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Abstract. We obtain bounds for the number of variables required to establish Hasse
principles, both for existence of solutions and for asymptotic formulæ, for systems of
additive equations containing forms of differing degree but also multiple forms of like
degree. Apart from the very general estimates of Schmidt and Browning–Heath-Brown,
which give weak results when specialized to the diagonal situation, this is the first result
on such “hybrid” systems. We also obtain specialised results for systems of quadratic
and cubic forms, where we are able to take advantage of some of the stronger methods
available in that setting. In particular, we achieve essentially square root cancellation
for systems consisting of one cubic and r quadratic equations.

1. Introduction

When cij are nonzero integers and dj are natural numbers with d1 > . . . > dr, we
consider the solubility of the general system of additive forms

s∑
j=1

cijx
di
j = 0 (1 6 i 6 r) (1.1)

in integers x1, . . . , xs. There is a fundamental dichotomy in the strategy for handling
such systems, which depends on whether all forms are of the same degree. When the
degrees are the same, the classical approach is to make a linear change of variables
so that the mean values factor into a product of one-dimensional integrals, as in the
work of Davenport and Lewis [13], Cook [11], [12], and Brüdern and Cook [6], though
recently new ideas have become available in the work of Brüdern and Wooley [7, 8,
10, 9]. Meanwhile, when the dj are distinct, such investigations are made possible by
the iterative method of Wooley [22], [23], [24], which yields mean value estimates for
exponential sums of the shape

fk(α;A) =
∑
x∈A

e(α1x
k1 + · · ·+ αtx

kt)

when A is a set of suitably smooth integers. Here the second author [16] has obtained
bounds for pairs of equations in a handful of particular cases by optimizing over a large
collection of iterative schemes in the style of Vaughan and Wooley [21]. In [15], these
results were extended to pairs of diophantine inequalities and to more general mixed
systems with all degrees distinct.
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Additive systems in which some, but not all, of the degrees are repeated would seem to
require a hybrid of the two approaches, and the purpose of this paper is to present such
a strategy. The bounds we ultimately obtain are in line with what might be expected,
given the results discussed above.

It is convenient for the analysis to sort the equations in (1.1) by placing the various
degrees in order of decreasing multiplicity. For 1 6 l 6 t write kl,1, . . . , kl,ν(l) for those
distinct values of the exponents d1, . . . , dr that occur with the same multiplicity µl.
Plainly, we may suppose that µ1 > · · · > µt. Write further ρl = µlν(l) and

rl,n = µ1ν(1) + · · ·+ µl−1ν(l − 1) + µln (1 6 n 6 ν(l), 1 6 l 6 t) (1.2)

and let rl = rl,ν(l), so that rt = ρ1 + · · ·+ρt = r, and with the conventions that rl,0 = rl−1

and r0,0 = 0. We adopt the notation

Il,n = [rl,n−1 + 1, rl,n] (1 6 n 6 ν(l), 1 6 l 6 t),

Il = [rl−1 + 1, rl] (1 6 l 6 t).

After re-arranging the equations, we may then further suppose that the system takes
the shape

s∑
j=1

cijx
kl,n
j = 0 (i ∈ Il,n, 1 6 n 6 ν(l), 1 6 l 6 t).

We write Kl = kl,1 + · · ·+ kl,ν(l), and

K = d1 + · · ·+ dr = µ1K1 + · · ·+ µtKt

for the total degree of the system (1.1). We further write M = µ1 and adopt the
convention that µ0 = µt+1 = 0. We note that the two viewpoints (d1, . . . , dr) and (k;µ)
of organizing the degrees of the forms appearing in the system are both occasionally
useful, so we retain both notations.

In most cases, the number of variables required to establish local solubility in the
current state of technology (see for example the work of Knapp [14]) is larger than
what is needed to establish a local-global principle via the circle method, so we focus
our attention on the latter problem. We aim for two types of Hasse principles, one
for existence of solutions and one for asymptotic formulæ. For the problem concerning
existence of solutions, we make use of smooth number technology. Write

A(P,R) = {n ∈ [1, P ] : p|n, p prime⇒ p 6 R}
for the set of R-smooth numbers up to P . Throughout, we fix R = P η for some
sufficiently small positive number η = η(s,d).

We say that the system (1.1) is highly non-singular if for every 1 6 n 6 ν(l) and every
1 6 l 6 t one has

det(cij)i∈Il,n,j∈Jl 6= 0 (1.3)

for every µl-tuple Jl ⊆ {1, . . . , s}. At the cost of a few extra variables, one may replace
this condition by a weaker but more complicated rank condition across the blocks of
variables defined in Section 2 below. Since both conditions are satisfied by almost all
systems of the shape (1.1), we choose the former hypothesis for its simplicity and for
the additional flexibility it affords us in the analysis.
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Define

$h = ν(1) + · · ·+ ν(h). (1.4)

For any vector of distinct natural numbers kh = (kl,n)16n6ν(l)
16l6h

, write

k̃h = max
16n6ν(l)

16l6h

{kl,n}, k = k̃t, and µ = µt = min{µ1, . . . , µt}.

