππ′)=1

U(α;Q,Q′,M,M ′, R, r, π, π′) +O(Q′M +QM ′),

where

U(α;Q,Q′,M,M ′, R, r, π, π′)

=
∑

v∈B(M,π,R)
(v,r)=1

∑

u∈A(Q/v,π)
(u,r)=1

∑

v′∈B(M ′,π′,R)
(v′,r)=1

∑

u′∈A(Q′/v′,π′)
(u′,r)=1

e(ψ(uv, u′v′;α)).

Now when v, v′ ≥M we can use orthogonality to write
∑

u∈A(Q/v,π)
u′∈A(Q′/v′,π′)

(uu′,r)=1

e(ψ(uv, u′v′;α))

=

∫ 1

0

∫ 1

0

hr,v,v′(θ, θ
′)


 ∑

x≤Q/v
e(−θx)





 ∑

x′≤Q′/v′
e(−θ′x′)


 dθ dθ′,

where we have abbreviated hr,v,v′(α;T, T ′, π, π′; θ, θ′) by hr,v,v′(θ, θ
′). Thus we see

that

U(α;Q,Q′,M,M ′, R, r, π, π′)

¿
∫ 1

0

∫ 1

0

∑

v∈B(M,π,R)
v′∈B(M ′,π′,R)

(vv′,r)=1

|hr,v,v′(θ, θ′)|min(Q/M, ‖θ‖−1) min(Q′/M ′, ‖θ′‖−1) dθ dθ′,
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and the lemma follows on noting that

∫ 1

0

min(X, ‖θ‖−1)dθ ¿ 1 + logX

for X ≥ 1.

Theorem 4.1 is an easy consequence of the following lemma.

Lemma 4.2.2. Suppose that 0 < λ ≤ 1
2

and write M = P λ. Let j be an integer

with 0 ≤ j ≤ k, and let α ∈ Rk+1. Suppose that a ∈ Z and q ∈ N satisfy (a, q) = 1,

|qαj − a| ≤ 1
2
(MR)−k, q ≤ 2(MR)k, and either |qαj − a| > MP−k or q > MR.

Then whenever s is a natural number with 2s > max(j, k − j) and the exponent ∆s

is admissible we have

f(α;P,R)2s ¿ P 4s+εM−1(P/M)∆s .

Proof. By Lemma 3.2.4, along with a standard estimate for the divisor function, we

see that card(Cq(X)) ¿ Xε whenever log q ¿ logX, and it follows that

f(α;P,R) =
∑

d,e∈Cq(P )∩A(P,R)

∑

x∈A(P/d,R)
y∈A(P/e,R)

(xy,q)=1

e(ψ(xd, ye;α))

¿ P ε max
d,e∈Cq(M/R)

∣∣∣∣∣∣∣∣∣∣∣

∑

x∈A(P/d,R)
y∈A(P/e,R)

(xy,q)=1

e(ψ(xd, ye;α))

∣∣∣∣∣∣∣∣∣∣∣

+ P 1+ε(PR/M).

Thus by Lemma 4.2.1 there exist d, e ∈ Cq(M/R), θ, θ′ ∈ [0, 1] and primes π, π′ ≤ R

such that

f(α;P,R) ¿ P 2+εM−1 + P εg(α; d, e, π, π′, θ, θ′), (4.11)

where

g(α; d, e, π, π′, θ, θ′) =
∑

v∈B(M/d,π,R)
(v,q)=1

∑

v′∈B(M/e,π′,R)
(v′,q)=1

|hr,vd,v′e(α;P/M,P/M, π, π′; θ, θ′)|.

Let J(q, v, d, e, h) denote the number of solutions of the congruence (vd)k−j(xe)j ≡
h (mod q) with 1 ≤ x ≤ q and (x, q) = 1. When (v, q) = 1, a solution x counted

by J(q, v, d, e, h) satisfies dk−jejxj ≡ h′ (mod q), and we then necessarily have
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(h′, q)|dk−jej. In this instance, a simple application of the Chinese Remainder The-

orem shows that

J(q, v, d, e, h) ¿ qεdk−jej.

Thus for any fixed v with (v, q) = 1, we may divide the integers v′ with M/e <

v′ ≤MR/e and (v′, q) = 1 into L¿ qεdk−jej classes V1, . . . ,VL such that, whenever

v′1, v
′
2 ∈ Vr and (vd)k−j(v′1e)

j ≡ (vd)k−j(v′2e)
j (mod q), we have v′1 ≡ v′2 (mod q).

Now put Q = P/M , and write cy for the number of solutions of the system

s∑
i=1

uk−ji (u′i)
j = yj (0 ≤ j ≤ k) (4.12)

with

ui ∈ A(Q, π) and u′i ∈ A(Q, π′) (1 ≤ i ≤ s)

and

(ui, q) = (u′i, q) = 1 (1 ≤ i ≤ s).

Further, write g(α) for g(α; d, e, π, π′, θ, θ′). Then for some r with 1 ≤ r ≤ L we

have by Hölder’s inequality that

|g(α)|2s ¿ P εdk−jej(M2R2/de)2s−1
∑

v∈B(M/d,π,R)
(v,q)=1

∑

v′∈Vr

∣∣∣∣∣
∑
y

cye(ψ(vd, v′e;αy))

∣∣∣∣∣

2

,

where we have written αy = (α0y0, . . . , αkyk) and where the summation is over y

with 1 ≤ yi ≤ sQk. Applying Cauchy’s inequality, we obtain

|g(α)|2s ¿ P εM4s−2Qk2
∑∗

y

∑

v∈B(M/d,π,R)
(v,q)=1

∑

v′∈Vr

∣∣∣∣∣∣
∑
yj

cye(αj(vd)
k−j(v′e)jyj)

∣∣∣∣∣∣

2

, (4.13)

where
∑∗ denotes the sum over yi with i 6= j.

We now show that the quantities αj(vd)
k−j(v′e)j are well-spaced modulo 1 as v′

runs through the set Vr, and it is here that we use the “minor arc” conditions on

αj imposed in the statement of the lemma. Fix v ∈ B(M/d, π,R), and note that if

v′1, v
′
2 ∈ Vr and v′1 6≡ v′2 (mod q) then since |qαj − a| ≤ 1

2
(MR)−k we have

∥∥αj((vd)k−j(v′1e)j − (vd)k−j(v′2e)
j)

∥∥ ≥
∥∥∥∥
a

q

(
(vd)k−j(v′1e)

j − (vd)k−j(v′2e)
j
)∥∥∥∥−

1

2q

≥ 1

2q
.
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In particular, if q > MR/e, then the elements of Vr are distinct modulo q, so the

αj(vd)
k−j(v′e)j with v′ ∈ Vr are spaced at least 1

2
q−1 apart. Thus it suffices to

consider the case when v′1 and v′2 are distinct elements of Vr with v′1 ≡ v′2 (mod q)

and q ≤MR/e. In this case we have

∥∥αj((vd)k−j(v′1e)j − (vd)k−j(v′2e)
j)

∥∥ =

∥∥∥∥
(
αj − a

q

)
(vd)k−jej((v′1)

j − (v′2)
j)

∥∥∥∥

=

∣∣∣∣αj −
a

q

∣∣∣∣ (vd)k−jej
∣∣(v′1)j − (v′2)

j
∣∣.

Now since |qαj − a| > MP−k and v′1 − v′2 is a nonzero multiple of q, we get

∥∥αj((vd)k−j(v′1e)j − (vd)k−j(v′2e)
j)

∥∥ ≥MP−k(vd)k−jej(v′1)
j−1 ≥ (P/M)−k,

and thus on applying the large sieve inequality (see for example [19]) to (4.13) we

obtain

g(α; d, e, π, π′, θ, θ′)2s ¿ P εM4s−2(P/M)k
2

(q + (P/M)k)
∑

v∈B(M/d,π,R)

∑
y

|cy|2.

But
∑

y |cy|2 ≤ Ss(P/M,R) and q ≤ 2(MR)k ¿ (P/M)k so on recalling (4.11) we

have

f(α;P,R)2s ¿ P 4s+εM−2s + P εM4s−1(P/M)k
2

(P/M)k(P/M)4s−k(k+1)+∆s

¿ P 4s+εM−1(P/M)∆s ,

as required.

Proof of Theorem 4.1. Suppose that α ∈ mλ(k+1) and write M = P λ. By Dirichlet’s

Theorem there exist bi ∈ Z and qi ∈ N with (bi, qi) = 1 such that

|qiαi − bi| ≤ 1

2
(MR)−k and qi ≤ 2(MR)k (0 ≤ i ≤ k).

If for some j we have either

|αj − bj/qj| > q−1
j MP−k or qj > MR,

then the desired conclusion follows from Lemma 4.2.2. Otherwise, write q = [q0, . . . , qk]

and ai = biq/qi. Then (a0, . . . , ak, q) = 1, and for each i we have

q ≤ qi(MR)k ≤ (MR)k+1 = P λ(k+1)Rk+1

and

|αi − ai/q| ≤ q−1(MR)kMP−k = q−1P λ(k+1)−kRk.
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This contradicts the assumption that α ∈ mλ(k+1) and hence completes the proof.

Proof of Corollary 4.1.1. We apply Theorem 4.1 with λ = 1
2(k+1)

. By (4.1), we have

σ(λ) = max
2s≥k+1

1− (2k + 1)∆s

4s(k + 1)
.

Then on taking

s =

[(
7

3
log 4rk + 2 log log k + 8

)
rk

]
+ 1 ∼ 7

3
k2 log k,

we have by Theorem 3.2 that the exponent

∆s = e4(log k)2e−(s−s1)/2rk ≤ 1

k(log k)1/3

is admissible. It follows that

σ(λ) ≥ 1 +O((log k)−1/3)
28
3
k3(log k +O(log log k))

∼
(

28

3
k3 log k

)−1

.

We remark that the proof of Lemma 4.2.2, with trivial modifications, may be

applied to more general exponential sums of the form

f(α;P,Q,R)
∑

x∈A(P,R)

∑

y∈A(Q,R)

e(α0x
k + α1x

k−1y + · · ·+ αky
k),

provided that P ³ Q, and hence Theorem 4.1 and Corollary 4.1.1 hold in this case

as well. This observation will be useful in the analysis of Section 4.6.

4.3 Fractional Parts

The following lemma allows us to deduce information about the distribution of

fractional parts from the exponential sum estimates of Theorem 4.1.

Lemma 4.3.1. Suppose that g(m,n) is a non-negative function, L is a positive in-

teger, and αm,n are real numbers. If

L∑

l=1

∣∣∣∣∣
N∑
m=1

N∑
n=1

g(m,n)e(lαm,n)

∣∣∣∣∣ <
1

6

N∑
m=1

N∑
n=1

g(m,n),

then for any β there is a solution of ||αm,n + β|| < L−1 with 1 ≤ m,n ≤ N .

Proof. For each integer n with 1 ≤ n ≤ N2, we can write n = qN + r for unique

integers q = q(n) and r = r(n) satisfying 0 ≤ q ≤ N − 1 and 1 ≤ r ≤ N . Now we

apply Lemma 5 of Harman [26] to the sequence α′n = αq+1,r (1 ≤ n ≤ N2).
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The localized fractional parts estimates of Theorem 4.2 now follow in a routine

manner.

Proof of Theorem 4.2. Fix α ∈ Rk+1, let P be a large real number, and let ε be a

real number with 0 < ε < τ . Further, write H1 = P τ−ε and

T1(α) =
∑

1≤h≤H1

|f(hα;P,R)|, (4.14)

where R = P η and η < η0(ε, k). We divide into cases.

(i) Suppose that there exist h,b, and q with 1 ≤ h ≤ H1, b ∈ Zk+1, q ∈ N,

(q, b0, . . . , bk) = 1, and q ≤ P 1−τRk+1 such that

|qhαi − bi| ≤ P 1−τ−kRk (0 ≤ i ≤ k).

Then for each i, we have

||αi(qh)k|| ≤ |(qh)k−1(qhαi − bi)| < Hk−1
1 P−kτRk2+k−1 <

1

(k + 1)H1

for η sufficiently small. Thus on noting that qh ≤ P we obtain

min
1≤m,n≤P

||ψ(m,n;α)|| ≤ ||ψ(qh, qh;α)|| ≤
k∑
i=0

||αi(qh)k|| < H−1
1 ,

which completes the proof in this case.

(ii) If the hypothesis of case (i) does not hold, then we may apply Theorem 4.1

with λ = 1−τ
k+1

to obtain

max
1≤h≤H1

|f(hα;P,R)| ¿ P 2−σ(λ)+ε/2,

and hence

T1(α) ¿ P 2+τ−σ(λ)−ε/2.

