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1. Introduction

The study of diophantine inequalities began with the work of Davenport and Heil-
bronn [8], who showed that an indefinite additive form with real coefficients takes
arbitrarily small values infinitely often at integral points, provided that the number
of variables is sufficiently large in terms of the degree. Their version of the Hardy-
Littlewood method has been adapted to treat more general situations in the intervening
years. For example, Schmidt [16] has obtained a result for arbitrary (not necessarily
diagonal) forms of odd degree, and the problem for systems of forms of like degree has
been examined by a number of workers (see for example [5], [6], [7], and [15]). More
recently, the author [12] began investigating systems of inequalities of differing degree,
starting with the case of one cubic and one quadratic form.

Throughout these efforts, the inability to adequately control the rational approxi-
mations to various coefficient ratios in the forms under consideration has resulted in
somewhat weaker theorems than may have been expected. In the case of a single in-
equality, for example, it was not possible to obtain a lower bound for the number of
solutions in a given box, since the parameter representing the box size was restricted in
terms of a possibly sparse sequence of denominators occurring in a continued fraction
expansion. In certain other situations (see [5], [7], [9], and [12]), a difficulty of simi-
lar spirit forced a restriction to forms with algebraic (or at least badly approximable)
coefficient ratios. The past few years, however, have seen a remarkable breakthrough
in this area, beginning with work of Bentkus and Götze [4] on values of positive-
definite quadratic forms. Drawing inspiration from their methods, Freeman [10] was
able to obtain the expected asymptotic lower bound for the number of solutions in
the Davenport-Heilbronn problem. The author [13] then adapted Freeman’s ideas to
remove the restriction to algebraic coefficients for the system considered in [12]. It is
now possible, using an even more recent result of Freeman [11], to extend the work of
[12] and [13] to more general systems of diagonal inequalities.

Suppose that k1 > · · · > kt ≥ 1 are integers, let λij be non-zero real numbers, and
fix τ > 0. We consider the system of inequalities

|λi1xki1 + · · ·+ λisx
ki
s | < τ (1 ≤ i ≤ t). (1.1)

Under certain conditions, we are able to demonstrate that the system (1.1) has infinitely
many solutions in integers x1, . . . , xs and in fact that the number of such solutions lying
in the box [−P, P ]s is of order P s−K, where K = k1 + · · ·+ kt. Perhaps the condition
of greatest interest in the statement of such a result is how large s is required to be
in terms of k = (k1, . . . , kt). In order to investigate such bounds for s, we need to
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impose some further conditions. To ensure indefiniteness, we require that the system
of equations

λi1x
ki
1 + · · ·+ λisx

ki
s = 0 (1 ≤ i ≤ t) (1.2)

possesses a non-trivial real solution. Moreover, if one or more of the forms appearing
in (1.1) is a multiple of an integral form (i.e., if all its coefficients are in rational
ratio), then for τ sufficiently small, the corresponding inequalities are equivalent to
homogeneous equations with integer coefficients, and this gives rise to a p-adic solubility
requirement. In what follows, we refer to this set of equations as the integral sub-system.
Furthermore, in order to apply the circle method successfully, one needs to ensure that
the given local solutions are in fact non-singular. Therefore, we say that the system
(1.1) satisfies the local solubility condition if each λij is non-zero, the system (1.2) has
a non-singular real solution, and the integral sub-system of (1.2) has a non-singular

p-adic solution for every prime p. We then define Ĝ∗(k) to be the least integer s0 such
that, whenever s ≥ s0 and the system (1.1) satisfies the local solubility condition, the
system (1.1) has a non-trivial integral solution.

As is familiar in applications of the circle method, bounds for Ĝ∗(k) can be expected
to depend primarily on the quality of available estimates for certain exponential sums
and their various moments. When P and R are positive numbers, let

A(P, R) = {n ∈ [1, P ] ∩ Z : p|n, p prime⇒ p ≤ R}
denote the set of R-smooth numbers not exceeding P . We shall be concerned with the
exponential sums

F (α) = F (α; P ) =
∑

1≤x≤P
e(α1x

k1 + · · ·+ αtx
kt) (1.3)

and

f(α) = f(α; P, R) =
∑

x∈A(P,R)

e(α1x
k1 + · · ·+ αtx

kt), (1.4)

where we have written, as usual, e(y) = e2πiy, and where R is taken to be a sufficiently
small power of P . Using the technology developed by Wooley [20], one can obtain
mean value estimates of the shape∫

Tt
|f(α)|2u dα� P 2u−K+∆u, (1.5)

where ∆u = ∆u,k is small when u is sufficiently large in terms of k, and where Tt
denotes the t-dimensional unit cube. An elementary argument shows that one always
has ∆u ≥ 0 in (1.5). In our applications, we will often need to find u for which ∆u = 0.

