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1. Introduction

In this paper we continue the investigation begun in [11]. Let λ1, . . . , λs and µ1, . . . , µs be
real numbers, and define the forms

F (x) = λ1x
3
1 + · · ·+ λsx

3
s,

G(x) = µ1x
2
1 + · · ·+ µsx

2
s.

Further, let τ be a positive real number. Our goal is to determine conditions under which
the system of inequalities

|F (x)| < τ, |G(x)| < τ (1.1)

has a non-trivial integral solution. As has frequently been the case in work on systems of dio-
phantine inequalities (see for example Brüdern and Cook [6] and Cook [7]), we were forced in
[11] to impose a condition requiring certain coefficient ratios to be algebraic. A recent paper
of Bentkus and Götze [4] introduced a method for avoiding such a restriction in the study
of positive-definite quadratic forms, and these ideas are in fact flexible enough to be applied
to other problems. In particular, Freeman [10] was able to adapt the method to obtain
an asymptotic lower bound for the number of solutions of a single diophantine inequality,
thus finally providing the expected strengthening of a classical theorem of Davenport and
Heilbronn [9]. The purpose of the present note is to apply these new ideas to the system of
inequalities (1.1).

Write |x| = max(|x1|, . . . , |xs|), and let N(P ) denote the number of integral solutions of
the system (1.1) satisfying |x| ≤ P . We establish the following result.

Theorem 1. Suppose that s ≥ 13, and let λ1, . . . , λs and µ1, . . . , µs be real numbers such
that for some i and j both of the ratios λi/λj and µi/µj are irrational. Then one has

N(P ) � P s−5,

provided that

(i) the form F (x) has at least s− 4 variables explicit,
(ii) the form G(x) has at least s− 5 variables explicit, and
(iii) the system of equations F (x) = G(x) = 0 has a non-singular real solution.

In [11], we actually provided a more quantitative conclusion, in which the parameter τ in
(1.1) was replaced by an explicit function of |x|. Specifically, it was shown that when the
coefficients of F and G are algebraic then under the conditions of Theorem 1 the system

|F (x)| < |x|−σ1, |G(x)| < |x|−σ2 (1.2)
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has at least on the order of P s−5−σ1−σ2 integer solutions in the box |x| ≤ P , provided that
σ1 +σ2 < 1/12. Results of this nature do not appear to be obtainable in the current state of
knowledge without the restriction to algebraic coefficients. The reason is that the permissible
size of σ1 + σ2 is determined by the amount of “excess” savings one generates on the minor
arcs, but the Bentkus-Götze-Freeman method produces minor arc estimates of the form
o(P s−5) without giving any further indication of the actual order of magnitude.

Our proof of Theorem 1 is modeled on the paper of Freeman [10]. As usual, the main
challenge is to handle the minor arcs. We first seek to demonstrate that large Weyl sums
yield good rational approximations to the coefficients of F and G. This is essentially a
theorem of R. Baker [1] (see also [2] and [3]), but we require a slightly sharper version, which
we establish in §2. Then in §3 we are able to apply a two-dimensional version of Freeman’s
argument, combined with the methods of [11], to complete the proof. It should be noted that
much of the analysis underlying the results quoted from [11] dates to the work of Wooley
[13], [14] on simultaneous additive equations.

The author is grateful to Eric Freeman for alerting him to the work of Bentkus and
Götze [4], for supplying a preprint of his own paper [10], and for helpful discussions of these
important new ideas.

2. Diophantine Approximation Via Large Weyl Sums

As usual, we adopt the notation e(z) = e2πiz. From a result of Baker [1], we know that
whenever the exponential sum

F (α) =
∑

1≤x≤P

e(α3x
3 + α2x

2)

is large, one obtains good simultaneous rational approximations to the coefficients α2 and
α3. Unfortunately, the bound for the denominator of these approximations fails by a factor
of P ε to allow us to initiate a minor arc analysis along the lines of Freeman [10]. Therefore
we provide the following slight refinement, in the spirit of [10], Lemma 2.