Now choose s so that

τ =
1− k∆s

2s(k + 1) + 1 + ∆s

.

Then a simple calculation shows that

τ =
1− τ − (k + τ)∆s

2s(k + 1)
≤ σ(λ),
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whence T1(α) = o(P 2). The theorem now follows by applying Lemma 4.3.1 with

g(m,n) =





1 if m,n ∈ A(P,R),

0 otherwise,

on recalling (see for example [55]) that card(A(P,R)) À P when R = P η.

Proof of Corollary 4.2.1. As in the proof of Corollary 4.1.1, we take

s =

[(
7

3
log 4rk + 2 log log k + 8

)
rk

]
+ 1

and apply Theorem 3.2 to estimate ∆s. In the notation of Theorem 4.2, we find that

τ(k) ≥ 1 +O((log k)−1/3)

2s(k +O(1))
∼

(
14

3
k3 log k

)−1

,

and this completes the proof.

4.4 Generating Function Asymptotics

In this section, we derive the asymptotic formulas for our generating functions

that will be required to handle the major arcs in our subsequent applications of the

circle method.

As is now familiar in the applications of smooth numbers to additive number

theory, one can only obtain asymptotics for the exponential sum f(α;P,R) on a

very thin set of major arcs, so it is necessary to introduce sums over a complete

interval in order to facilitate a pruning procedure. Thus we write

F (α) =
∑

1≤x,y≤P
e(α0x

k + α1x
k−1y + · · ·+ αky

k),

and we also define

S(q, a) =
∑

1≤x,y≤q
e

(
a0x

k + a1x
k−1y + · · ·+ aky

k

q

)
,

v(β) =

∫ P

0

∫ P

0

e(β0γ
k + β1γ

k−1ν + · · ·+ βkν
k) dγ dν, (4.15)

and

V (α) = V (α; q, a) = q−2S(q, a)v(α− a/q).
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Lemma 4.4.1. When αi = ai/q + βi for 0 ≤ i ≤ k, one has

F (α)− V (α) ¿ q2 + qP k+1 (|β0|+ · · ·+ |βk|) .
Proof. On sorting the terms into arithmetic progressions modulo q, we have

F (α) =

q∑
r=1

q∑
s=1

e

(
a0r

k + · · ·+ aks
k

q

) ∑

0≤i≤P−r
q

∑

0≤j≤P−s
q

e(ψ(iq + r, jq + s;β)),

where

ψ(x, y;α) =
k∑
i=0

αix
k−iyi.

Thus on making the change of variables γ = qz + r and ν = qw + s in (4.15), we

obtain

F (α)− V (α) =
∑

1≤r,s≤q
e

(
a0r

k + · · ·+ aks
k

q

) 



∑
i,j

i+1∫

i

j+1∫

j

H(z, w) dz dw +O(1)



 ,

where

H(z, w) = H(z, w; r, s; i, j;β) = e(ψ(iq + r, jq + s;β))− e(ψ(qz + r, qw + s;β)).

Using the mean value theorem, we find that

H(z, w) ¿ qP k−1 (|β0|+ · · ·+ |βk|)
when (z, w) ∈ [i, i+ 1]× [j, j + 1] and hence

F (α)− V (α) ¿ q2(1 + q−1P k+1 (|β0|+ · · ·+ |βk|)),
from which the lemma follows.

We now begin to analyze the sum f(α;P,R). First we record a partial summation

lemma analogous to Lemma 2.6 of Vaughan [55].

Lemma 4.4.2. Let cm,n be arbitrary complex numbers, and suppose that F (x, y) has

continuous partial derivatives on [0, X]× [0, Y ]. Then
∑
m≤X
n≤Y

cm,nF (m,n) =
∑
m≤X
n≤Y

cm,n
(
F (X,n) + F (m,Y )− F (X, Y )

)

+

∫ X

0

∫ Y

0

∂2

∂γ∂ν
F (γ, ν)




∑
m≤γ
n≤ν

cm,n


 dν dγ.
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Proof. Write Fγ(ν) = ∂
∂γ
F (γ, ν). Then we have

Fγ(n) = Fγ(Y )−
∫ Y

n

∂

∂ν
Fγ(ν) dν

and

F (m,n) = F (X,n)−
∫ X

m

Fγ(n) dγ.

Thus we can write

F (m,n) = F (X,n)−
∫ X

m

Fγ(Y ) dγ +

∫ X

m

∫ Y

n

∂2

∂γ∂ν
F (γ, ν) dν dγ,

and the lemma follows on summing over m and n and interchanging the order of

integration and summation in the last term.

Using the well-known asymptotics for card(A(X,R)) in terms of Dickman’s ρ

function, we can record the following lemma.

Lemma 4.4.3. Let τ be a fixed number, and suppose that R ≤ m,n ≤ Rτ . Then

∑

x∈A(m,R)
y∈A(n,R)

1 = ρ

(
logm

logR

)
ρ

(
log n

logR

)
mn+O

(
mn

logR

)
.

Proof. By Lemma 5.3 of Vaughan [53], we have

∑

x∈A(X,R)

1 = ρ

(
logX

logR

)
X +O

(
X

logX

)

whenever R ≤ X ≤ Rτ , and the result follows immediately.

Now let W be a parameter at our disposal, and write

N(q, a) = {α ∈ Tk+1 : |αi − ai/q| ≤ WP−k (0 ≤ i ≤ k)} (4.16)

whenever q ≤ W and (q, a0, . . . , ak) = 1. Further, let R = P η, and write

w(β) =

∫ P

R

∫ P

R

ρ

(
log γ

logR

)
ρ

(
log ν

logR

)
e(β0γ

k + · · ·+ βkν
k) dγ dν. (4.17)

Lemma 4.4.4. Suppose that α ∈ N(q, a) with q ≤ R, and write βi = αi − ai/q.

Then we have

f(α;P,R) = q−2S(q, a)w(β) +O

(
q2P 2W 2

logP

)
.
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Proof. By arguing as in the proof of Vaughan [53], Lemma 5.4, we obtain

∑

x∈A(m,R)
x≡r (q)

∑

y∈A(n,R)
y≡s (q)

1 =
1

q2

∑

x∈A(m,R)
y∈A(n,R)

1 +O

(
P 2

logP

)

whenever R ≤ m,n ≤ P , and hence by Lemma 4.4.3 we have

∑

x∈A(m,R)
y∈A(n,R)

e

(
a0x

k + · · ·+ aky
k

q

)
= q−2S(q, a)

∑

x∈A(m,R)
y∈A(n,R)

1 +O

(
q2P 2

logP

)

= q−2S(q, a)ρ

(
logm

logR

)
ρ

(
log n

logR

)
mn+ E1,

where E1 ¿ q2P 2/ logP . Now let B = A(P,R) × A(P,R), and write 1B for the

characteristic function of B. Then by taking

cx,y = e

(
a0x

k + · · ·+ aky
k

q

)
1B(x, y) and F (x, y) = e(β0x

k + · · ·+ βky
k)

in Lemma 4.4.2 we find that

f(α;P,R) =
∑

1≤x,y≤P
cx,yF (x, y) = S0 − S1 + S2, (4.18)

where

S0 =
∑

x,y∈A(P,R)

e

(
a0x

k + · · ·+ aky
k

q

)(
e(β0P

k + · · ·+ βky
k) + e(β0x

k + · · ·+ βkP
k)

)
,

S1 =
∑

x,y∈A(P,R)

e

(
a0x

k + · · ·+ aky
k

q

)
e(β0P

k + · · ·+ βkP
k),

and

S2 =

∫ P

0

∫ P

0

∂2

∂γ∂ν

(
e(β0γ

k + · · ·+ βkν
k)

) ∑

x∈A(γ,R)
y∈A(ν,R)

e

(
a0x

k + · · ·+ aky
k

q

)
dν dγ.

From our observations above, we see immediately that

S1 = q−2S(q, a)P 2ρ(1/η)2e(β0P
k + · · ·+ βkP

k) +O

(
q2P 2

logP

)
. (4.19)
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We next observe that, by equation (8.13) of Wooley [61], one has

∑

x∈A(m,R)

e

(
a0x

k + · · ·+ aky
k

q

)
= q−1S(q, a; y)mρ

(
logm

logR

)
+O

(
qP

logP

)
, (4.20)

where

S(q, a; y) =
∑

1≤x≤q
e

(
a0x

k + a1x
k−1y + · · ·+ aky

k

q

)
.

If we write S0 = S3 + S4, then by (4.20) we have

S3 =
∑

x,y∈A(P,R)

e

(
a0x

k + · · ·+ aky
k

q

)
e(β0P

k + · · ·+ βky
k)

= q−1ρ(1/η)P
∑

y∈A(P,R)

S(q, a; y)e(β0P
k + · · ·+ βky

k) +O

(
qP 2

logP

)
,

and then by partial summation

S3 = q−1P ρ(1/η)T (P ) e(β0P
k + · · ·+ βkP

k)

− q−1P ρ(1/η)

∫ P

R

T (ν)
∂

∂ν

(
e(β0P

k + · · ·+ βkν
k)

)
dν +O

(
qP 2

logP

)
,

where

T (ν) =
∑

y∈A(ν,R)

S(q, a; y).

But on using the obvious analogue of (4.20) we find that

T (ν) = q−1S(q, a) νρ

(
log ν

logR

)
+O

(
q2P

logP

)
,

and since α ∈ N(q, a) have

∂

∂ν

(
e(β0P

k + · · ·+ βkν
k)

) ¿ W/P.

Therefore we obtain

S3 = Qρ(1/η)P e(β0P
k + · · ·+ βkP

k)−QI(P ) +O

(
qP 2W

logP

)
, (4.21)

where Q = q−2S(q, a)ρ(1/η)P and

I(γ) =

∫ P

R

ν ρ

(
log ν

logR

)
∂

∂ν

(
e(β0γ

k + · · ·+ βkν
k)

)
dν.
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Integration by parts yields

I(γ) = ρ(1/η)P e(β0γ
k + · · ·+ βkP

k)

−
∫ P

R

e(β0γ
k + · · ·+ βkν

k)
∂

∂ν

(
νρ

(
log ν

logR

))
dν +O(R),

but

∂

∂ν

(
νρ

(
log ν

logR

))
= ρ

(
log ν

logR

)
+

1

logR
ρ′

(
log ν

logR

)
= ρ

(
log ν

logR

)
+O

(
1

logP

)
,

since ρ′(x) ¿ 1. Thus we have

I(γ) = ρ(1/η)P e(β0γ
k + · · ·+ βkP

k)

−
∫ P

R

e(β0γ
k + · · ·+ βkν

k) ρ

(
log ν

logR

)
dν + E2(γ),

(4.22)

where E2(γ) ¿ P/ logP , so it follows from (4.21) that

S3 = Q

∫ P

R

ρ

(
log ν

logR

)
e(β0P

k + · · ·+ βkν
k) dν +O

(
qP 2W

logP

)
. (4.23)

Moreover, an identical argument shows that

S4 = Q

∫ P

R

ρ

(
log γ

logR

)
e(β0γ

k + · · ·+ βkP
k) dγ +O

(
qP 2W

logP

)
. (4.24)

We now deal with S2. A simple calculation shows that

∂2

∂γ∂ν

(
e(β0γ

k + · · ·+ βkν
k)

) ¿ W 2/P 2.

when |βi| ≤ WP−k, and it follows easily from the calculation at the beginning of the

proof that

S2 =

∫ P

R

∫ P

R

∂2

∂γ∂ν

(
e(β0γ

k + · · ·+ βkν
k)

)
q−2S(q, a) ρ

(
log γ

logR

)
ρ

(
log ν

logR

)
γν dγ dν

+ O

(
q2P 2W 2

logP

)
.

After interchanging the order of differentiation and integration, we can write

S2 = q−2S(q, a)

∫ P

R

γ ρ

(
log γ

logR

)
I ′(γ) dγ +O

(
q2P 2W 2

logP

)
,
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and on integrating by parts we get

S2 = q−2S(q, a)

(
P ρ(1/η) I(P )−

∫ P

R

I(γ) ρ

(
log γ

logR

)
dγ

)
+O

(
q2P 2W 2

logP

)
.

Then from (4.22) we finally obtain

S2 = q−2S(q, a)w(β) + E3,

where

E3 = q−2S(q, a)ρ(1/η)2P 2e(β0P
k + · · ·+ βkP

k)

− Q

∫ P

R

ρ

(
log ν

logR

)
e(β0P

k + · · ·+ βkν
k) dν

− Q

∫ P

R

ρ

(
log γ

logR

)
e(β0γ

k + · · ·+ βkP
k) dγ +O

(
q2P 2W 2

logP

)
,

and the lemma follows on recalling (4.18), (4.19), (4.23), and (4.24).