Write Qi = 2k2
1P

ki−1, and let m denote the set of α ∈ Tt such that whenever there
are integers q ≥ 1 and a1, . . . , at with (q, a1, . . . , at) = 1 and |qαi − ai| < Q−1

i for
i = 1, . . . , t, one has that q > P . We consider estimates for F (α) of the shape

sup
α∈m
|F (α)| � P 1−σ(k)+ε, (1.6)

where ε is an arbitrarily small positive number. It follows from work of Baker [1]
(see also [2], [3]) that one can take σ(k) = 21−k1 , while Vinogradov’s methods (see for
example [2], Theorem 4.4) show that one can take σ(k) ∼ (8k2

1 log k1)
−1 for large k1.
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The purpose of this paper is to demonstrate that bounds for Ĝ∗(k) do indeed follow
from estimates of the type (1.5) and (1.6). As the quality of such estimates is likely to
improve over time, we state our bounds in a form convenient for incorporating future
developments into the problem at hand.

Theorem 1.1. Suppose that k1 > · · · > kt ≥ 1. Let u and v be positive integers, and
write γ = 0 if v is even and γ = 1 if v is odd. Further suppose that

v ≥ max(2, t), 2u + v > k1(t + 1)(1 + γ/v), and vσ(k) > ∆u,

where ∆u and σ(k) satisfy (1.5) and (1.6). Then one has Ĝ∗(k) ≤ 2u + v.

In fact, one can give a similar statement that incorporates a Weyl-type bound for
f(α) rather than F (α). We forego the statement of a general theorem along these
lines but will revisit this issue in connection with Corollary 1.3 below.

By taking σ(k) = 21−k1 in (1.6) and using the values of ∆u calculated by the author
[14], one can obtain some explicit bounds for the case t = 2. We record the results for
several interesting cases below.

Corollary 1.2. One has the bounds

Ĝ∗(3, 2) ≤ 13, Ĝ∗(4, 2) ≤ 20, Ĝ∗(4, 3) ≤ 24, Ĝ∗(5, 2) ≤ 31,

Ĝ∗(5, 3) ≤ 32, Ĝ∗(5, 4) ≤ 36, Ĝ∗(6, 3) ≤ 49, Ĝ∗(6, 4) ≤ 47,

Ĝ∗(6, 5) ≤ 50, Ĝ∗(7, 4) ≤ 65, Ĝ∗(7, 5) ≤ 64, Ĝ∗(7, 6) ≤ 66.

Note that these bounds are the same as those recorded in [14] for pairs of equations.
In fact, the results given here for inequalities imply the results on equations, since we
have not excluded the case where all the forms in (1.1) are multiples of integral forms.

Finally, we can apply the results of Wooley [20] to obtain more general bounds
for large k1. Here it transpires that, when t is small relative to k1, one can obtain
significantly better estimates of the form (1.6), but with F (α) replaced by f(α), by
making use of the mean value estimates (1.5) within a large sieve argument. At the end
of §3, we sketch a modification of the proof of Theorem 1.1 that yields the following
bounds.

Corollary 1.3. Suppose that k1 > · · · > kt ≥ 1, and define

H(k) = k1 min
{
t(log k1 + 3 log t), 3t2 + 6t log log k1 + log(k1 · · · kt)

}
.

Then one has Ĝ∗(k) ≤ H(k)(1 + o(1)). Moreover, if t ≥
√

k1, then one has

Ĝ∗(k) ≤ tk1

(
3 log k1 − log t + 4 log log k1 + O(1)

)
.

For example, if t is bounded by a constant, then we can take s ∼ k1 log(k1 · · · kt) as
k1 → ∞, whereas we require s ∼ 2k2

1 log k1 if t ∼ k1. It may be possible to apply the
methods of [20] to obtain even more precise estimates, but we do not pursue this here.

Note that in (1.1) we have restricted to the case in which all the coefficients λij are
non-zero. In practice, this condition can be relaxed somewhat (see for example [12],
[13]), and for equations it can sometimes be removed completely (see [14], §8). In
general, however, the analytic argument permits one to handle only a limited number
of zero coefficients directly, and one typically has to obtain small solutions to various
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auxiliary systems in order to reduce to such a situation. Since the latter presents
significant complications in its own right, we prefer not to deal with such issues here.
We do point out that almost all systems of the shape (1.1) have no vanishing coefficients.
Finally, we note that the role played here by zero coefficients is similar in some respects
to that played by vanishing linear combinations in systems of forms of like degree.