Lemma 2.1. Let ε be a positive real number, and suppose that P is sufficiently large in
terms of ε. Suppose that |F (α)| ≥ γ1/8P , where P−1/64 ≤ γ ≤ 1. Then there is a positive
integer q, integers a2 and a3 satisfying (q, a2, a3) = 1, and absolute constants c0, c2, and c3,
such that

q ≤ c0γ
−65, |qα2 − a2| ≤ c2γ

−2P−2+ε, and |qα3 − a3| ≤ c3γ
−9P−3.

Proof. We follow Baker’s argument fairly closely, deviating only as necessary to save the
factor of P ε in the bound for q. In view of the conclusions of the lemma, we may assume
throughout that ε is sufficiently small. We have by a trivial extension of Freeman [10],
Lemma 2, that there exists a positive integer r, an integer b, and absolute constants C0 and
C3 satisfying

(b, r) = 1, r < C0γ
−64, and |rα3 − b| < C3γ

−8P−3. (2.1)

Applying Weyl differencing, we find that

|F (α)|2 ≤
∑
|h|<P

|S(h)|,
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where

S(h) = S(h; α) =
∑

1≤x≤P−h

e(3hα3x
2 + (3h2α3 + 2hα2)x). (2.2)

Trivially, we have |S(h)| ≤ P for all h, so∑
|h|≤ 1

5
γ1/4P

|S(h)| ≤ (2
5
γ1/4P + 1

)
P ≤ 1

2
γ1/4P 2

for P sufficiently large, and thus∑
1
5
γ1/4P<|h|<P

|S(h)| ≥ |F (α)|2 − 1
2
γ1/4P 2 ≥ 1

2
γ1/4P 2. (2.3)

Now the number of divisors of r is O(r1/256), so on using (2.1) and (2.3) we find that

1
2
γ1/4P 2 ≤

∑
d|r

∑
1
5
γ1/4P<|h|<P

(h,r)=d

|S(h)| ≤ cγ−1/4
∑

1
5
γ1/4P<|h|<P

(h,r)=D

|S(h)|

for some D dividing r and some absolute constant c. It follows that∑
1
5
γ1/4P<|h|<P

(h,r)=D

|S(h)| ≥ (2c)−1γ1/2P 2.

Moreover, on putting C = (8c)−1, we see that the terms for which |S(h)| ≤ Cγ1/2P contribute
at most 2Cγ1/2P 2 to this sum, so on writing

B = {h : 1
5
γ1/4P < |h| < P, (h, r) = D, and |S(h)| > Cγ1/2P},

we find that ∑
h∈B

|S(h)| ≥ 2Cγ1/2P 2,

and it follows that

card(B) ≥ 2Cγ1/2P. (2.4)

Choose any h ∈ B, and put b3 = 3hb. Then since |h| ≤ P we have by (2.1) that

|3hα3r − b3| < 3C3γ
−8P−2 < 1

64
P−1

for P sufficiently large. Furthermore, we have

|S(h)| > Cγ1/2P > r1/2P ε/6,

on choosing ε sufficiently small. Therefore, we may apply Baker’s final coefficient lemma
([2], Lemma 4.6) to obtain an approximation to the coefficient of the linear term in (2.2).
Writing d = (r, b3), we can find a positive integer t ≤ 8 such that

td−1|3hα3r − b3| ≤ C−2γ−1P−2+ε (2.5)

and

||trd−1(3h2α3 + 2hα2)|| ≤ C−2γ−1P−1+ε. (2.6)

We note for future reference that D|d and D ≤ d ≤ 3D.
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Now write x = x(h) = thD−1 and θ = 2rα2. On writing z for the nearest integer to xθ,
we find using (2.5) and (2.6) that

|xθ − z| ≤ dD−1||2trd−1hα2||
≤ 3||trd−1(3h2α3 + 2hα2)||+ 3htd−1||3hα3r|| ≤ 6C−2γ−1P−1+ε.