4.5 A Multidimensional Analogue of Waring’s Problem

Here we establish Theorem 4.3 by a fairly straightforward application of the

Hardy-Littlewood method. Let P be a large positive number, and put R = P η, where

η ≤ η0(ε, k). Let F (α) be as in the previous section, and write f(α) = f(α;P,R).

Further, put s = t+ 2u+ v, and let

Rs(n) =

∫

Tk+1

F (α)tf(α)2u+ve(−α · n) dα.

Then we have Ws(n, P ) ≥ Rs(n), so it suffices to obtain a lower bound for Rs(n).

We dissect Tk+1 into major and minor arcs as follows. Recalling the notation of

Theorem 4.1, define

m = m1/2 and M = Tk+1 \m.

We take

t = (k + 1)2, u =

[
7

3
k2 log k +

5

3
k2 log log k + 6k2

]
, and v =

[
∆u

σ1(k)

]
+ 1,

where ∆u is as in Theorem 3.2 and σ1(k) is as in Corollary 4.1.1. A simple calculation

shows that v ¿ k2, and hence

s =
14

3
k2 log k +

10

3
k2 log log k +O(k2).
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On applying the aforementioned theorem and corollary, we find that

∫

m

|F (α)|t|f(α)|2u+vdα ¿ P 2t sup
α∈m

|f(α)|v
∫

Tk+1

|f(α)|2udα

¿ P 2s−k(k+1)−δ (4.25)

for some δ > 0, since ∆u < vσ1(k). Thus it remains to deal with the major arcs.

When (q, a0, . . . , ak) = 1, define

M(q, a) = {α ∈ Tk+1 : |qαi − ai| ≤ P 1/2−kRk (0 ≤ i ≤ k)}, (4.26)

so that

M =
⋃

1≤a0,...,ak≤q≤P 1/2Rk+1

(q,a0,...,ak)=1

M(q, a).

It is a simple exercise to show that the M(q, a) are pairwise disjoint. On recalling the

notation of the previous section, we can record the following major arc approximation

for F (α).

Lemma 4.5.1. Suppose that α ∈ M(q, a), and write βi = αi − ai/q. Then one has

F (α)− q−2S(q, a)v(β) ¿ P 3/2+ε.

Proof. This follows immediately from Lemma 4.4.1, together with (4.26).

The following estimates for S(q, a), v(β), and w(β) are essentially immediate

from the work of Arkhipov, Karatsuba, and Chubarikov [3].

Lemma 4.5.2. Whenever (q, a0, . . . , ak) = 1, we have

S(q, a) ¿ q2−1/k+ε.

Proof. This follows easily from [3], Lemma II.8, on recalling standard divisor function

estimates.

Lemma 4.5.3. One has

v(β) ¿ P 2(1 + P k(|β0|+ · · ·+ |βk|))−1/k

and

w(β) ¿ P 2(1 + P k(|β0|+ · · ·+ |βk|))−1/k.
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Proof. The first estimate follows from [3], Lemma II.2, on making a change of vari-

able, and the second follows in a similar manner (see the comment in the proof of [61],

Lemma 8.6) on noting that ρ(log γ/ logR) ³ 1 and is decreasing for R ≤ γ ≤ P .

We now use the information contained in the above lemmata to prune back to a

very thin set of major arcs on which f(α) can be suitably approximated. Specifically,

let W be a parameter at our disposal, and recall the definition of N(q, a) from the

previous section. Further, let

N =
⋃

1≤a0,...,ak≤q≤W
(q,a0,...,ak)=1

N(q, a).

We have the following result, which is closely analogous to [61], Lemma 9.2.

Lemma 4.5.4. If t is an integer with t ≥ (k + 1)2, then one has
∫

M

|F (α)|t dα¿ P 2t−k(k+1)

and
∫

M\N
|F (α)|t dα¿ W−σP 2t−k(k+1)

for some σ > 0.

Proof. When α ∈ M(q, a), we have by Lemma 4.5.1 that

F (α)t − V (α)t ¿ (
P (3/2+ε)

)t
+ P 3/2+ε|V (α)|t−1, (4.27)

and the proof now follows the argument of Wooley [61], Lemma 9.2, employing

Lemma 4.5.2 together with the estimate

v(β) ¿ P 2

k∏
i=0

(1 + P k|βi|)−1/k(k+1),

which is immediate from Lemma 4.5.3.

On making a trivial estimate for f(α), it follows directly from Lemma 4.5.4 that
∫

M\N
|F (α)|t|f(α)|2u+v dα¿ W−σP 2s−k(k+1), (4.28)

for some σ > 0, so it suffices to deal with the pruned major arcs N. When α ∈
N(q, a), we have by Lemma 4.4.4 that

f(α)2u+v −W (α)2u+v ¿
(
q2P 2W 2

logP

)2u+v

+
q2P 2W 2

logP
|W (α)|2u+v−1,
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where

W (α) = W (α; q, a) = q−2S(q, a)w(β) and βi = αi − ai/q.

On combining this with (4.27) and recalling the definition of N, we find that

∫

N

F (α)tf(α)2u+ve(−α · n) dα =

∫

N

V (α)tW (α)2u+ve(−α · n) dα

+O(P 2s−k(k+1)(logP )−δ)

for some δ > 0, provided that W is chosen to be a suitably small power of logP .

Now let

S(q) =
∑

1≤a0,...,ak≤q
(q,a0,...,ak)=1

(q−2S(q, a))se

(−a0n0 − · · · − aknk
q

)
,

S(n, P ) =
∑
q≤W

S(q),

and

S(n) =
∞∑
q=1

S(q).

Notice that by Lemma 4.5.2 we have S(q) ¿ qk+1−s/k+ε, whence

S(n) ¿ 1 and S(n)−S(n, P ) ¿ P−δ

for some δ > 0, provided that s ≥ (k + 1)2. Further, let

J(n, P ) =

∫

B(P )

v(β)tw(β)2u+ve(−β · n) dβ,

where

B(P ) = [−WP−k,WP−k]k+1,

and put

J(n) =

∫

Rk+1

v(β)tw(β)2u+ve(−β · n) dβ.

Then when s ≥ (k + 1)2, it follows easily from Lemmata 4.5.2 and 4.5.3 that

J(n) ¿ P 2s−k(k+1)
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and

∑

1≤q≤P 1/2+ε

|S(q)||J(n)− J(n, P )| ¿ P 2s−k(k+1)(logP )−δ

for some δ > 0. Combining these observations, we find that

∫

N

F (α)tf(α)2u+ve(−α · n) dα = S(n)J(n) +O(P 2s−k(k+1)(logP )−δ) (4.29)

for some δ > 0, again provided that W is a sufficiently small power of logP . The

singular integral J(n) and the singular series S(n) require further analysis.

Lemma 4.5.5. Suppose that s ≥ (k + 1)2, and fix real numbers µ0, . . . , µk with the

property that the system (4.3) has a non-singular real solution with 0 < ηi, ξi < 1.

Then there exists a positive number δ′ = δ′(s, k,µ) such that, whenever

|nj − P kµj| < δ′P k (0 ≤ j ≤ k)

and P is sufficiently large, one has

J(n) À P 2s−k(k+1).

Proof. After a change of variables, we have

J(n) = P 2s−k(k+1)

∫

Rk+1

∫

B
T (γ,ν) e

(
k∑
j=0

βj(φj(γ,ν)− µj + δj)

)
dγ dν dβ,

where

B = [0, 1]2t × [R/P, 1]4u+2v,

T (γ,ν) =
s∏

i=t+1

ρ

(
logPγi
logR

)
ρ

(
logPνi
logR

)
, (4.30)

φj(γ,ν) = γk−j1 νj1 + · · ·+ γk−js νjs ,

and where |δj| ≤ δ′ for each j. Notice that (η, ξ) is contained in B for P sufficiently

large. Now let

S(t0, . . . , tk) = {(γ,ν) ∈ B : φj(γ,ν)− µj + δj = tj (0 ≤ j ≤ k)},
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so that

J(n) = P 2s−k(k+1)

∫

Rk+1

∫

C

∫

S(t0,...,tk)

T (γ,ν) e(β0t0 + · · ·+ βktk) dS(t) dt dβ,

where C ⊂ Rk+1. Since (η, ξ) ∈ B, we see that C contains a neighborhood of

(δ0, . . . , δk) and hence contains the origin when δ′ is sufficiently small. Thus after

k+1 applications of Fourier’s Integral Theorem (see for example Davenport [18]) we

obtain

J(n) = P 2s−k(k+1)

∫

S(0)

T (γ,ν) dS(0).

Now, for δ′ sufficiently small, the implicit function theorem shows that S(0) is a

space of dimension 2s − k − 1 with positive (2s − k − 1)-dimensional measure, and

the lemma follows on noting that T (γ,ν) À 1 for R/P ≤ γ, ν ≤ 1.

It remains to deal with p-adic solubility considerations and hence to obtain a

lower bound for the singular series S(n).

Lemma 4.5.6. The function S(q) is multiplicative.

Proof. By [3], Lemma II.4, one has S(qr, a) = S(q, rk−1a)S(r, qk−1a) whenever (q, r) =

1, and the result now follows by a standard argument.

For each prime p, write

σ(p) =
∞∑

h=0

S(ph).

Whenever s ≥ (k + 1)2 one finds using Lemmata 4.5.2 and 4.5.6 that

S(n) =
∏
p

σ(p) (4.31)

and that there exists a constant C(k) such that

1

2
≤

∏

p>C(k)

σ(p) ≤ 3

2
. (4.32)

Hence it remains to deal with small primes. LetMn(q) denote the number of solutions

of the system of congruences

xk−j1 yj1 + · · ·+ xk−js yjs ≡ nj (mod q) (0 ≤ j ≤ k). (4.33)
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Lemma 4.5.7. One has

∑

d|q
S(d) = qk+1−2sMn(q).

Proof. By the orthogonality of the additive characters modulo q, one has

Mn(q) =
1

qk+1

q∑
r0=1

· · ·
q∑

rk=1

(S(q, r))s e (−(r · n)/q) .

Now on writing d = q/(q, r0, . . . , rk) and ai = rid/q we obtain

Mn(q) =
1

qk+1

∑

d|q

∑

1≤a0,...,ak≤d
(d,a0,...,ak)=1

(q/d)2s (S(d, a))s e (−(a · n)/d) ,

and the result follows.

We therefore have

σ(p) = lim
h→∞

ph(k+1−2s)Mn(ph), (4.34)

so to show that S(n) À 1 it suffices to obtain a suitable lower bound for Mn(ph).

In order to deduce this from the existence of non-singular p-adic solutions to (4.2),

we need a version of Hensel’s Lemma. In what follows, we write | · |p for the usual

p-adic valuation, normalized so that |p|p = p−1.

Lemma 4.5.8. Let ψ1, . . . , ψr be polynomials in Zp[x1, . . . , xr] with Jacobian ∆(ψ;x),

and suppose that a ∈ Zrp satisfies

|ψj(a)|p < |∆(ψ; a)|2p (1 ≤ j ≤ r).

Then there exists a unique b ∈ Zrp such that

ψj(b) = 0 (1 ≤ j ≤ r) and |bi − ai|p < p−1|∆(ψ; a)|p (1 ≤ i ≤ r).

Proof. This is Proposition 5.20 of Greenberg [23] with R = Zp.

Lemma 4.5.9. Suppose that the system (4.2) has a non-singular p-adic solution.

Then there exists an integer u = u(p) such that whenever h ≥ u one has

Mn(ph) ≥ p(h−u)(2s−k−1).
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Proof. We relabel the variables by writing

(z1, . . . , z2s) = (x1, . . . , xs, y1, . . . , ys),

and let a = (a1, . . . , a2s) be a non-singular p-adic solution of (4.2). Then there exist

indices i0, . . . , ik such that ∆(ψ; ai0 , . . . , aik) 6= 0, so we can find an integer u such

that

|∆(ψ; ai0 , . . . , aik)|2p = p1−u > 0.

Now suppose that h ≥ u. For i /∈ {i0, . . . , ik}, choose integers wi with wi ≡ ai

(mod pu), and write vi = ai for i = i0, . . . , ik and vi = wi otherwise. Then on writing

ψj(z) = ψj(x,y) = xk−j1 yj1 + · · ·+ xk−js yjs − nj

for 0 ≤ j ≤ k, we see that

ψj(v) ≡ ψj(a) ≡ 0 (mod pu),

and hence

|ψj(v)|p ≤ p−u < |∆(ψ; vi0 , . . . , vik)|2p.

Now if h ≥ u then there are p(h−u)(2s−k−1) possible choices for the wi modulo ph.