While combining estimates of the shape (1.5) and (1.6) suffices to handle the minor
arcs for the problem on equations, some additional maneuvering is required to deal with
inequalities. In the latter case, one expects that the product of the exponential sums
Fj(α) = F (λjα) has only one substantial peak, at the origin, rather than about every
rational point with sufficiently small common denominator; here we have written λjα
for the vector (λ1jα1, . . . , λtjαt). Hence the minor arc region on which one must obtain
non-trivial bounds for these sums is somewhat larger, and one must try to exploit
the irrationality of various coefficient ratios to demonstrate the expected cancellation.
This is precisely the point of difficulty alluded to above, which had caused problems
for several generations of workers. The idea of Bentkus and Götze [4] is to aim for very
weak versions of (1.6), valid on a carefully defined set of minor arcs, and then choose u
so that ∆u = 0 in (1.5). If none of the Fj(α) were o(P ), then Baker’s work would yield
exceptionally good rational approximations to the λijαi, and, if α is not too close to the
origin, one hopes that this would contradict the existence of an irrational ratio λij/λik.
Baker’s method actually fails by a factor of P ε to produce the required bound on the
denominators occurring in these approximations, but it turns out that this factor can
be removed. This was first accomplished by Freeman, through a difficult argument,
in an early version of his paper [11] on inhomogeneous inequalities, but the proof has
been greatly simplified by a recent observation of Wooley.

Our strategy is to first use the estimates (1.5) and (1.6) to obtain new estimates of the
shape (1.5), with ∆u = 0, by means of a Hardy-Littlewood dissection. The required
analysis here largely resembles that of [14], §7, and hence the number of variables
required to obtain this full savings will usually be the same as the corresponding bound
in Theorem 1.1 of [14]. However, there is typically some additional room to spare in
the minor arc contribution to these mean values, and thus we can in fact apply the
dissection with a fractional number of variables, slightly less than the number one is
expecting to use for the problem. One can then incorporate the weak Weyl estimate
described in the previous paragraph to the remaining fraction of a sum and hence use
exactly the same number of variables as for equations.

The author wishes to thank Eric Freeman for mentioning a way to condense the
minor arc analysis and for pointing out the work of Schmidt [17], which has improved
our treatment of the singular integral. The author is also grateful to Trevor Wooley
for suggesting the simple proof of Lemma 2.4 given below.

2. Preliminary Estimates

We start by describing the Hardy-Littlewood dissection that will be employed in the
deduction of our mean value estimates. As in §1, we write

Qi = 2k2
1P

ki−1 (i = 1, . . . , t).
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Then when kt > 1, we define the major arcs M to be the union of the boxes

M(q, a) = {α ∈ Tt : |qαi − ai| < Q−1
i (i = 1, . . . , t)} (2.1)

with 0 ≤ a1, . . . , at ≤ q ≤ P and (q, a1, . . . , at) = 1, and we write m = Tt \M for
the minor arcs. When kt = 1, we use the same definition, except that M is further
restricted to those M(q, a) for which (q, a1, . . . , at−1) ≤ P ε. Note that the M(q, a)
may not be disjoint when kt = 1. We may clearly suppose throughout that k1 ≥ 2, as
Theorem 1.1 is otherwise trivial. Let us introduce the notation

S(q, a) =

q∑
x=1

e((a1x
k1 + · · ·+ atx

kt)/q),

v(β) =

∫ P

0

e(β1γ
k1 + · · ·+ βtγ

kt) dγ,

and

w(β) =

∫ P

R

ρ

(
log γ

log R

)
e(β1γ

k1 + · · ·+ βtγ
kt) dγ,

where ρ denotes Dickman’s function (see for example Vaughan [18], §12.1). We first
recall some standard estimates for these functions. It follows easily from Theorem 7.1
of Vaughan [18] that

S(q, a)� (q, a1, . . . , at)
1/k1q1−1/k1+ε. (2.2)

Moreover, by applying the argument of Vaughan [18], Theorem 7.3, as in the proof of
Wooley [19], Lemma 8.6, one finds that

v(β)� P (1 + P k1|β1|+ · · ·+ P kt|βt|)−1/k1 (2.3)

and

w(β)� P (1 + P k1|β1|+ · · ·+ P kt|βt|)−1/k1 . (2.4)

Now let W ≤ R be a parameter at our disposal. We define the pruned major arcs N

to be the union of the sets

N(q, a) = {α ∈ Tt : |αi − ai/q| < WP−ki (i = 1, . . . , t)} (2.5)

with 0 ≤ a1, . . . , at ≤ q ≤ W and (q, a1, . . . , at) = 1. Note here that the condition
(q, a1, . . . , at−1) ≤ P ε is automatically satisfied, since q ≤ R and R is a sufficiently
small power of P . Furthermore, the N(q, a) are pairwise disjoint, even when kt = 1.
We need the following easy extension of Wooley [19], Lemma 9.2 (see also [14], Lemma
7.2), in order to deal with the major arcs.

Lemma 2.1. If T is a real number with T > k1(t + 1), then one has∫
M

|F (α)|T dα� P T−K

and, for some σ > 0, ∫
M\N
|F (α)|T dα� P T−KW−σ.
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Proof. Suppose that T > k1(t + 1). When α ∈M(q, a) ⊆M, we write βi = αi − ai/q
for i = 1, . . . , t, and define the function V (α) = q−1S(q, a)v(β). In order to make this
well-defined when kt = 1, we can associate α to the M(q, a) having minimal q, since
the arcs corresponding to a fixed q are pairwise disjoint. Then when α ∈M(q, a) ⊆M,
we have by Lemma 4.4 of Baker [2] that

|F (α)|T � |V (α)|T + P ε(q1−1/k1)T .