Put X = 8P and ζ = 6C−2γ−1P−1+ε. As h runs through the set B, the value of D is fixed,
and there are only 8 possible values for t, so (2.4) shows that we generate R distinct, non-zero
values of x, where

R ≥ 1
8
card(B) ≥ 1

4
Cγ1/2P. (2.7)

Then for P sufficiently large we have R > 24ζX, so by Lemma 14 of Birch and Davenport [5]
(see also Baker [2], Lemma 5.2) it must be the case that the ratio z/x is constant as h runs
through B. Therefore, we can find integers u and v, independent of h, with (u, v) = 1, such
that z/x = u/v for all values of x and corresponding values of z. Further, we can ensure
that v is positive. Since u and v are coprime, we must have v|x for all x. But

1
5
γ1/4PD−1 ≤ |x| ≤ 8PD−1, (2.8)

so it follows that R ≤ 16P (vD)−1 and hence by (2.7) we see that

vD ≤ 64C−1γ−1/2. (2.9)

Now for all h ∈ B we have by (2.7), (2.8), and (2.9) that

|vθ − u| = v|x|−1|xθ − z| ≤ 5vDγ−1/4P−1ζ ≤ 1920C−3γ−7/4P−2+ε.

Finally, we set q = 2vr, a2 = u, and a3 = 2vb. Then (2.1) and (2.9) give

q ≤ 2vDr ≤ c0γ
−64− 1

2 , (2.10)

where we have set c0 = 128C0C
−1. Furthermore, we have

|qα2 − a2| = |vθ − u| ≤ c2γ
−7/4P−2+ε (2.11)

and

|qα3 − a3| = 2v|rα3 − b| < 2C3vγ−8P−3 ≤ c3γ
−8− 1

2 P−3, (2.12)

where c2 = 1920C−3 and c3 = 48C3C
−1. If (q, a3, a2) 6= 1, then we may divide out the

common factor and still retain the inequalities (2.10), (2.11), and (2.12) above. The lemma
therefore follows on recalling that γ ≤ 1.

We remark that Lemma 2.1 sharpens Baker’s theorem only in cases where |F (α)| is nearly
of order P , which is the situation that arises in our application. Baker’s original theorem
gives good results for sums as small as P 3/4+ε, this fact having been thoroughly exploited in
our earlier paper [11].
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3. The Davenport-Heilbronn Method

We now recall the analytic set-up introduced in [11]. We may assume (after rearranging
variables) that the first m of the µi are zero, that the last n of the λi are zero, and that the
remaining h = s−m − n indices have both λi and µi nonzero. Then when s ≥ 13 we have
by conditions (i) and (ii) of Theorem 1 that

0 ≤ m ≤ 5, 0 ≤ n ≤ 4, and h ≥ 4. (3.1)

Furthermore, we may suppose that λI/λJ and µI/µJ are irrational, where

I = m + h− 2 and J = m + h− 1.

We may also assume that τ = 1, since this case may then be applied to the forms τ−1F (x)
and τ−1G(x) to deduce the general result. When P and R are positive numbers, let

A(P, R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R}
denote the set of R-smooth numbers up to P . Write α = (α3, α2), and define generating
functions

Fi(α) = Fi(α; P ) =
∑

1≤x≤P

e(λiα3x
3 + µiα2x

2)

and

fi(α) = fi(α; P, R) =
∑

x∈A(P,R)

e(λiα3x
3 + µiα2x

2).

It will also be convenient to write

gi(α3) = fi(α3, 0) and Hi(α2) = Fi(0, α2).

Further, we set R = P η. From now on, whenever a statement involves ε and R, it is intended
to mean that the statement holds for all ε > 0, provided that η is sufficiently small in terms
of ε. Finally, we assume throughout that P is chosen to be sufficiently large.

According to Davenport [8], there exists a real-valued even kernel function K of one real
variable such that

K(α) � min(1, |α|−2) (3.2)

and

K̂(t) =

∫ ∞

−∞
e(αt)K(α)dα




= 0, if |t| ≥ 1,

∈ [0, 1], if |t| ≤ 1,

= 1, if |t| ≤ 1
3
.

(3.3)

for all real numbers t. We set

K(α) = K(α3)K(α2).

Now let N(P ) be the number of solutions of the system (1.1) satisfying

xi ∈ A(P, R) (i = 1, . . . , m + h− 3)

and

1 ≤ xi ≤ P (i = m + h− 2, . . . , s).
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By using (3.3), one finds that

N(P ) ≥
∫ ∞

−∞

∫ ∞

−∞
F(α)G(α)H(α)K(α) dα, (3.4)

where

F(α) =
m+h−3∏

i=1

fi(α), H(α) =
m+h∏

i=m+h−2

Fi(α), and G(α) =
s∏

i=m+h+1

Fi(α).