Moreover, for any fixed choice we may regard ψj as a polynomial in the k + 1 vari-

ables zi0 , . . . , zik after substituting zi = wi on the remaining indices. Thus for each

admissible choice of w we may apply Lemma 4.5.8 to obtain integers bi0 , . . . , bik such

that ψj(b;w) ≡ 0 (mod ph) for each j, whence the lemma follows.

Now by (4.34) and Lemma 4.5.9 we have σ(p) ≥ pu(k+1−2s) for all primes p, so

on combining this with (4.31) and (4.32) we see that S(n) À 1. Hence the proof of

Theorem 4.3 is complete upon recalling Lemma 4.5.5, together with (4.25), (4.28),

and (4.29).

4.6 Lines on Additive Equations

We now establish Theorems 4.4 and 4.5 by proceeding much as in the previous

section. Before embarking on the circle method, however, we need to make some

preliminary observations.

Lemma 4.6.1. Suppose that (x,y) ∈ R2s is a solution of (4.6), and let a, b, c, and

d be arbitrary real numbers. Then (ax + by, cx + dy) is also a solution.
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Proof. For 0 ≤ j ≤ k, write

Aj(x,y) =
s∑
i=1

ci(axi + byi)
k−j(cxi + dyi)

j.

Then by the binomial theorem we have for each j that

Aj(x,y) =
s∑
i=1

ci

k−j∑
r=0

(
k − j

r

)
(axi)

k−j−r(byi)r
j∑
s=0

(
j

s

)
(cxi)

j−s(dyi)s

=

k−j∑
r=0

j∑
s=0

(
k − j

r

)(
j

s

)
ak−j−rbrcj−sds

s∑
i=1

cix
k−(r+s)
i yr+si ,

and the lemma follows.

Lemma 4.6.2. Suppose that the system of equations (4.6) has a non-singular real

solution (η, ξ). Then we can find a non-singular real solution (η′, ξ′) such that η′i
and ξ′i are nonzero for each i.

Proof. For 0 ≤ j ≤ k, let

ψj(x,y) = c1x
k−j
1 yj1 + · · ·+ csx

k−j
s yjs,

and write (z0, . . . , z2s−1) = (x1, . . . , x2s, y1, . . . , y2s). Then by rearranging variables,

we may write the given real solution as (η, ξ) = (γ0, . . . , γ2s−1), where

det

(
∂ψj
∂zi

(γ)

)

0≤i,j≤k
6= 0.

Hence by using the Implicit Function Theorem as in the proof of [61], Lemma 6.2, we

see that there exists a (2s− k− 1)-dimensional neighborhood T0 of (γk+1, . . . , γ2s−1)

and a function φ : T0 → Rk+1 such that γ = (φ(w),w) is a solution of (4.6) whenever

w ∈ T0. Thus by choosing w with |wi − γi| sufficiently small for k + 1 ≤ i ≤ 2s− 1,

we may assume that γ is a non-singular solution whose last 2s − k − 1 coordinates

are nonzero. Moreover, a simple calculation shows that at most two of the remaining

ηi and at most two of the remaining ξi are zero and that either ηi or ξi is nonzero

for every i. In particular, when s ≥ 5, there is some i for which ηiξi 6= 0. Now let

b = min{|ηi/ξi| : ηiξi 6= 0} and c = min{|ξi/ηi| : ηiξi 6= 0},

and take b′ < 1
2
b and c′ < 1

2
c. Then by Lemma 4.6.1 we see that (η′, ξ′) is a solution

of (4.6), where η′ = η + b′ξ and ξ′ = c′η + ξ, and it is easy to check that η′i and ξ′i
are nonzero for each i. The non-singularity follows by continuity on choosing b′ and

c′ sufficiently small.
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By Lemma 4.6.2 we may henceforth suppose that the system (4.6) has a non-

singular real solution (η, ξ) with ηi and ξi nonzero for all i, and by homogeneity we

can re-scale to ensure that 0 < |ηi|, |ξi| < 1
2
. For each i, write

η+
i = ηi +

1
2
|ηi| and η−i = ηi − 1

2
|ηi|

and

ξ+
i = ξi +

1
2
|ξi| and ξ−i = ξi − 1

2
|ξi|.

Now let P be a large positive number, put R = P η with η ≤ η0(ε, k), and let c1, . . . , cs

be nonzero integers. Throughout this section, the implicit constants arising in our

analysis may depend on c1, . . . , cs and on the real solution (η, ξ). We define the

exponential sums

Fi(α) =
∑

η−i P<x≤η+
i P

∑

ξ−i P<y≤ξ+i P
e(ci(α0x

k + α1x
k−1y + · · ·+ αky

k))

and

fi(α) =
∑

η−i P<x≤η+
i P

|x|∈A(P,R)

∑

ξ−i P<y≤ξ+i P
|y|∈A(P,R)

e(ci(α0x
k + α1x

k−1y + · · ·+ αky
k)).

Further, write s = t+ 2u+ v and define

F(α) =
t∏
i=1

Fi(α) and G(α) =
s∏

i=t+1

fi(α).

Finally, let

Rs(P ) =

∫

Tk+1

F(α)G(α) dα.

Then we have Ns(P ) ≥ Rs(P ), so to prove Theorem 4.4 it suffices to obtain a lower

bound for Rs(P ). We dissect Tk+1 into major and minor arcs as follows. Write

c = max |ci| and X = cP 1/2Rk+1, and define

M =
⋃

1≤a0,...,ak≤q≤X
(q,a0,...,ak)=1

M(q, a),

where

M(q, a) = {α ∈ Tk+1 : |qαi − ai| ≤ P 1/2−kRk (0 ≤ i ≤ k)},

and put m = Tk+1 \M. As before, it is easily seen that the M(q, a) are disjoint
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Lemma 4.6.3. Whenever α ∈ m, one has ciα ∈ m1/2. Moreover,

sup
α∈m

|fi(α)| ¿ P 2−σ1(k)+ε,

where σ1(k) is as in Corollary 4.1.1.

Proof. Suppose that α ∈ m and that |ciαjq − aj| ≤ P 1/2−kRk for 0 ≤ j ≤ k, where

q ∈ N, aj ∈ Z, and (q, a0, . . . , ak) = 1. Then one has

∣∣∣∣αj −
aj
ciq

∣∣∣∣ ≤
P 1/2−kRk

|ci|q (0 ≤ j ≤ k),

so on writing

d = (ci, a0, . . . , ak), a′j =
|ci|aj
cid

, and q′ =
|ci|q
d
,

we see that
∣∣∣∣αj −

a′j
q′

∣∣∣∣ ≤
P 1/2−kRk

q′d
(0 ≤ j ≤ k),

so we must have cq ≥ q′ > cP 1/2Rk+1 and hence q > P 1/2Rk+1. Thus ciα ∈ m1/2.

The second assertion now follows on recalling the remark at the end of Section 4.2

and noting that we may replace αj by −αj as needed so that our sums are over

positive integers.

As in the previous section, we take

t = (k + 1)2, u =

[
7

3
k2 log k +

5

3
k2 log log k + 6k2

]
, and v =

[
∆u

σ1(k)

]
+ 1,

where ∆u is as in Theorem 3.2 and σ1(k) is as in Corollary 4.1.1. Then by Hölder’s

inequality and a change of variables we obtain

∫

m

|F(α)G(α)| dα ¿ P 2t+v(2−σ1+ε)

t+2u∏
i=t+1

(∫

Tk+1

|fi(α)|2udα
)1/2u

¿ P 2s−k(k+1)−δ (4.35)

for some δ > 0, since ∆u < vσ1(k). Thus it remains to deal with the major arcs.

Recalling the notation of the previous section, we define Si(q, a) = S(q, cia),

vi(β) =

∫ η+
i P

η−i P

∫ ξ+i P

ξ−i P
e(ci(β0γ

k + β1γ
k−1ν + · · ·+ βkν

k)) dγ dν,
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and

Vi(α) = q−2Si(q, a)vi(α− a/q) (α ∈ M(q, a)).

Further, we define the pruned major arcs N exactly as in the previous section, again

with W a suitable power of logP , and write

wi(β) =

∫ η+
i P

η−i P

∫ ξ+i P

ξ−i P
ρ

(
log γ

logR

)
ρ

(
log ν

logR

)
e(ci(β0γ

k + β1γ
k−1ν + · · ·+ βkν

k)) dγ dν,

and

Wi(α) = q−2Si(q, a)wi(α− a/q) (α ∈ N(q, a)).

The next several lemmas are simple adaptations of the corresponding results in the

previous section.

Lemma 4.6.4. When α ∈ M(q, a), one has

Fi(α)− Vi(α) ¿ P 3/2+ε,

and when α ∈ N(q, a), one has

fi(α)−Wi(α) ¿ q2P 2W 2

logP
.

Proof. These estimates follow by making trivial modifications in the arguments of

Lemmata 4.4.1 and 4.4.4, respectively.

Lemma 4.6.5. Whenever (q, a0, . . . , ak) = 1, we have

Si(q, a) ¿ q2−1/k+ε.

Proof. Put di = (q, ci). Then by Lemma 4.5.2 we have

Si(q, a) = d2
iS(q/di, cia/di) ¿ d

1/k
i q2−1/k+ε ¿c q

2−1/k+ε,

as required.

Lemma 4.6.6. One has

vi(β) ¿ P 2(1 + P k(|β0|+ · · ·+ |βk|))−1/k

and

wi(β) ¿ P 2(1 + P k(|β0|+ · · ·+ |βk|))−1/k.
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Proof. The argument is identical to the proof of Lemma 4.5.3.

Lemma 4.6.7. If t is an integer with t ≥ (k + 1)2, then one has
∫

M

|Fi(α)|t dα¿ P 2t−k(k+1) (4.36)

and ∫

M\N
|Fi(α)|t dα¿ W−σP 2t−k(k+1) (4.37)

for some σ > 0.

Proof. The result follows as in Lemma 4.5.4 on using Lemmata 4.6.4, 4.6.5, and 4.6.6

in place of the corresponding results in the previous section.

Once again, Lemma 4.6.7, together with (4.35), allows us to focus attention on

the pruned major arcs N. Let

S(q) =
∑

1≤a0,...,ak≤q
(q,a0,...,ak)=1

q−2s

s∏
i=1

Si(q, a),

S(P ) =
∑
q≤X

S(q), and S =
∞∑
q=1

S(q).

Again we have S(q) ¿ qk+1−s/k+ε, and hence S ¿ 1 and S−S(P ) ¿ P−δ for some

δ > 0, provided that s ≥ (k + 1)2. Further, let

J(P ) =

∫

B(P )

t∏
i=1

vi(β)
s∏

i=t+1

wi(β) dβ,

where B(P ) = [−WP−k,WP−k]k+1, and put

J =

∫

Rk+1

t∏
i=1

vi(β)
s∏

i=t+1

wi(β) dβ.

Then when s ≥ (k + 1)2, we have by Lemmata 4.6.5 and 4.6.6 that J ¿ P 2s−k(k+1)

and
∑

1≤q≤cP 1/2+ε

|S(q)||J − J(P )| ¿ P 2s−k(k+1)(logP )−δ.

for some δ > 0. Thus, by employing standard arguments based on Lemmata 4.6.4,

4.6.5, and 4.6.6, we obtain∫

N

F(α)G(α) dα = SJ +O(P 2s−k(k+1)(logP )−δ) (4.38)

for some δ > 0.
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Lemma 4.6.8. Whenever s ≥ (k + 1)2 and P is sufficiently large, one has

J À P 2s−k(k+1).

Proof. By a change of variables, we find that

J = P 2s−k(k+1)

∫

Rk+1

∫

B
T (γ,ν) e

(
k∑
j=0

βjφj(γ,ν)

)
dγ dν dβ,

where

B = [η−1 , η
+
1 ]× · · · × [η−s , η

+
s ]× [ξ−1 , ξ

+
1 ]× · · · × [ξ−s , ξ

+
s ],

φj(γ,ν) = c1γ
k−j
1 νj1 + · · ·+ csγ

k−j
s νjs ,

and where T (γ,ν) is as in (4.30). Now let

S(t0, . . . , tk) = {(γ,ν) ∈ B : φj(γ,ν) = tj (0 ≤ j ≤ k)},

so that

J = P 2s−k(k+1)

∫

Rk+1

∫

C

∫

S(t0,...,tk)

T (γ,ν) e(β0t0 + · · ·+ βktk) dS(t) dt dβ,

where C ⊂ Rk+1. Since (η, ξ) ∈ B, we see that C contains a neighborhood of the

origin, whence after k + 1 applications of Fourier’s Integral Theorem we obtain

J = P 2s−k(k+1)

∫

S(0)

T (γ,ν) dS(0),

and the result follows as in the proof of Lemma 4.5.5.

Lemma 4.6.9. The function S(q) is multiplicative.