Write W for either M or M\N. Then one sees easily from (2.1) that∫
W

P ε(q1−1/k1)T dα� P t−K+ε
∑
q≤P

qT (1−1/k1) � P T−K−δ

for some δ > 0, since T > k1(t + 1). Now by (2.2), one has∫
W

|V (α)|T dα�
∑
q≤P

∑
a∈[0,q]t

q−T/k1+ε

∫
W(q,a)

|v(β)|T dα, (2.6)

where have written W(q, a) = M(q, a) when W = M and W(q, a) = M(q, a)\N(q, a)
when W = M\N. Now set Y = 1 if W = M or if q > W , and put Y = W otherwise.
Then by applying (2.3) and making a change of variable, one finds that∫

W(q,a)

|v(β)|T dα� P T

∫
W(q,a)

t∏
i=1

(1 + P ki|βi|)−T/tk1 dα

� P T−KY 1−T/tk1 .

Thus on writing Z = 1 if W = M and Z = W if W = M\N, we obtain from (2.6) that∫
W

|V (α)|T dα� P T−K

( ∑
q≤W

Z1−T/tk1qt−T/k1+ε +
∑
q>W

qt−T/k1+ε

)
� P T−K (Z1−T/tk1 + W t+1−T/k1+ε

)
,

and the lemma follows. �

Actually, only the first estimate of Lemma 2.1 will be required for our purposes, as
the argument of §3 completely avoids pruning. We have included the second estimate
since it may be useful in other contexts. We are now able to establish mean value
estimates in which one obtains the full savings of PK over the trivial bound.

Lemma 2.2. Let u, ∆u, and σ(k) be as in the statement of Theorem 1.1, and suppose
that ν is an even integer satisfying νσ(k) > ∆u and 2u + ν > k1(t + 1). Then one has∫

Tt
|f(α)|2u+ν dα� P 2u+ν−K .

Proof. Write I for the integral in question. Since ν is even, one sees by considering the
underlying diophantine equations that

I ≤
∫
Tt
|F (α)νf(α)2u| dα,
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and we now dissect into major and minor arcs as in (2.1). Since νσ(k) > ∆u, we have∫
m

|F (α)νf(α)2u| dα� P 2u+ν−K−δ

for some δ > 0. We may therefore suppose that the contribution from the major arcs
dominates, in which case we have by Hölder’s inequality that

I �
∫
M

|F (α)νf(α)2u| dα�
(∫
M

|F (α)|2u+ν dα

)ν/(2u+ν)

I 2u/(2u+ν),

and the result now follows from Lemma 2.1. �
Recall the definition of Fi(α) from §1, and define fi(α) similarly.

Lemma 2.3. Let u, ν, ∆u, and σ(k) be as in the statement of Lemma 2.2, and suppose
that ω is a real number satisfying ωσ(k) > ∆u and ω(2u + ν) > νk1(t + 1). Then for
any i and j, one has ∫

Tt
|Fi(α)ωfj(α)2u| dα� P 2u+ω−K .

Proof. We again dissect into major and minor arcs. Write Mi for the set of α ∈ Tt for
which λiα ∈M, where M is as in (2.1), and write mi = Tt \Mi. Since ωσ(k) > ∆u,
we find after a change of variable that∫

mi

|Fi(α)ωfj(α)2u| dα� P 2u+ω−K−δ

for some δ > 0. For brevity, let us write s = 2u + ν. Then we have by Hölder’s
inequality that∫

Mi

|Fi(α)ωfj(α)2u| dα�
(∫
Mi

|Fi(α)|ωs/ν dα

)ν/s(∫
Tt
|fj(α)|s dα

)2u/s

.

In view of the condition ω(2u + ν) > νk1(t + 1), the desired estimate follows from
Lemmas 2.1 and 2.2 on making a change of variable. �

Next we need a Weyl-type lemma similar to Theorem 5.1 of Baker [2], but with
certain factors of P ε removed from the statement, as in Lemma 6 of Freeman [11].
Here we establish a version of Freeman’s lemma through a simple argument suggested
recently by Professor Wooley, who has graciously allowed us to reproduce it here.

Lemma 2.4. Suppose that |F (α)| ≥ PA−1, where A ≤ P 21−k1−η for some η > 0, and
that P is sufficiently large in terms of η and k. Then there exists a positive integer q
and integers a1, . . . , at satisfying (q, a1, . . . , at) = 1 such that

q � A2k1 and |qαi − ai| � A2k1P−ki (1 ≤ i ≤ t),

where the implicit constants depend at most on η and k.