Before describing the dissection of the plane into major, minor, and trivial arcs, we need
the following two lemmas, which are straightforward extensions of the ideas of Freeman [10],
Lemmas 3 and 4.

Lemma 3.1. Suppose that Sj and Tj are fixed real numbers satisfying

0 < Sj ≤ 1 ≤ Tj (j = 2, 3).

Then whenever {i, j} = {2, 3}, one has

lim
P→∞


 sup

Sj≤|αj |≤Tj

αi∈R

|FI(α; P )FJ(α; P )|
P 2


 = 0.

Proof. Let us first suppose that i = 2 and j = 3. For notational convenience, we write
(α3, α2) = (α, β). If the result fails to hold, then we can find ε > 0, a sequence of positive
real numbers {Pn} tending to ∞, and a sequence of ordered pairs {αn} = {(αn, βn)} with

S3 ≤ |αn| ≤ T3 and βn ∈ R (n ∈ Z
+),

such that

|FI(αn; Pn)FJ(αn; Pn)| ≥ εP 2
n

for all positive integers n. On making a trivial estimate, it follows that for each n one has

|Fi(αn; Pn)| ≥ εPn (i = I, J).

Whenever n is large enough so that Pn ≥ ε−512, we may apply Lemma 2.1 with γ = ε8. Thus
we obtain integers qin and ain satisfying

qin ≤ c0ε
−520 and |λiαnqin − ain| ≤ c3ε

−72P−3
n (i = I, J). (3.5)

It follows that for n sufficiently large one has

ain ≤ c0|λi|T3ε
−520 + c3ε

−72 � 1,

and hence there are only finitely many possible 4-tuples (aIn, qIn, aJn, qJn). So there must
be a 4-tuple (aI , qI , aJ , qJ) that occurs for infinitely many of the αn. The compactness of
[S3, T3] then ensures that among these αn we can find a subsequence {αn`

} converging to a
non-zero limit α0. We have

|λIαn`
qI − aI | ≤ c3ε

−72P−3
n`

and |λJαn`
qJ − aJ | ≤ c3ε

−72P−3
n`

for each `, so on letting ` →∞ we find that λI/λJ = aIqJ/(aJqI), contradicting the assump-
tion that λI/λJ is irrational.
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For the case where i = 3 and j = 2, we repeat the same argument except that in (3.5) we
use the second inequality of Lemma 2.1 instead of the third and eventually contradict the
irrationality of µI/µJ .

Lemma 3.2. There exist positive, real-valued functions Sj(P ) and Tj(P ), depending only
on λI , λJ , µI, and µJ , such that

lim
P→∞

Sj(P ) = 0 and lim
P→∞

Tj(P ) = ∞ (j = 2, 3)

and whenever {i, j} = {2, 3} one has

lim
P→∞


 sup

Sj(P )≤|αj |≤Tj(P )
αi∈R

|FI(α; P )FJ(α; P )|
P 2


 = 0.

Proof. Fix j = 2 or 3. Then for every positive integer m, Lemma 3.1 tells us that there is a
real number Pm = Pm,j such that

|FI(α; P )FJ(α; P )|
P 2

≤ 1

m
whenever P ≥ Pm and

1

m
≤ |αj| ≤ m,

and we may clearly assume that the sequence {Pm} is non-decreasing. Now when P satisfies
Pm ≤ P < Pm+1, we define

Sj(P ) =
1

m
and Tj(P ) = m.

It follows easily that

|FI(α; P )FJ(α; P )|
P 2

≤ 1

m
when P ≥ Pm and Sj(P ) ≤ |αj| ≤ Tj(P ),

and this suffices to complete the proof.

We are now ready to describe the dissection of the plane that will be used to evaluate the
integral (3.4). Let Tj(P ) be as in Lemma 3.2, and define the trivial arcs by

t = {α : |α3| > T3(P ) or |α2| > T2(P )}.
Write

λ = 18 max
1≤i≤s

|λi| and µ = 18 max
1≤i≤s

|µi|,
and define

M = {α : |α3| ≤ λ−1P−2 and |α2| ≤ µ−1P−1}
to be the major arc. Finally, the minor arcs are given by

m = R
2 \ (t ∪M).