Proof. This is identical to the proof of Lemma 4.5.6.

Whenever s ≥ (k + 1)2 one finds using Lemma 4.6.9 that

S =
∏
p

σ(p), where σ(p) =
∞∑

h=0

S(ph),

and that there exists a constant C(k) such that

1

2
≤

∏

p>C(k)

σ(p) ≤ 3

2
.

Let M(q) denote the number of solutions of the system of congruences

c1x
k−j
1 yj1 + · · ·+ csx

k−j
s yjs ≡ 0 (mod q) (0 ≤ j ≤ k).
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Lemma 4.6.10. One has

∑

d|q
S(d) = qk+1−2sM(q).

Proof. This is identical to the proof of Lemma 4.5.7.

It follows that

σ(p) = lim
h→∞

ph(k+1−2s)M(ph),

so again to show that S À 1 it suffices to show that

M(ph) ≥ p(h−u)(2s−k−1)

for p ≤ C(k), and this follows exactly as in the argument of Lemma 4.5.9. Hence

the proof of Theorem 4.4 is complete on assembling (4.35), (4.37), and (4.38) and

recalling Lemma 4.6.8.

In order to deduce Theorem 4.5, we need some additional observations.

Lemma 4.6.11. Let (x,y), (x′,y′) ∈ Z2s be such that (x1, . . . , xs) = 1. Then xt+y

and x′t+ y′ parameterize the same line if and only if

x′ = qx and y′ = y + rx

for some integers q and r with q 6= 0.

Proof. First suppose that x′ = qx and y′ = y + rx for some integers q and r with

q 6= 0. Then one has

xt+ y = x′
(
t− r

q

)
+ y′ and x′t+ y′ = x(qt+ r) + y,

so the two lines are identical. Conversely, suppose that the two lines are the same.

By taking t = 0 on the line x′t+y′, we see that there exists t1 such that y′ = xt1 +y,

and then by taking t = 1 we find that there exists t2 such that x′ +y′ = xt2 +y and

hence x′ = (t2 − t1)x. Moreover, the condition (x1, . . . , xs) = 1 implies that t1 and

t2 are distinct integers, and this completes the proof.

Now let Rs(P, d) denote the number of solutions of (4.6) counted by Rs(P ) for

which (x1, . . . , xs) = d. The following estimate will be useful when d is large.

Lemma 4.6.12. One has

Rs(P, d) ¿ P 2s−k(k+1)

d2
.
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Proof. Consider a solution (x,y) counted by Rs(P, d). Since xs−1 and xs each have

d as a divisor, the number of possible choices for xs−1, ys−1, xs, and ys is at most

P 2(P/d)2. Given such a choice, the number of possibilities for the remaining variables

is

∫

Tk+1

(
t∏
i=1

Fi(α)
s−2∏
i=t+1

fi(α)

)
e(α ·m) dα,

where mj = cs−1x
k−j
s−1y

j
s−1 + csx

k−j
s yjs, and thus

Rs(P, d) ¿ P 4

d2

∫

Tk+1

t∏
i=1

|Fi(α)|
s−2∏
i=t+1

|fi(α)| dα.

The lemma now follows by dissecting Tk+1 into major and minor arcs and using

(4.35) and (4.36).

We can now complete the proof of Theorem 4.5.

Proof of Theorem 4.5. Define an equivalence relation on the set of solutions to (4.6)

by writing (x,y) ∼ (x′,y′) whenever xt + y and x′t + y′ define the same line. We

need a lower bound for the number of equivalence classes, so by Lemma 4.6.11 it

suffices to estimate the number of solutions of (4.6) for which

(x1, . . . , xs) = 1 and 1 ≤ y1 ≤ |x1|.

Let Ns(P,Q, d) be the number of solutions of (4.6) with x ∈ BP , y ∈ CQ, and

(x1, . . . , xs) = d, where

B = [η−1 , η
+
1 ]× · · · × [η−s , η

+
s ] and C = [ξ−1 , ξ

+
1 ]× · · · × [ξ−s , ξ

+
s ].

Then the solutions counted by Rs(P, d) are in bijective correspondence with a subset

of those counted by Ns(P/d, P, 1). Moreover, Lemma 4.6.11 shows that two solutions

(x,y) and (x′,y′) counted by Ns(P/d, P, 1) are equivalent if and only if x = x′ and

y − y′ = rx for some integer r. Then since

|x1| ≥ P

τd
and |y1 − y′1| ≤ P,

where τ = 2/|η1|, we see that each equivalence class contains at most τd members

counted by Ns(P/d, P, 1). Thus we see that

Rs(P, d) ≤ Ns(P/d, P, 1) ≤ τdLs(P ),
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and hence for any D we have that

∑

d≤D
Rs(P, d) ≤ τD2Ls(P ).

Thus by Lemma 4.6.12 there exist positive constants γ1 and γ2 such that

γ1P
2s−k(k+1) ≤ Rs(P ) ≤ τD2Ls(P ) +

∑

d>D

(
γ2P

2s−k(k+1)

d2

)

for P sufficiently large, and hence we have

Ls(P ) ≥ P 2s−k(k+1)

τD2

(
γ1 − γ2

D

)
.

The theorem now follows on taking D = 2γ2/γ1.



CHAPTER V

The Density of Rational Lines on Cubic Hypersurfaces

5.1 Overview

In this chapter, we refine the analysis of Chapters 3 and 4 in the case k = 3

by providing a more detailed consideration of the lower moments of the relevant

exponential sums. In particular, we are able to establish diagonal behavior for the

mean value

S(P ) =

∫

T4

|F (α)|6dα,

where

F (α) =
∑

1≤x,y≤P
e(α0x

3 + α1x
2y + α2xy

2 + α3y
3),

and this leads, via the iterative method, to improved estimates for higher moments.

While the assertion of diagonal behavior amounts to the estimate S(P ) ¿ P 6,

we can actually establish a more precise result. Notice that, by orthogonality, S(P )

is the number of solutions of the system of equations

x3
1 + x3

2 + x3
3 = x3

4 + x3
5 + x3

6

x2
1y1 + x2

2y2 + x2
3y3 = x2

4y4 + x2
5y5 + x2

6y6

x1y
2
1 + x2y

2
2 + x3y

2
3 = x4y

2
4 + x5y

2
5 + x6y

2
6

y3
1 + y3

2 + y3
3 = y3

4 + y3
5 + y3

6

(5.1)

with xi, yi ∈ [1, P ]∩Z. Further, write T (P ) for the number of “trivial” solutions, in

which (x4, x5, x6) = σ(x1, x2, x3) and (y4, y5, y6) = σ(y1, y2, y3) for some permutation

σ ∈ S3. Then clearly one has

T (P ) = 6P 6 +O(P 4),

and it transpires that almost all the solutions counted by S(P ) are of this diagonal

type. The following “paucity theorem” provides an upper bound for the number of

non-diagonal solutions.

104
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Theorem 5.1. For every ε > 0, one has

S(P )− T (P ) ¿ε P
6− 11

192
+ε,

and hence in particular S(P ) ∼ 6P 6.

Note that the second assertion of the theorem is immediate from the first in

view of the above discussion. Section 5.2 is devoted to the proof of Theorem 5.1. In

Section 5.3, we use this result, along with the techniques of its proof and the iterative

method of Chapter 3, to obtain non-trivial estimates for higher moments. In Section

5.4, we establish Weyl estimates more suitable for small k than those of Theorem

4.1. Finally, in Section 5.5, we apply the circle method as in Sections 4.5 and 4.6 to

obtain

Theorem 5.2. Suppose that s ≥ 58 and let Ls(P ) denote the number of distinct

lines ` on the hypersurface

c1z
3
1 + · · ·+ csz

3
s = 0

with h(`) ≤ P . Then Ls(P ) À P 2s−12 for P sufficiently large.

For comparison, we note that Wooley [68] has demonstrated the existence of

rational lines on arbitrary cubic hypersurfaces in at least 37 variables, whereas we

require 58 variables in Theorem 5.2. In the additive situation we are considering,

the existence of lines follows immediately from the theory of a single additive cubic

equation (see R. Baker [6]), provided that s ≥ 14. Hence the significance of our

result lies in the density estimate.

The existence of these “trivial” lines when s ≥ 14 is in fact key to our analysis,

for they give rise to non-singular integer solutions of the system

c1x
3−j
1 yj1 + · · ·+ csx

3−j
s yjs = 0 (0 ≤ j ≤ 3) (5.2)

and hence allow us to avoid imposing explicit local solubility hypotheses in Theorem

5.2. Unfortunately, the solutions arising in this way are singular for larger values of

k and hence are of no use in the analysis leading to Theorem 8.

Local conditions also may present an obstacle to demonstrating the expected

density of higher-dimensional linear spaces on a cubic hypersurface in a reasonable

number of variables. While the results of Schmidt [51], [52] could be applied to the

analogues of (5.2), the number of variables required may in general be quite large.

The material of this chapter is contained in the author’s preliminary manuscript

[45].
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5.2 The Paucity Problem

Our goal in this section is to establish Theorem 5.1. Before proceeding with the

proof, we record for reference some of the key estimates we will use. The first of

these is implicit in the work of Hooley [29] on sums of four cubes.

Lemma 5.2.1. Let n be a non-zero integer, and let R(P ) denote the number of

integral solutions of the equation

x3
1 + x3

2 + x3
3 + x3

4 = n

with |xi| ≤ P . Then one has R(P ) ¿ P 11/6+ε.

Proof. Clearly, we may focus attention on solutions in which at least two of the xi

are non-zero. For any such solution x counted by R(P ), we can find i and j such

that xi and xj have the same parity and are not both zero. Now if xi+xj = 0 and xk

and xl are the remaining two variables, then since n 6= 0 we must have xk + xl 6= 0,

and if xk and xl do not have the same parity, then one of them has the same parity

as xi and xj. Thus, after relabeling variables, we may assume that x1 ≡ x2 (mod 2)

and x1 6= −x2. This allows us to write x1 = r + s and x2 = r − s, where r and s are

integers with r 6= 0, and hence to consider solutions of the equation

2r(r2 + 3s2) = n− z3 − w3.

The argument is now identical to that of Hooley [29], the condition r 6= 0 being

essential to the consideration of congruences modulo divisors of r. The only change

is that the upper bound of n1/3 for the moduli of r, z, and w is replaced throughout

by P , and the sieving parameter ξ is now chosen to be P 1/6.

We also make use of some recent work of Heath-Brown [27] on sums of two cubes.

Lemma 5.2.2. Let U(P ) denote the number of integral solutions of the equation

x3
1 + x3

2 = x3
3 + x3

4

with |xi| ≤ P and x1 + x2 6= x3 + x4. Then one has U(P ) ¿ P 4/3+ε.

Proof. This is a special case of Heath-Brown [27], Theorem 1.

We remark that Hooley [30], using the Riemann hypothesis for varieties over

finite fields, obtained a result of the above shape with the exponent 4/3 replaced by

5/3. Wooley [66] later devised an elementary proof, and his ideas play a key role in

Heath-Brown’s argument.

Finally, we recall a result on binary quadratic forms dating back to Estermann

[22].
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Lemma 5.2.3. Let a, b, and c be non-zero integers, and let Q(P ) denote the number

of integral solutions of the equation

ax2 + by2 = c

with 1 ≤ x, y ≤ P . Then one has Q(P ) ¿ |abcP |ε.

Proof. See (for example) Vaughan and Wooley [56], Lemma 3.5.

We are now ready to embark on the proof of Theorem 5.1. On writing h = x1−x4

and g = y1 − y4 and relabeling variables in (5.1), we see that S(P ) is the number of

solutions of the system of equations

h(3x(x+ h) + h2) = u3
1 + u3

2 − u3
3 − u3

4

(2hx+ h2)y + g(x+ h)2 = u2
1v1 + u2

2v2 − u2
3v3 − u2

4v4

(2gy + g2)x+ h(y + g)2 = u1v
2
1 + u2v

2
2 − u3v

2
3 − u4v

2
4

g(3y(y + g) + g2) = v3
1 + v3

2 − v3
3 − v3

4

(5.3)

with

1 ≤ x, y, ui, vi ≤ P and |h|, |g| < P. (5.4)

We shall estimate N(P ) = S(P )− T (P ) by dividing into several cases.

(i) Let N1 denote the number of solutions counted by N(P ) for which h = g = 0,

and consider a solution x, y,u,v counted by N1. Then one has

(u1, u2, v1, v2) 6= (u3, u4, v3, v4) and (u1, u2, v1, v2) 6= (u4, u3, v4, v3),

since otherwise the solution would be counted by T (P ). If we have (u1, u2) = (u3, u4)

and (v1, v2) = (v4, v3), then the second equation in (5.3) implies that either u1 = u2

or v1 = v2, whence the number of choices for u and v is O(P 3). Trivially, there are

O(P 2) choices for x and y, so the total number of solutions is O(P 5), and the same

analysis applies if (u1, u2) = (u4, u3) and (v1, v2) = (v3, v4). Otherwise, since ui and

vi are positive, it follows that either u1 +u2 6= u3 +u4 or v1 +v2 6= v3 +v4, so Lemma

5.2.2 may be applied to estimate the number of choices for u or v (or possibly both).