Proof. Clearly, we may suppose throughout that η is sufficiently small. We may further
suppose that α ∈ Tt, since the result then extends to all α by adding a suitable multiple
of q to each ai. We define the major arcs M(q, a) as in (2.1) and introduce the function
V1(α), defined by

V1(α) = q−1S(q, a)v(α− a/q) + P ηq1−1/k1
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when α ∈M(q, a) ⊆M and by V1(α) = 0 otherwise. We adopt the same convention
as in the proof of Lemma 2.1 to ensure that V1(α) is well-defined when kt = 1. Now
by combining Lemma 4.4 and Theorem 5.1 of Baker [2], we find that

|F (α)| � P 1−21−k1+η/2 + |V1(α)|
for all α ∈ Tt. Furthermore, it follows from (2.2) and (2.3) that for each α there is a
positive integer q and integers a1, . . . , at such that

|V1(α)| � Pqη(q + |qα1 − a1|P k1 + · · ·+ |qαt − at|P kt)−1/k1 .

On recalling the hypothesis of the statement of the lemma, we conclude that

q−ηk1(q + |qα1 − a1|P k1 + · · ·+ |qαt − at|P kt)� Ak1 ,

and the result now follows easily on taking η ≤ 1/2k1. �
We are now in a position to obtain a weak minor arc estimate of the type described

in the introduction. The argument given below is essentially due to Freeman [10].

Lemma 2.5. Fix i with 1 ≤ i ≤ t for which λi1/λi2 is irrational, and fix δ > 0. There
is a positive, real-valued function Ti(P ) such that Ti(P )→∞ as P →∞ and

lim
P→∞

(
sup

α∈ni(P )

|F1(α; P )F2(α; P )|
P 2

)
= 0,

where
ni(P ) = {α ∈ Rt : (log P )δP−ki ≤ |αi| ≤ Ti(P )}.

Proof. We first show that the result holds when ni(P ) is replaced by the set

ñi(P ) = {α ∈ Rt : (log P )δP−ki ≤ |αi| ≤ T}
for any fixed real number T ≥ 1. If F1(α; P )F2(α; P ) is not o(P 2) on ñi(P ), then we
can find ε > 0, a sequence of positive real numbers {Pn} tending to∞, and a sequence
of vectors {αn} with αn = (αn1, . . . , αnt) ∈ ñi(Pn), having the property that

|F1(αn; Pn)F2(αn; Pn)| ≥ εP 2
n

for all positive integers n. On making a trivial estimate, it follows that for each n one
has

|Fj(αn; Pn)| ≥ εPn (j = 1, 2).

Whenever n is large enough so that Pn ≥ ε−2k1 , we may apply Lemma 2.4 with A = 1/ε
to obtain integers qnj and anj satisfying

qnj � ε−2k1 and |λijαniqnj − anj| � ε−2k1P−kin (j = 1, 2), (2.7)

where the implicit constants depend only on k. It follows that, for n sufficiently large,
one has

anj � |λij |Tε−2k1 + ε−2k1P−kin � 1,

and hence there are only finitely many possible 4-tuples (an1, qn1, an2, qn2). So there
must be a 4-tuple (a1, q1, a2, q2) that occurs for infinitely many n, and we let S denote
this sequence of values of n. Then when n ∈ S, we have by (2.7) that

qj � 1 and λijαni =
aj
qj

+ O(P−kin ) (j = 1, 2), (2.8)
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where the implicit constants depend on ε, k and λi. Since each αni lies in the compact
set [−T, T ], we can find a subsequence S ′ ⊆ S such that {αni} converges to a limit α∗i
as n→∞ through S ′.

If α∗i = 0, then one has |αni| < |2λijqj |−1 for all sufficiently large n ∈ S ′. We therefore
deduce from (2.8) that a1 = a2 = 0, and hence that αni � P−kin for large n. But this
contradicts the fact that αn ∈ ñi(Pn), so we are forced to conclude that α∗i 6= 0.

Thus after letting n→∞ through the elements of S ′ and dividing the two equations
in (2.8), we find that λi1/λi2 = a1q2/(a2q1), contradicting the assumption that λi1/λi2
is irrational. We therefore conclude that F1(α; P )F2(α; P ) = o(P 2) on ñi(P ). In
particular, for each positive integer m, there is a real number Pm such that

|F1(α; P )F2(α; P )|
P 2

≤ 1

m
whenever P ≥ Pm and (log P )δP−ki ≤ |αi| ≤ m,

and we may clearly suppose that the sequence {Pm} is non-decreasing and tends to
infinity. To complete the proof of the lemma, it now suffices to define Ti(P ) = m
whenever Pm ≤ P < Pm+1. �

3. The Circle Method for Mixed Systems

Since we have imposed no irrationality assumption concerning the coefficient ratios
in (1.1), it may be the case that some of the forms have all their coefficients in rational
ratio and hence are multiples of integral forms. For a sufficiently small choice of τ ,
the corresponding inequalities in (1.1) are equivalent to homogeneous equations with
integral coefficients. In the remaining forms, we may further reduce to the case τ = 1
by replacing λij by λij/τ throughout. Thus we see that solving (1.1) amounts to solving
a system of the shape

ci1x
mi
1 + · · ·+ cisx

mi
s = 0 (1 ≤ i ≤ r)

|λi1xmi1 + · · ·+ λisx
mi
s | < 1 (r < i ≤ t),

(3.1)

where cij ∈ Z, λij ∈ R, and i 6= j ⇒ mi 6= mj . Furthermore, for each i with r < i ≤ t,
one has λij/λik /∈ Q for some j and k. Since we have assumed all coefficients to be
non-zero, it is easy to show, after a rearrangement of variables, that for each such i we
may take the corresponding j and k to satisfy 1 ≤ j, k ≤ max(2, t − r). Plainly, we
may further suppose that

m1 > · · · > mr and mr+1 > · · · > mt.