As in [11] and [13], we have for any set n ∈ R
2 that∫

n

|F(α)G(α)|dα �
∫
n

|fi(α)|h−3|gj(α3)|m|Hk(α2)|ndα (3.6)

for some i, j, and k satisfying

m + 1 ≤ i ≤ m + h, 1 ≤ j ≤ m, and m + h + 1 ≤ k ≤ s. (3.7)
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With the abbreviations

f = |fi(α)|, g = |gj(α3)|, and H = |Hk(α2)|,
we find using (3.1) that

fh−3gmHn � P s−13
(
f 10 + f 6H4 + g6H4 + f 4g6

)
. (3.8)

In order to employ this decomposition, we need several mean value estimates. In each one,
we are required to obtain the full savings of P 5 with fewer than 13 variables present, as the
minor-arc bounds for FI and FJ stemming from Lemma 3.2 do not provide quantifiable gains
over the trivial estimates.

Lemma 3.3. Suppose that i, j, and k satisfy (3.7) and that m + h− 2 ≤ ` ≤ m + h. Then
for any t > 8/3 and any unit square U = [c, c + 1]× [d, d + 1], one has

(i)

∫
U

|F`(α)|t|fi(α)|10dα � P t+5,

(ii)

∫
U

|F`(α)|t|fi(α)|6|Hk(α2)|4dα � P t+5,

(iii)

∫
U

|F`(α)|t|gj(α3)|6|Hk(α2)|4dα � P t+5,

(iv)

∫
U

|F`(α)|t|fi(α)|4|gj(α3)|6dα � P t+5.

Proof. We dissect U into major and minor arcs as follows. Let

M(q, a, b) = {α ∈ U : |λ`α3q − a| < P−9/4 and |µ`α2q − b| < P−5/4},
and write

M =
⋃

0≤a,b≤q<P 3/4

(q,a,b)=1

M(q, a, b).

Then by Baker [2], Theorem 5.1, one has |F`(α)| � P 3/4+ε whenever α ∈ U \M. Therefore,
by part (i) of [11], Lemma 5 (see also [14], Theorem 2), one has∫

U\M

|F`(α)|t|fi(α)|10dα � P (3/4+ε)t · P 17/3+ε � P t+5

for ε sufficiently small, since t > 8/3. Similar minor arc bounds for the integrals in (ii)–(iv)
follow by using parts (ii)–(iv) of [11], Lemma 5.

For the major arcs, we again illustrate the argument by focusing attention on the integral
in part (i). By Hölder’s inequality, one has

∫
M

|F`(α)|t|fi(α)|10dα ≤

∫
M

|F`(α)|3tdα




1/3
∫
U

|fi(α)|15dα




2/3

,

and the result now follows on making a change of variables and using [11], Lemma 8, together
with part (v) of [11], Lemma 5. Estimates for the major arc integrals in (ii)–(iv) follow in
an identical manner on using parts (vi)–(viii) of [11], Lemma 5.
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The trivial arcs are now quite easy to handle. Since

|H(α)| ≤ |FI(α)|3 + |FJ(α)|3 + |FK(α)|3, (3.9)

where K = m + h, we find from (3.2), (3.6), (3.8), and Lemma 3.3 that∫
t

|F(α)G(α)H(α)K(α)| dα � (T2(P )−1 + T3(P )−1)P s−5,

and since Tj(P ) →∞ we see that this is o(P s−5).
Let us now tackle the minor arcs. We first subdivide m into two regions. Let Sj(P ) ≥ P−1

be as in Lemma 3.2, and put

m1 = {α ∈ m : |α3| ≥ S3(P ) or |α2| ≥ S2(P )}
and m2 = m \m1. We know from Lemma 3.2 that

sup
�∈m1

|FI(α)FJ(α)| = o(P 2). (3.10)

Now we need a similar result on the set m2. The basic idea is that if α ∈ m2 and |FI(α)|
is large, then λIα3 and µIα2 have good rational approximations, yet both are already close
to zero when P is large, since Sj(P ) → 0. We may therefore hope to get a contradiction
by showing that α must then in fact lie in the major arc. Suppose that α ∈ m2 and that
|FI(α)| ≥ γ1/8P , where

γ = (max{S2(P ), S3(P )})1/66 .