On combining this with Hua’s Lemma, one sees that N1 ¿ P 16/3+ε.

(ii) Let N2 denote the number of solutions counted by N(P ) for which exactly one

of h or g is zero. Suppose first that h = 0 and g 6= 0. Then by Hua’s Lemma one has

O(P 2+ε) choices for u, and by a trivial estimate there are O(P 2) choices for g and y.

Now for fixed non-zero g and y, we may apply Lemma 5.2.1 to deduce that there are
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O(P 11/6+ε) choices of v satisfying the fourth equation of (5.3). Finally, since g 6= 0,

the second equation is a non-trivial polynomial in x and hence determines x to O(1).

By following a symmetric argument in the case where g = 0 and h 6= 0, we find that

N2 ¿ P 35/6+ε.

(iii) Write d = (h, g), let β be a parameter at our disposal, and let N3 denote the

number of solutions counted by N(P ) for which hg 6= 0 and |hg/d| ≤ P 1+β. In this

case, there are O(P 1+β) choices for the integer hg/d, of which d, h/d and g/d are all

divisors. Thus by a standard estimate for the divisor function, we see that there are

O(P 1+β+ε) choices for h and g. Trivially, there are O(P ) choices for x, and then by

Lemma 5.2.1 we have O(P 11/6+ε) choices for u. Now by taking a linear combination

of the equations (5.3), with respective weights g3,−3g2h, 3gh2, and −h3, we find that

any solution x, y, g, h,u,v satisfies

(gu1 − hv1)
3 + (gu2 − hv2)

3 = (gu3 − hv3)
3 + (gu4 − hv4)

3, (5.5)

and by applying Hua [32], Theorem 4, to the underlying mean value we find that,

for fixed h, g, and u, there are O(P 2+ε) choices for v. Finally, y is determined to

O(1) by a polynomial, whence N3 ¿ P 35/6+β+ε.

(iv) For i = 1, . . . , 4, write Xi = gui − hvi, and let N4 denote the number of

solutions counted by N(P ) for which X1 +X2 = X3 +X4 and hg 6= 0. The former

condition, when combined with (5.5), implies that either X1 = X3, X2 = X3, or

X1 = −X2. We may suppose that X1 = X3 and X2 = X4, so that

g(u1 − u3) = h(v1 − v3) and g(u2 − u4) = h(v2 − v4), (5.6)

the argument in the remaining two cases being identical. For convenience we write

A = u1 − u3, B = u2 − u4, C = v1 − v3, and D = v2 − v4. (5.7)

Since h and g are non-zero, the first equation in (5.3) implies that either A or B is

non-zero, and the fourth equation implies that either C or D is non-zero. Suppose

that C 6= 0 and D = 0. We first choose u2 = u4 and v2 = v4 in O(P 2) ways, and

then by (5.3) we have

(x+ h)3 + u3
3 = x3 + u3

1 and (y + g)3 + v3
3 = y3 + v3

1.

Since solutions with x = u3 and y = v3 are counted by T (P ), we may apply Lemma

5.2.2, together with Hua’s Lemma, to deduce that there are O(P 10/3+ε) choices for

x, y, h, g, u1, u3, v1, and v3. The case where C = 0 and D 6= 0 is identical.
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It remains to consider solutions for which both C and D (and hence A and B)

are non-zero. We first observe that, after substituting from (5.7) and completing the

square, the first and fourth equations in (5.3) become

h(3x(x+ h) + h2)− 1
4
(A3 +B3) = 3A(u3 + 1

2
A)2 + 3B(u4 + 1

2
B)2 (5.8)

and

g(3y(y + g) + g2)− 1
4
(C3 +D3) = 3C(v3 + 1

2
C)2 + 3D(v4 + 1

2
D)2, (5.9)

respectively. In view of (5.8) and (5.9), we further classify solutions according to

whether

h(3x(x+ h) + h2)− 1
4
(A3 +B3) = 0 (5.10)

or

g(3y(y + g) + g2)− 1
4
(C3 +D3) = 0. (5.11)

If both (5.10) and (5.11) hold, then we start by selecting values for A and B from

among O(P 2) possibilities, and (5.10) then determines h and x to O(P ε). Trivially,

there are O(P ) choices for g, and (5.6) then determines C and D to O(P ε), whence y

is determined to O(1) by (5.11). Finally, u3 and v3 may be assigned in O(P 2) ways,

and this choice determines u and v in light of (5.7), (5.8), and (5.9). Hence there

are O(P 5+ε) solutions of this type.

If (5.10) holds but (5.11) does not, then we assign A, B, and u3 in O(P 3) ways,

so that u is determined by (5.8). Then h and x are again determined up to O(P ε),

and there are O(P 2) choices for y and g. This latter choice determines C and D

to O(P ε) by (5.6), and we may apply Lemma 5.2.3 to (5.9), regarded as a binary

quadratic equation in the variables v3 and v4. The case where (5.11) holds but (5.10)

does not is exactly symmetric, so we see that there are O(P 5+ε) solutions of these

two types.

Finally, if neither (5.10) nor (5.11) holds, then we fix h, C, and D in O(P 3)

ways, from which g, A, and B are determined to O(P ε) by (5.6). There are O(P 2)

possibilities for x and y, and Lemma 5.2.3 then shows that u and v are determined

up to O(P ε) by (5.8) and (5.9). Thus we conclude that N4 ¿ P 16/3+ε.

(v) Now let γ be a parameter at our disposal, write M = P 1+β, and let N5 be

the number of solutions counted by N(P ) in which

hg 6= 0, |hg/d| > M, X1 +X2 6= X3 +X4, (5.12)
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and d = (h, g) ≤ P γ. By symmetry, we may assume that |h| ≥ |g|, the argument

in the other case being identical. Write h′ = h/d and g′ = g/d, so that (h′, g′) = 1.

For any given d and |h′| ≥ |g′|, we divide both sides of (5.5) by d3 and apply Lemma

5.2.2 to deduce that there are then O((|h′|P )4/3+ε) possible choices for X1, . . . , X4.

With Xi now fixed and (h′, g′) = 1, any two choices for ui must be congruent modulo

h′, so one has O(P/|h′|) possibilities for each of u1, . . . , u4, and this determines v.

Since x and y are then determined by polynomials, we find that

N5 ¿
∑

d≤P γ

∑

1≤g≤P/d

∑

h≥max(g,M/gd)

(hP )4/3+ε(P/h)4

¿ P 16/3+ε
∑

d≤P γ


 ∑

g≤(M/d)1/2

∑

h≥M/gd

h−8/3 +
∑

g>(M/d)1/2

∑

h≥g
h−8/3




¿ P 16/3+ε
∑

d≤P γ


 ∑

g≤(M/d)1/2

(M/gd)−5/3 +
∑

g>(M/d)1/2

g−5/3




¿ P 16/3+ε
∑

d≤P γ

(
(M/d)−5/3(M/d)4/3 + (M/d)−1/3

)

¿ P 16/3+εM−1/3
∑

d≤P γ

d1/3 ¿ P
16
3
− 1

3
(1+β)+ 4

3
γ+ε.

(vi) Finally, let N6 be the number of solutions counted by N(P ) with (5.12) and

d > P γ. In this case we use an affine slicing approach almost exactly as in Wooley

[66]. As before, we exploit the symmetry of our system to focus attention on solutions

with |h| ≥ |g|. On recalling (5.5), we have that

X3
1 +X3

2 = X3
3 +X3

4 and X1 +X2 = X3 +X4 +H (5.13)

for some integer H. For convenience, we write X ′
i = Xi/d and H ′ = H/d. For fixed

h, g, and u, one has

H ′ = g′(u1 + u2 − u3 − u4)− h′(v1 + v2 − v3 − v4),

which determines the residue class of H ′ modulo h′. Furthermore, since |h′| ≥ |g′|,
one has |H ′| ≤ 4|h′|P . Now from the equations (5.13), we find that

(X1 +X2 −X3)
3 − (X3

1 +X3
2 −X3

3 ) = (X4 +H)3 −X3
4 ,

which simplifies to

3(X1 −X3)(X2 −X3)(X1 +X2) = H(3X2
4 + 3X4H +H2). (5.14)
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By (5.12), we have H 6= 0, so after dividing both sides of (5.14) by d3 we see that

at least one of X ′
1 −X ′

3, X
′
2 −X ′

3, or X ′
1 +X ′

2 has a divisor eÀ |H ′|1/3 in common

with H ′. We suppose that

e = (H ′, X ′
1 −X ′

3) À |H ′|1/3

and write X1 − X3 = deY , the analysis in the other two cases being identical.

Hence, for fixed d and e, there are O(|h′|P/e) choices for Y . Now, on substituting

X4 = X1 +X2 −X3 −H and X3 = X1 − deY in (5.14), we obtain

3deY X2
1 − 3(deY −H)X2

2 − 3(deY )2X1 − 3(deY −H)2X2 = (deY −H)3 − (deY )3,

and after completing the square this becomes

3deY (X1 − 1
2
deY )2 − 3(deY −H)(X2 + 1

2
(deY −H))2 = 1

4
(deY −H)3 − 1

4
(deY )3.

Since H 6= 0, the quantities deY , deY −H, and (deY −H)3−(deY )3 are all non-zero,

so Lemma 5.2.3 may be applied. Thus, for fixed d, e, H, and Y , the values of X1

and X2 are determined up to O(P ε), and this fixes X3 and X4. For fixed g, h, and

u, this determines v, and y is then determined to O(1) by a polynomial. Thus we

have

N6 ¿
∑

d>Pγ

∑

h′,g′≤P/d

∑
x,u

∑

H′, e

h′P 1+ε

e
.

We now divide the sum over H ′ into dyadic intervals of the form 4h′P/2r+1 < |H ′| ≤
4h′P/2r. For fixed H ′, a divisor estimate shows that there are O(P ε) possible choices

for e, and for fixed h and x Lemma 5.2.1 shows that there are O(P 11/6+ε) choices for

u. Thus on summing trivially over g′ and x we find that

N6 ¿
∞∑
r=0

∑

d>P γ

P

d

∑

h′≤P/d
P · P 11/6+ε · P

1+ε

2r

(
h′P
2r+1

)−1/3

h′P 1+ε,

on recalling that eÀ |H ′|1/3 and that the choice of h, g, and u fixes the residue class

of H ′ modulo h′. Finally, we obtain

N6 ¿ P 11/2+ε

∞∑
r=0

2−2r/3
∑

d>P γ

d−1
∑

h′≤P/d
(h′)2/3

¿ P 43/6+ε
∑

d>Pγ

d−8/3 ¿ P 43/6− 5
3
γ+ε.
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We now choose the value of γ so thatN5 andN6 have the same order of magnitude.

Thus we set

16

3
− 1

3
(1 + β) +

4

3
γ =

43

6
− 5

3
γ,

which yields γ = 11
18

+ 1
9
(1 + β). In view of our bound for N3, we choose β by setting

35

6
+ β =

43

6
− 5

3

(
11

18
+

1

9
(1 + β)

)
,

which gives β = 7
64

and γ = 47
64

. The result of Theorem 5.1 now follows immediately

on assembling the bounds for N1, . . . , N6 and noting that 1
6
− 7

64
= 11

192
.

5.3 Further Mean Value Estimates

Here we use the result of the previous section to obtain estimates for higher

moments, which will be required in our application of the Hardy-Littlewood method

in Section 5.5. As usual, the sharpest estimates are obtained by considering solutions

in which some of the variables have no large prime factors. Thus when P and R are

positive integers, write

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R}

for the set of R-smooth numbers up to P , and define the exponential sum

f(α;P,R) =
∑

x,y∈A(P,R)

e(α0x
3 + α1x

2y + α2xy
2 + α3y

3).

It will also be useful to have some variables in a complete interval, so we define

F (α;P ) =
∑

1≤x,y≤P
e(α0x

3 + α1x
2y + α2xy

2 + α3y
3).

When there is no danger of confusion, we shall write f(α) = f(α;P,R) and F (α) =

F (α;P ). Further, let

Ss,r(P,R) =

∫

T4

|F (α)|2r|f(α)|2s dα.

We adopt the convention that any statement involving ε and R means that for each

ε > 0 there exists η = η(ε) > 0 such that the assertion holds whenever R ≤ P η. In

this section, our implicit constants will depend at most on ε unless otherwise noted.