We also write k1 = max(m1, mr+1) ≥ 2 and K = m1 + · · · + mt to coincide with the
notation of the previous sections. Note that we may of course have all inequalities (r =
0) or all equations (r = t). When 1 ≤ r < t, the system (3.1) is genuinely mixed, and
we require a hybrid of the usual Hardy-Littlewood and Davenport-Heilbronn methods
to analyze it.

We introduce the functions

K(α) =

(
sin πα

πα

)2

and K(α) =
t∏

i=r+1

K(αi), (3.2)

and observe that one has

K(α)� min(1, |α|−2). (3.3)
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It is not difficult to show (see for example Baker [2], Lemma 14.1) that the Fourier
transform of K satisfies

K̂(y) =

∫ ∞
−∞

K(α) e(αy) dα = max(0, 1− |y|) (3.4)

for all real numbers y.
Now write s = 2u + v, where u and v satisfy the hypotheses of Theorem 1.1, and let

N(P ) denote the number of solutions of the system (3.1) satisfying

1 ≤ xj ≤ P (j = 1, . . . , v) and xj ∈ A(P, R) (j = v + 1, . . . , s).

On writing

F(α) =
v∏
j=1

Fj(α)
s∏

j=v+1

fj(α)

and using (3.4), one finds that

N(P ) ≥
∫
U

F(α)K(α) dα, (3.5)

where U = Tr × Rt−r. In order to obtain a lower bound for this integral, we consider
the following dissection of U. Let W = (log P )1/6t, and write

N(q, a) = {α ∈ Tt : |αi − ai/q| < WP−mi (1 ≤ i ≤ t)}. (3.6)

We define the major arcs N to be the union of the sets N(q, a1, . . . , ar, 0, . . . , 0) with
0 ≤ a1, . . . , ar ≤ q ≤ W and (q, a1, . . . , ar) = 1. For r + 1 ≤ i ≤ t, let Ti(P ) be as in
Lemma 2.5, but of course re-indexed as in (3.1), and define the trivial arcs to be the
set

t =

t⋃
i=r+1

{α ∈ U : |αi| > Ti(P )}.

Finally, we define the minor arcs by

n = U \ (N ∪ t).

By expressing the trivial arcs as a union of t-dimensional unit hypercubes, recalling
(3.3), and applying Lemma 2.3 with ω = v and ν = 2dv/2e, we find that under the
hypotheses of Theorem 1.1 one has∫

t

F(α)K(α) dα� P s−K
t∑

i=r+1

Ti(P )−1 = o(P s−K). (3.7)

Most of the work required to handle the minor arcs was accomplished in Lemma 2.5.
Before proceeding with the analysis, we pause to record an easy consequence of that
lemma.

Lemma 3.1. Write w = max(2, t− r). Then one has

sup
α∈n

w∏
j=1

|Fj(α)| = o(Pw).
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Proof. For each i with r + 1 ≤ i ≤ t, the discussion following (3.1) shows that we can
find indices j = j(i) and k = k(i), with 1 ≤ j, k ≤ w, for which λij/λik is irrational.
Thus on writing

ni = {α ∈ n : |αi| ≥WP−ki},
we deduce from an obvious generalization of Lemma 2.5 that

sup
α∈ni
|Fj(α)Fk(α)| = o(P 2) (r + 1 ≤ i ≤ t).

Now let n∗ = n \ (nr+1 ∪ · · · ∪ nt). Then by combining Lemma 2.4 with the argument
of Wooley [19], Lemma 7.4, one sees that

sup
α∈n∗
|Fj(α)| = o(P )

for each j, and the lemma follows. �
We can now rapidly dispose of the minor arcs. First of all, by using (3.3), we see

that for any δ > 0 one has∫
n

F(α)K(α) dα�
(

sup
α∈n

v∏
i=1

|Fi(α)|
)δ ∫

Tt
|Fj(α)|v(1−δ)|fk(α)|2u dα

for some j and k with 1 ≤ j ≤ v and v + 1 ≤ k ≤ s. Now set ω = v(1 − δ), and let
ν be the smallest even integer with ν ≥ v. In view of the hypotheses of Theorem 1.1,
we have ωσ(k) > ∆u and ω(2u + ν) > νk1(t + 1), on choosing δ sufficiently small. We
also have v ≥ w, and it therefore follows from Lemma 2.3 and Lemma 3.1 that∫

n

F(α)K(α) dα = o(P s−K). (3.8)

It now suffices to obtain a lower bound for the contribution of the major arcs N.
Write θj = (c1j, . . . , crj, λ(r+1)j , . . . , λtj), and let Sj(q, a) = S(q, θja), vj(β) = v(θjβ),
and wj(β) = w(θjβ). Then when α ∈ N(q, a) ⊆ N, we have by Theorem 7.2 of
Vaughan [18] that

Fj(α) = q−1Sj(q, a)vj(β) + O(W 2)

and by Lemma 8.5 of Wooley [19] that

fj(α) = q−1Sj(q, a)wj(β) + O(W 2P (log P )−1).