Since Sj(P ) ≥ P−1 we have γ ≥ P−1/66, and hence Lemma 2.1 applies. Thus we obtain
integers q, a2, and a3, with (q, a2, a3) = 1, such that

1 ≤ q ≤ c0γ
−65, |µIα2q − a2| ≤ c2γ

−2P−2+ε, and |λIα3q − a3| ≤ c3γ
−9P−3.

It follows that

|a3| ≤ c3γ
−9P−3 + |λIα3|q � γ−9P−3 + γ−65S3(P ) � P−2 + S3(P )1/66,

and similarly

|a2| ≤ c2γ
−2P−2+ε + |µIα2|q � γ−2P−2+ε + γ−65S2(P ) � P−1 + S2(P )1/66,

whence a2 = a3 = 0 when P is sufficiently large. Therefore we have |α3| � γ−9P−3 and
|α2| � γ−2P−2+ε. For sufficiently large P , this implies that α ∈ M and hence gives a
contradiction. We therefore conclude that

sup
�∈m2

|FI(α)| ≤ γ1/8P = o(P ). (3.11)

Now we are ready to complete the minor arc analysis. By (3.2) and (3.9), we have for some
` with m + h− 2 ≤ ` ≤ m + h and some unit square U that∫
m

|F(α)G(α)H(α)K(α)| dα� sup
�∈m

|FI(α)FJ(α)|1/8

∫
U

|F`(α)|11/4|F(α)G(α)| dα.

Therefore by (3.6), (3.8), (3.10), (3.11), and Lemma 3.3 we have∫
m

|F(α)G(α)H(α)K(α)| dα � sup
�∈m

|FI(α)FJ(α)|1/8P s−21/4 = o(P s−5).
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The treatment of the major arc is almost identical to that of [11], so our discussion will be
somewhat brief. As usual, we must prune back to a smaller set N on which we can obtain
asymptotics for the sums fi(α). We let W = (log P )1/4 and define

N = {α : |α3| ≤ WP−3 and |α2| ≤ WP−2}.
Then by using Hölder’s inequality, together with Lemma 9.2 of Wooley [13] and Lemma 3.3,
we find that ∫

M\N

|F(α)G(α)H(α)K(α)|dα � P s−5W−σ

for some σ > 0. It may be worth mentioning that Freeman [10] is able to avoid pruning
entirely in his work on a single inequality. The factor of P ε in our estimate for ||qα2|| in
Lemma 2.1 is what prevents us from extending the m2 analysis down to the boundary of N
in the α2 direction.

When α ∈ N, we are able to approximate Fi(α) and fi(α) by the functions

vi(α) =

∫ P

0

e(λiα3γ
3 + µiα2γ

2) dγ

and

wi(α) =

∫ P

R

ρ

(
log γ

log R

)
e(λiα3γ

3 + µiα2γ
2) dγ

as in [11]. Here ρ(x) denotes Dickman’s function (see for example Vaughan [12], chapter 12).
Thus we are able to show that∫

N

F(α)G(α)H(α)K(α) dα ∼ J(P ),

where

J(P ) =

∫ ∞

−∞

∫ ∞

−∞

(
m+h−3∏

i=1

wi(α)

)(
s∏

i=m+h−2

vi(α)

)
K(α) dα

denotes the singular integral. By arguing as in [11], we find that

J(P ) � P s

∫
B

K̂(F (γ)P 3)K̂(G(γ)P 2) dγ,

where B = [R/P, 1]m+h−3× [0, 1]n+3. Now by condition (iii) of Theorem 1 and the argument
of Lemma 6.2 of Wooley [13], we may assume that there is a non-singular solution η to the
equations F = G = 0 such that η lies in the interior of B when P is sufficiently large. By
the inverse function theorem, we are then able to find a set V ∈ R

2 containing the origin,
with meas(V ) � 1, such that

J(P ) � P s

∫
V

K̂(zjP
3)K̂(zkP

2) dz.

It now follows from (3.3) that J(P ) � P s−5, and this completes the proof of Theorem 1.
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