We start with an estimate for S3,2(P,R).
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Lemma 5.3.1. One has

S3,2(P,R) ¿ P 12+ 1
20

+ε.

Proof. Define the difference operator ∆∗
1 by

∆∗
1(f(x, y);h, g) = f(x+ h, y + g)− f(x, y).

Then by Cauchy’s inequality, one has

S3,2(P,R) =

∫

T4

∣∣∣∣∣
∑

x,h

∑
y,g

e

(
3∑
i=0

αi∆
∗
1(x

3−iyi;h, g)

)∣∣∣∣∣

2

|f(α)|6 dα

≤ P 2
∑

h,g

∫

T4

∣∣∣∣∣
∑
x,y

e

(
3∑
i=0

αi∆
∗
1(x

3−iyi;h, g)

)∣∣∣∣∣

2

|f(α)|6 dα,

and hence

S3,2(P,R) ≤ P 2U3,2(P,R), (5.15)

where Us,2(P,R) denotes the number of solutions of the system

3h(x2
1 − x2

2 + h(x1 − x2)) =
s∑
i=1

(u3
i − u3

s+i)

h(2(x1y1 − x2y2) + h(y1 − y2)) + g(x2
1 − x2

2 + 2h(x1 − x2)) =
s∑
i=1

(u2
i vi − u2

s+ivs+i)

g(2(x1y1 − x2y2) + g(x1 − x2)) + h(y2
1 − y2

2 + 2g(y1 − y2)) =
s∑
i=1

(uiv
2
i − us+iv

2
s+i)

3g(y2
1 − y2

2 + g(y1 − y2)) =
s∑
i=1

(v3
i − v3

s+i)

with

1 ≤ xi, yi ≤ P, ui, vi ∈ A(P,R), and |h|, |g| < P. (5.16)

The argument is now very similar to the proof of Theorem 5.1 given in the previous

section.

(i) Let U1 denote the number of solutions counted by U3,2(P,R) for which h =

g = 0 or x1 − x2 = y1 − y2 = 0. In either case, there are O(P 4) choices for h, g, x,

and y, and one sees that the number of choices for u and v is then
∫

T4

|f(α)|6 dα¿ P 6,
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on recalling Theorem 5.1 and considering the underlying Diophantine equations.

Thus we have U1 ¿ P 10.

(ii) Let U2 denote the number of solutions counted by U3,2(P,R) for which exactly

one of h or g is zero. First suppose that h = 0, g 6= 0, and y1 6= y2. Then by Vaughan

[53], Theorem 4.4, one has O(P 13/4+ε) choices for u, and by a trivial estimate there

are O(P 3) choices for g and y. Now for fixed g and y, [53] again shows that there

are O(P 13/4+ε) choices for v. Finally, since g(y1− y2) 6= 0, x1 and x2 are determined

to O(P ε) by the second and third equations above. If instead y1 = y2, then one has

O(P 2) choices for g and y, but O(P 1+ε) choices for x, so we get the same estimate

in either case. The situation when g = 0 and h 6= 0 is identical. Thus we see that

U2 ¿ P 19/2+ε.

(iii) Let U3 denote the number of solutions counted by U3,2(P,R) for which hg 6= 0

and exactly one of x1 − x2 or y1 − y2 is zero. If x1 6= x2, and y1 = y2, then there

are O(P 13/4+ε) choices for v and O(P 2) choices for h and g. Now, as in the previous

section, we find that

(gu1 − hv1)
3 + (gu2 − hv2)

3 + (gu3 − hv3)
3

= (gu4 − hv4)
3 + (gu5 − hv5)

3 + (gu6 − hv6)
3

(5.17)

so by Hua [32], Theorem 4, there are O(P 7/2+ε) choices for u, and then x and y are

determined to O(P 1+ε). The other case is identical, and thus U3 ¿ P 39/4+ε.

(iv) Write d = (h, g), let β be a parameter at our disposal, and let U4 denote the

number of solutions counted by U3,2(P,R) for which

0 < |hg/d| ≤ P 5/4+β, x1 6= x2, and y1 6= y2.

In this case, there are O(P 5/4+β) choices for the integer hg/d, whence by a divisor

estimate there are O(P 5/4+β+ε) choices for h and g. Trivially, there are O(P 2) choices

for x, and then we have O(P 13/4+ε) choices for u. Thus by applying Hua [32] to (5.17),

we see that there are O(P 7/2+ε) choices for v, and then y is determined to O(P ε).

Hence U4 ¿ P 10+β+ε.

(v) Now let γ be a parameter at our disposal, write M = P 5/4+β, and let U5 be

the number of solutions counted by U3,2(P,R) in which

hg 6= 0, |hg/d| > M, x1 6= x2, y1 6= y2, (5.18)

and d = (h, g) ≤ P γ. As before, we assume that |h| ≥ |g| and write h′ = h/d and

g′ = g/d, so that (h′, g′) = 1. For any given d and |h′| ≥ |g′|, we divide both sides

of (5.17) by d3; then by Hua’s Lemma there are O((|h′|P )7/2+ε) possible choices for
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X1, . . . , X6, where Xi = gui − hvi. With Xi now fixed and (h′, g′) = 1, any two

choices for ui must be congruent modulo h′, so one has O(P/|h′|) possibilities for

each of u1, . . . , u6, and this determines v. Since x and y are then determined to

O(P ε), we find that

U5 ¿
∑

d≤P γ

∑

1≤g≤P/d

∑

h≥max(g,M/gd)

(hP )7/2+ε(P/h)6

¿ P 19/2+ε
∑

d≤P γ


 ∑

g≤(M/d)1/2

∑

h≥M/gd

h−5/2 +
∑

g>(M/d)1/2

∑

h≥g
h−5/2




¿ P 19/2+ε
∑

d≤P γ


 ∑

g≤(M/d)1/2

(M/gd)−3/2 +
∑

g>(M/d)1/2

g−3/2




¿ P 19/2+ε
∑

d≤P γ

(
(M/d)−3/2(M/d)5/4 + (M/d)−1/4

)

¿ P 19/2+εM−1/4
∑

d≤P γ

d1/4 ¿ P
19
2
− 1

4
( 5
4
+β)+ 5

4
γ+ε.

(vi) Finally, let U6 be the number of solutions counted by U3,2(P,R) with (5.18)

and d > P γ. Then for fixed d, there are (P/d)2 choices for h and g and P 2 choices

for x. Now on recalling (5.17), we see that there are O(P 27/4+ε) choices for u and v,

whence y is determined to O(P ε). Thus

U6 ¿ P 43/4+ε
∑

d>P γ

d−2 ¿ P 43/4−γ+ε.

To optimize the results of (v) and (vi), we set

9 +
3

16
− 1

4
β +

5

4
γ = 10 +

3

4
− γ,

which gives γ = 25
36

+ 1
9
β. Now on recalling (iv), we choose β so that

10 + β =
43

4
− 25

36
− 1

9
β,

which gives β = 1
20

. Hence U3,2(P,R) ¿ P 10+ 1
20 , and the lemma follows on recalling

(5.15).

Before proceeding, we record an easy consequence of Lemma 5.3.1.

Lemma 5.3.2. One has

S2,2(P,R) ¿ P 9+ 1
40

+ε.
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Proof. By Theorem 5.1, we have
∫

T4

|F (α)|6dα¿ P 6.

Thus by applying the Cauchy-Schwarz inequality and Lemma 5.3.1 we obtain

S2,2(P,R) ¿
(∫

T4

|F (α)|6dα
)1/2 (∫

T4

|F (α)|2|f(α)|8dα
)1/2

¿ P 9+ 1
40

+ε

on considering the underlying Diophantine equations.

We now proceed to estimate some higher moments.

Lemma 5.3.3. One has

S4,2(P,R) ¿ P 15+ 1
3
+ε.

Proof. By Cauchy’s inequality, we have S4,2(P,R) ≤ P 2U4,2(P,R), and the estima-

tion of U4,2(P,R) proceeds almost exactly as in the proof of Lemma 5.3.1. The only

modifications are that we use Lemma 5.3.2 in place of Theorem 5.1 in the analysis

of case (i) and we replace the 6th moment estimates of P 13/4+ε and P 7/2+ε by Hua’s

8th moment estimate of P 5+ε. Taking M = P 4/3 and γ = 2/3 produces identical

bounds for the final three cases and hence gives an optimal result.

We remark that the argument of the preceding proof in fact shows that one

may replace S4,2(P,R) by S2,4(P,R) in the statement of Lemma 5.3.3. Further, we

note that tiny improvements in the exponents of the preceding lemmata may be

achieved by using the results of Wooley [64], [71] in place of Vaughan [53], but such

improvements do not have significant consequences in the present application.

For higher moments, we apply the (single) efficient differencing procedure of

Chapter 3. Although our methods always allow us to take a few variables rang-

ing over a complete interval, we will often simplify by stating results for mean val-

ues in which all the variables are smooth. Thus we adopt the notation of writing

Ss(P,R) for Ss,0(P,R). Further, we say that ∆s is an admissible exponent if one

has Ss(P,R) ¿ P λs+ε, where λs = 4s − 12 + ∆s, and in this situation we call λs a

permissible exponent. To this point we have obtained the admissible exponents

∆3 = 6, ∆4 = 5 1
40
, ∆5 = 4 1

20
, and ∆6 = 31

3
. (5.19)

The above method of generating admissible exponents becomes noticeably less

effective when s > 6, since the maximum savings of P 3 in estimating the number of

solutions of

u3
1 + · · ·+ u3

t = u3
t+1 + · · ·+ u3

2t
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is already achieved when t = 4. Since the results of Section 3.5 are directly applicable

only for s ≥ 11, we will need the following lemma to work out admissible exponents

when s lies in the intermediate range.

Lemma 5.3.4. One has

Ss+2(P,R) ¿ P 5Ss(P,R) + P 19/6+εSs−1,2(P,R) + P
2
3
s+6+εSs(P

5/6, R).

Proof. This follows on using Lemma 3.3.2 in the initial stages of the argument of

Lemma 3.5.1.

We now apply Lemma 5.3.4 repeatedly to obtain admissible exponents ∆s for

7 ≤ s ≤ 12. First of all, by using Lemma 5.3.3 and making a trivial estimate, we see

that

S5,2(P,R) ¿ P 19+ 1
3
+ε,

and using this together with Lemma 5.3.3 in Lemma 5.3.4 gives

S8(P,R) ¿ P 22+ 7
9
+ε. (5.20)

Now using the Cauchy-Schwarz inequality to interpolate between S4,2 and S8, we

obtain

S7(P,R) ¿ (S4,2(P,R))1/2(S8(P,R))1/2 ¿ P 19+ 1
18

+ε. (5.21)

Putting (5.20) and (5.21) into Lemma 5.3.4 now yields

S9(P,R) ¿ P 26+ 59
108

+ε,

and this is used along with (5.20) to obtain

S10(P,R) ¿ P 30+ 17
54

+ε.

Continuing the iteration, we find that

S11(P,R) ¿ P 34+ 79
648

+ε and S12(P,R) ¿ P 37+ 301
324

+ε.

Thus we have the admissible exponents

∆7 = 3 1
18
, ∆8 = 27

9
, ∆9 = 2 59

108
,

∆10 = 217
54
, ∆11 = 2 79

648
, ∆12 = 625

324
.

(5.22)

Further admissible exponents can now be read off from Lemma 3.5.1. Namely, if

s ≥ 11 and ∆s is admissible then the exponent ∆s+2t = ∆s(5/6)t is also admissible.
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5.4 Weyl Differencing

Here we obtain estimates for the modulus of the exponential sum F (α) when at

least one of the αj is badly approximated by rationals. In Section 4.2, estimates of

this type were obtained for f(α) by using the large sieve to relate the modulus of the

sum to known mean values. This treatment allowed us to obtain bounds of the form

P 2−σ(k)+ε, where σ(k)−1 ³ k3 log k, and for large k this is substantially better than

the exponential decay that results from Weyl differencing. For k = 3, however, we

are much better off applying a two-fold Weyl differencing procedure. For purposes

of application, it is useful to consider the slightly more general exponential sum

F (α;P,Q) =
∑

1≤x≤P

∑
1≤y≤Q

e(α0x
3 + α1x

2y + α2xy
2 + α3y

3).

Lemma 5.4.1. Suppose that Q ³ P and that for some j there exist qj ∈ N and

aj ∈ Z with

(qj, aj) = 1 and |qjαj − aj| ≤ q−1
j . (5.23)

Then one has

|F (α;P,Q)| ¿ P 2+ε(q−1
j + P−1 + qjP

−3)1/4.