Since meas(N)�W r+t+1P−K , it follows easily that∫
N

F(α)K(α) dα = S(W )J(W ) + O(P s−KW r+t+3(log P )−1), (3.9)

where

S(W ) =
∑
q≤W

S(q), S(q) =
∑

1≤a1,...,ar≤q
(q,a1,...,ar)=1

s∏
j=1

q−1Sj(q, a),

and

J(W ) =

∫ WP−m1

−WP−m1

· · ·
∫ WP−mt

−WP−mt
K(β)

v∏
j=1

vj(β)

s∏
j=v+1

wj(β) dβ.
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We now complete the truncated singular series and singular integral to infinity by
writing

S =

∞∑
q=1

S(q) and J =

∫
Rt
K(β)

v∏
j=1

vj(β)

s∏
j=v+1

wj(β) dβ.

Lemma 3.2. Whenever s > k1(t + 1), the series S and the integral J are absolutely
convergent, and moreover one has

S−S(W )� W−σ and J − J(W )� P s−KW−σ

for some σ > 0.

Proof. On recalling (2.2), we find that

S(q)� qr−s/m1+ε, (3.10)

and the bounds for S follow immediately whenever s > m1(r+1). Now by (2.3), (2.4),
(3.3), and a change of variables, we have

J � P s−K
∫
Rt

t∏
i=1

(1 + |βi|)−s/tk1 dβ � P s−K

whenever s > tk1, and the bound for J − J(W ) follows similarly. �
It follows immediately from (3.9), Lemma 3.2, and our definition of W that∫

N

F(α)K(α) dα = SJ + O(P s−K(log P )−σ) (3.11)

for some σ > 0, so it suffices to analyze S and J . In view of our assumptions concerning
the integral sub-system in (1.1), the singular series is easily handled by the methods of
Wooley [19]. For the singular integral, however, we follow the approach of Schmidt [17],
which avoids the use of Fourier’s Integral Theorem. We record our results concerning
these two objects in the following lemma.

Lemma 3.3. Whenever s > k1(t + 1), one has S > 0 and J � P s−K.

Proof. We first deal with the singular series. On recalling (3.10), we see that the series

$p =

∞∑
h=0

S(ph)

is absolutely convergent and satisfies $p − 1 � p−1−δ for some δ > 0 whenever s >
m1(r + 1). We therefore find as in Wooley [19], Lemma 10.8, that S is represented by
the absolutely convergent product S =

∏
p $p, and that there exists an integer p0 such

that
1

2
≤
∏
p≥p0

$p ≤
3

2
.

It therefore suffices to show that $p > 0 for primes p < p0. Let Ms(q) denote the
number of solutions of the system of congruences

ci1x
mi
1 + · · ·+ cisx

mi
s ≡ 0 (mod q) (1 ≤ i ≤ r).
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By applying the argument of [18], Lemma 2.12, as in [19], Lemma 10.9, we find that∑
d|q

S(d) = qr−sMs(q),

and it follows that

$p = lim
h→∞

∑
d|ph

S(d) = lim
h→∞

ph(r−s)Ms(p
h).

Since we have assumed that the integral sub-system consisting of the r equations in
(3.1) possesses a non-singular p-adic solution for each prime p, we may apply a Hensel’s
Lemma argument as in Wooley [19], Lemma 6.7, to conclude that there exists an integer
u = u(p) <∞ such that for all h ≥ u one has

Ms(p
h) ≥ p(h−u)(s−r).

It follows that $p ≥ pu(r−s) for each p < p0, and thus S > 0.
It remains to handle the singular integral. Let T be a positive real number, and

introduce the functions

KT (β) =

(
sin πβT−1

πβT−1

)2

and KT (β) =

r∏
i=1

KT (βi).

Then on recalling (3.2) and (3.4), we find that

K̂T (y) =

∫ ∞
−∞

KT (β) e(βy) dβ = T max(0, 1− T |y|) (3.12)

for all real numbers y. Further, write

JT =

∫
Rt
KT (β) K(β)

v∏
j=1

vj(β)
s∏

j=v+1

wj(β) dβ.

It follows from (2.3), (2.4), and (3.3) that

J − JT � P s

∫
Rt

(1−KT (β))
t∏
i=1

(1 + P ki|βi|)−s/tk1 dβ, (3.13)

and a simple calculation reveals that

1−KT (β)� min(1, |β|2T−2).