Proof. First suppose that (5.23) holds with j = 0. Then by Weyl’s inequality (see

for instance Lemma 2.4 of Vaughan [55]) one has

|F (α;P,Q)| ≤
∑
y≤Q

∣∣∣∣∣
∑
x≤P

e(α0x
3 + α1x

2y + α2xy
2)

∣∣∣∣∣
¿ QP 1+ε(q−1

0 + P−1 + q0P
−3)1/4,

and the result follows. Note that if instead (5.23) holds with j = 3, then we obtain the

same conclusion simply by interchanging the roles of x and y in the above argument.

Now suppose that (5.23) holds with j = 1. Then by Cauchy’s inequality we have

|F (α)|2 ≤ P
∑
y≤Q

∣∣∣∣∣
∑
x≤P

e(α0x
3 + α1x

2y + α2xy
2)

∣∣∣∣∣

2

¿ P
∑
y≤Q

(
P +

∑

x,h

e(α0(3x
2h+ 3xh2 + h3) + α1y(2xh+ h2) + α2y

2h)

)

¿ P 3 + P
∑
y≤Q

∑

x,h

e(α0(3x
2h+ 3xh2 + h3) + α1y(2xh+ h2) + α2y

2h),
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where the second sum is over x and h 6= 0 with 1 ≤ x ≤ P and 1−x ≤ h ≤ P−x, and

where we have abbreviated F (α;P,Q) by F (α). Then on using Cauchy’s inequality

again we obtain

|F (α)|4 ¿ P 6 + P 4
∑

x,h

∣∣∣∣∣
∑
y≤Q

e(α0(3x
2h+ 3xh2 + h3) + α1y(2xh+ h2) + α2y

2h)

∣∣∣∣∣

2

¿ P 6 + P 4
∑

x,h

(
P +

∑
y,g

e(α1g(2xh+ h2) + α2h(2yg + g2))

)

¿ P 7 + P 4
∑

x,h,y,g

e(α1g(2xh+ h2) + α2h(2yg + g2))

¿ P 7 + P 4
∑

1≤|h|,|g|≤P

∑

y∈I(Q,g)

∣∣∣∣∣∣
∑

x∈I(P,h)
e(2α1ghx)

∣∣∣∣∣∣
,

where I(P, h) = [1, P ]∩ [1− h, P − h]. Thus on summing the geometric progression,

recalling a standard divisor function estimate, and using Lemma 2.2 of [55], we find

that

|F (α;P,Q)|4 ¿ P 7 +QP 4
∑

1≤|h|,|g|≤P
min(P, ||2α1gh||−1)

¿ P 7 +QP 4+ε
∑

n≤2P 2

min(P, ||α1n||−1)

¿ P 7 +QP 7+ε(q−1
1 + P−1 + q1P

−3),

whence

|F (α;P,Q)| ¿ P 2+ε(q−1
1 + P−1 + q1P

−3)1/4.

Again, the same conclusion follows when (5.23) holds with j = 2 by repeating the

argument with the roles of x and y reversed.

Next we record a consequence of the above lemma, which will be useful in our

application of the circle method.

Lemma 5.4.2. Let α0, . . . , α3 be real numbers with the property that whenever there

exist q ∈ N and a0, . . . , a3 ∈ Z with (q, a0, . . . , a3) = 1 and |qαj − aj| ≤ P δ−3 one has

q > P δ. Then whenever Q ³ P one has

|F (α;P,Q)| ¿ P 2−δ/16+ε.

Proof. Let α0, . . . , α3 be as in the statement of the lemma, and write ν = δ/4. For

each j, Dirichlet’s Theorem allows us to find qj ∈ N and bj ∈ Z with (qj, bj) = 1 such



120

that |qjαj − bj| ≤ P ν−3 and qj ≤ P 3−ν . If qj > P ν for some j, then the conclusion

follows from Lemma 5.4.1. Otherwise, put q = [q0, . . . , q3] and aj = bjq/qj. Then we

have (q, a0, . . . , a3) = 1 and q ≤ qjP
3ν for each j and hence

|αj − aj/q| ≤ q−1
j P ν−3 ≤ q−1P δ−3 (0 ≤ j ≤ 3)

and q ≤ P δ, contradicting the hypothesis of the lemma.

5.5 The Circle Method

Now we are in a position to prove Theorem 5.2 by applying the circle method

along the lines of Section 4.6. The following lemma provides us with non-singular

local solutions to (5.2).

Lemma 5.5.1. If s ≥ 14 and c1, . . . , cs are non-zero integers, then the system (5.2)

has a non-singular real solution and a non-singular p-adic solution for all primes p.

Proof. After setting

y1 = · · · = y7 = 0, x8 = · · · = x14 = 0, and xi = yi = 0 (i > 14),

the system (5.2) reduces to

c1x
3
1 + · · ·+ c7x

3
7 = 0 and c8y

3
8 + · · ·+ c14y

3
14 = 0.

By Baker [6], each of these equations has a non-trivial integral solution; suppose that

x and y are solutions with xI and yJ non-zero. Then on writing

ψj(x,y) = c1x
3−j
1 yj1 + · · ·+ csx

3−j
s yjs (0 ≤ j ≤ 3),

we have

det

(
∂ψj
∂xI

,
∂ψj
∂yI

,
∂ψj
∂xJ

,
∂ψj
∂yJ

)

0≤j≤3

= (3cIcJ)
2x4

Iy
4
J 6= 0.

Thus (x,y) is a non-singular integer solution of (5.2), so it is non-singular in each

local field as well.

By Lemmata 4.6.2 and 5.5.1, we may assume that the system (5.2) has a non-

singular real solution (η, ξ) with 0 < |ηi|, |ξi| < 1
2

for i = 1, . . . , s. For each i, we

write

η+
i = ηi +

1
2
|ηi| and η−i = ηi − 1

2
|ηi|
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and

ξ+
i = ξi +

1
2
|ξi| and ξ−i = ξi − 1

2
|ξi|.

Now let P be a large positive number, put R = P η with η ≤ η0(ε), and let c1, . . . , cs

be nonzero integers. Throughout this section, the implicit constants arising in our

analysis may depend on c1, . . . , cs and on the real solution (η, ξ). We define the

exponential sums

Fi(α) =
∑

η−i P<x≤η+
i P

∑

ξ−i P<y≤ξ+i P
e(ci(α0x

3 + α1x
2y + α2xy

2 + α3y
3))

and

fi(α) =
∑

η−i P<x≤η+
i P

|x|∈A(P,R)

∑

ξ−i P<y≤ξ+i P
|y|∈A(P,R)

e(ci(α0x
3 + α1x

2y + α2xy
2 + α3y

3)).

Further, write s = t+ 2u+ v and define

F(α) =
t∏
i=1

Fi(α) and G(α) =
s∏

i=t+1

fi(α).

Finally, let

Rs(P ) =

∫

T4

F(α)G(α) dα,

and observe that Rs(P ) is a lower bound for the number of integral solutions of (5.2)

lying in the box [−P, P ]2s.

We dissect T4 into major and minor arcs as follows. Let c ∈ N and δ ∈ (0, 1] be

parameters at our disposal, and define

M =
⋃

1≤a0,...,a3≤q≤cP δ

(q,a0,...,a3)=1

M(q, a),

where

M(q, a) = {α ∈ T4 : |qαi − ai| ≤ P δ−3 (0 ≤ i ≤ 3)},
and put m = T4 \M. It is easily seen that the M(q, a) are disjoint.

As in Chapter 4, we further define the pruned major arcs by

N =
⋃

1≤a0,...,a3≤q≤W
(q,a0,...,a3)=1

N(q, a),

where W is a parameter at our disposal and

N(q, a) = {α ∈ T4 : |αi − ai/q| ≤ WP−3 (0 ≤ i ≤ 3)}.
The following pruning lemma is essentially Lemma 9.2 of Wooley [61].
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Lemma 5.5.2. If t ≥ max(16, 5δ
1−δ ), then one has

∫

M

|Fi(α)|tdα¿ P 2t−12

and
∫

M\N
|Fi(α)|tdα¿ W−σP 2t−12,

for some σ > 0.

Proof. We use Lemma 4.4.1 in the argument of Lemma 4.6.7.

We are now finally in a position to derive a mean value estimate in which we

obtain the full savings of P 12 over the trivial bound.

Lemma 5.5.3. One has
∫

T4

|F (α)|17|f(α)|44dα¿ P 110.

Proof. Dissect into major and minor arcs by taking δ = 3/4 and c = 1 in the above

definitions. Then by Lemma 5.4.2 we have

sup
α∈m

|F (α)| ¿ P 2− 3
64

+ε,

and by Lemma 3.5.1, together with (5.22), we see that the exponent

∆22 =
625

324

(
5

6

)5

<
51

64

is admissible. Thus by Lemma 5.5.2 and a change of variables we have

∫

T4

|F (α)|17|f(α)|44dα ¿ P 34− 51
64

+ε

∫

T4

|f(α)|44dα+ P 88

∫

M

|F (α)|17dα

¿ P 110− 51
64

+∆22+ε + P 110,

and the result follows.

We are now ready to derive the lower bound for Rs(P ). Take t = 24, u = 16, and

v ≥ 2, for a total of s ≥ 58 variables, and further let δ = 9/10 and c = max |ci|.
If α ∈ m, then by the argument of Lemma 4.6.3 one sees that the hypotheses of

Lemma 5.4.2 hold with α replaced by ciα and hence

sup
α∈m

|Fi(α)| ¿ P 2−δ/16+ε.
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Moreover, the exponent

∆16 =
625

324

(
5

6

)2

< 1.34

is admissible, and it is clear by considering the underlying Diophantine equations

that all the mean value estimates from Section 5.3 hold with f(α) replaced by fi(α).

Thus by Hölder’s inequality we have

∫

m

|F(α)G(α)| dα ¿ P 48+2v− 3
2
δ+ε

56∏
i=25

(∫

T4

|fi(α)|32dα

)1/32

¿ P 2s−12− 27
20

+∆16+ε ¿ P 2s−12−τ

for some τ > 0. Furthermore, after applying Hölder’s inequality and making a change

of variables, we have by Lemmata 5.5.2 and 5.5.3 that

∫

M\N
|F(α)G(α)| dα ¿ P 2v

(∫

M\N
|F (α)|48dα

)1/2 (∫

T4

|f(α)|64dα

)1/2

¿ P 2s−12W−σ/2,

and so it suffices to deal with the pruned major arc N. But it follows immediately

from the analysis of Section 4.6 that

∫

N

F(α)G(α) dαÀ P 2s−12,

provided that W is taken to be a suitably small power of logP . Finally, on recalling

the notation of Section 4.6 we have by the argument of Lemma 4.6.12 that

Rs(P, d) ¿ P 2v

dv

∫

T4

|F(α)|
(

56∏
i=25

|fi(α)|
)
dα¿ P 2s−12

d2
,

since v ≥ 2. Thus on following through the corresponding argument in the proof of

Theorem 4.5, we find that Ls(P ) À P 2s−12, and this completes the proof of Theorem

5.2.

We remark that essentially the same analysis, modified along the lines of Section

4.5, may be applied to prove Theorem 7. In that argument, we may clearly take

v = 0 and it follows that G∗1(3) ≤ 56.
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ABSTRACT

Exponential Sums and Diophantine Problems

by

Scott T. Parsell

Chair: Trevor D. Wooley

This work is concerned with the theory of exponential sums and their application

to various Diophantine problems. Particular attention is given to exponential sums

over smooth numbers, i.e. numbers having no large prime factors.

As an application of the theory of exponential sums in a single variable, we

consider pairs of Diophantine inequalities of different degrees. Specifically, we show

that two additive forms, one cubic and one quadratic, with real coefficients in at

least 13 variables and satisfying suitable conditions, take arbitrarily small values

simultaneously at integer points. In fact, we obtain a quantitative version of this

result, which indicates how rapidly the forms can be made to approach zero as the

size of the variables increases. Moreover, we obtain a lower bound for the density of

integer points at which these small values occur.

We then proceed to study double exponential sums over smooth numbers by

developing a version of the Vaughan-Wooley iterative method. We obtain estimates

for mean values of these exponential sums, and these estimates are then used within

the fabric of the Hardy-Littlewood method to obtain a lower bound for the density

of rational lines on the hypersurface defined by an additive equation. We show that

one obtains the expected density provided that the number of variables is sufficiently

large in terms of the degree and that certain natural local solubility hypotheses

are satisfied. We also consider applications to a two-dimensional generalization of

Waring’s problem and to fractional parts of polynomials in two variables.

Finally, we refine the above analysis in the case of a cubic hypersurface to show

that the expected density of lines is obtained whenever the defining equation has at

least 58 variables. In the process, we obtain a result on the paucity of non-trivial

solutions to an associated system of Diophantine equations.