Thus on making a change of variables in (3.13) and considering the resulting integral
over the regions |β| ≤ T and |β| > T separately, it is easily shown that

J − JT � P s−KT−1/t,

whenever s > k1(t + 1). Hence for any fixed P , we have

J = lim
T→∞

JT , (3.14)

and so it suffices to analyze JT . By making a change of variable, we find that

JT = P s

∫
B

H(γ)

r∏
i=1

K̂T (Pmigi(γ))

t∏
i=r+1

K̂(Pmigi(γ)) dγ, (3.15)
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where we have written

gi(γ) =

{
ci1γ

mi
1 + · · ·+ cisγ

mi
s (1 ≤ i ≤ r)

λi1γ
mi
1 + · · ·+ λisγ

mi
s (r < i ≤ t),

H(γ) =

s∏
j=v+1

ρ

(
log(Pγj)

log R

)
, and B = [0, 1]v × [R/P, 1]2u.

Since we have assumed that the system g1(γ) = · · · = gt(γ) = 0 possesses a non-
singular real solution η = (η1, . . . , ηs), the Implicit Function Theorem ensures that
locally near η there is an (s − t)-dimensional space of real solutions, continuously
parameterized by s − t of the coordinates. Therefore, by exploiting continuity as in
the proof of [19], Lemma 6.2, we may suppose that each ηj is non-zero. Further, by
replacing xj by−xj and changing the signs of the corresponding coefficients if necessary,
we may suppose that each ηj is positive and hence that η lies in the interior of B for
P sufficiently large. Now consider the map ϕ : Rs → Rs defined by

ϕj(γ) = gj(γ) (1 ≤ j ≤ t) and ϕj(γ) = γj (t < j ≤ s).

By the Inverse Function Theorem, there is an open set U ⊆ B containing η, and an
open set V containing (0, . . . , 0, ηt+1, . . . , ηs), such that ϕ maps U injectively onto V .
Since H(γ)� 1 on B and the integrand in (3.15) is non-negative, we have by a change
of variable that

JT � P s−K
∫
V ∗

r∏
i=1

K̂T (ui)

t∏
i=r+1

K̂(ui) du, (3.16)

where V ∗ is obtained by projecting V onto the first t components and then stretching
by a factor of Pmi in the direction of ui. In particular, it is clear that V ∗ contains the
set

D =

[
− 1

2T
,

1

2T

]r
×
[
−1

2
,
1

2

]t−r
whenever T ≥ 1 and P is sufficiently large. By (3.4) and (3.12), the integrand in
(3.16) is bounded below on D by 2−tT r, and one also has meas(D) � T−r. It follows
immediately that JT � P s−K for T ≥ 1, where the implicit constant is independent of
T . The lemma therefore follows from (3.14) on letting T →∞. �

In view of Lemma 3.3, the proof of Theorem 1.1 is now completed on assembling
(3.7), (3.8), and (3.11). Corollary 1.2 follows immediately on comparing the parameters
in Table 7.1 of [14] with the conditions of Theorem 1.1.

We now indicate how to deduce Corollary 1.3. Note first of all that the corollary
is well-known when t = 1, so we may suppose that t ≥ 2 if necessary. By applying
Theorems 2 and 3 of Wooley [20], we find that a mean value estimate of the shape
(1.5) holds with

∆ũ � (t log k1)
−1 (3.17)

and ũ = min(u1, u2), where

u1 ∼ 1
2
tk1 (log k1 + 3 log t + 4 log log k1)

and
u2 ∼ 1

2
k1

(
log(k1 · · · kt) + 3t2 + 6t log log k1 + 2t log t

)
.
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Thus by taking λ = 1/2t in Theorem 4 of Wooley [20], one obtains the Weyl estimate

sup
α∈m1/2

|f(α)| � P 1−σ(k)+ε,

where σ(k)−1 ∼ 4tũ � t2k1 log k1, and where m1/2 contains the set of minor arcs m

defined in §1. It therefore follows from (3.17) that we can find an integer ṽ � tk1 for
which 2ṽσ(k) > ∆ũ. By including two copies of F (α) and applying a Hardy-Littlewood
dissection as in the proof of Lemma 2.2, we find that the estimate (1.5) in fact holds
with ∆u = 0, where u = ũ + ṽ + 1. The first part of the corollary now follows by
applying Theorem 1.1 with this value of u and v = t.

Finally, if t ≥
√

k1, then we instead apply Vinogradov’s work (see [2], Theorem 4.4),
which allows us to take σ(k)−1 ∼ 8k2

1 log k1 in (1.6). Then on taking

u ∼ 1
2
tk1(3 log k1 − log t + 4 log log k1),

we see from [20], Theorem 2, that (1.5) holds with ∆u � t(k1 log k1)
−1. Hence Theorem

1.1 applies directly with v � tk1, and the last part of the corollary follows.
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