Furthermore, let u0(kh) denote the least integer u with the property that∫
[0,1)$h

|fkh(γ;A(P,R))|2u dγ � P 2u−(K1+···+Kh). (1.5)

Let G∗(d1, . . . , dr) = G∗(k;µ) denote the smallest integer s for which every highly non-
singular system (1.1) has the property that there exists a nontrivial positive integer
solution whenever there exist non-singular positive real solutions and non-singular p-
adic solutions for all primes p. Similarly, let v0(kh) denote the least integer v with the
property that ∫

[0,1)$h
|fkh(γ; [1, P ])|2v dγ � P 2v−(K1+···+Kh)+ε. (1.6)

Then write G̃∗(d1, . . . , dr) = G̃∗(k;µ) for the analogous number of variables required
(under the same local solubility hypotheses) to show that the number of solutions x ∈
[1, P ]s of every highly non-singular system is given by

N (P ) = (C + o(1))P s−K (1.7)

for some positive constant C = C(s,d).

Theorem 1.1. (A) Let s(kh) = max{u0(kh),
1
2
k(1 +$h)} for 1 6 h 6 t. Then one has

G∗(k;µ) 6 2
t∑

h=1

(µh − µh+1)s(kh) +M.

(B) Let s̃(kh) = max{v0(kh),
1
2
k(1 +$h)} for 1 6 h 6 t. Then one has

G̃∗(k;µ) 6 2
t∑

h=1

(µh − µh+1)s̃(kh) + 1.

Apart from general results of Birch [2] and Schmidt [18] and recently Browning and
Heath-Brown [5], which apply to more general (non-diagonal) systems, the bound in
Theorem 1.1 is the first of its kind, in which the diagonal structure is exploited to
obtain competitive bounds on the number of variables required. We note that, in the
presence of sufficiently strong mean value estimates so that the above maxima were
1
2
k(1 + $h) for all h, the bounds in (A) and (B) would become k(M + r) + M and
k(M + r) + 1, respectively. While conclusions of such strength are currently beyond
our grasp, Theorem 1.1 can be made explicit by inserting bounds from the literature.
In particular, by applying the results of Wooley [27, Theorem 1.1] and very recently
Bourgain, Demeter and Guth [3, Theorem 1.1] one obtains the following.
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Corollary 1.2. Suppose that di > 3 for all i, and write s̃1(kh) = max{1
2
k̃h(k̃h+1), 1

2
k(1+

$h)} for 1 6 h < t. Then one has

G̃∗(k;µ) 6 µk(k + 1) + 2
t−1∑
h=1

(µh − µh+1)s̃1(kh) + 1.

Here we are able to take v0(kh) = 1
2
k̃h(k̃h+1) in Theorem 1.1 (B), and in this instance

one easily verifies that v0(kt) = 1
2
k(k + 1) exceeds 1

2
k(1 + $t). Similarly, the results of

Wooley [23] (see also [15, Corollary 1.3]) show that one has u0(kh) 6 (1 + o(1))H(kh),
where

H(kh) = k̃h$h(log k̃h + 3 log$h),

with refined conclusions available for various ranges of the parameters. One may there-
fore derive bounds analogous to Corollary 1.2 for the function G∗(k;µ). We highlight
in particular some consequences of our results for the simplest collections of exponents
not covered by previous work.

Corollary 1.3. Let k and n be integers with k > n > 2. Then one has the bounds

G̃∗(k, k, n) 6 2k(k + 1) + 1, G̃∗(k, k, n, n) 6 2k(k + 1) + 1,

G̃∗(k, n, n) 6

{
k(k + 1) + n(n+ 1) + 1 if k 6 1

2
n(n+ 1)

k(k + 3) + 1 if k > 1
2
n(n+ 1),

and

G∗(k, k, n) 6 (6 + o(1))k log k, G∗(k, k, n, n) 6 (8 + o(1))k log k,

G∗(k, n, n) 6 (4 + o(1))k log k + 2n log n.

Observe that here it suffices to have k > n > 2, as in the results for G̃∗(k, k, n)

and G̃∗(k, k, n, n) we use the bounds v0(k, n) 6 1
2
k(k + 1) only, which hold for all

k > 3 regardless of the value of n. For G̃∗(k, n, n) one needs additionally the bound
v0(n) 6 1

2
n(n + 1), which holds for n > 3 by the bound of Wooley and Bourgain–

Demeter–Guth as above and for n = 2 by Hua’s Lemma.
While these bounds follow as a direct consequence of our more general estimates, one

would expect that a more detailed analysis of these special cases should yield better
results. In particular, the strategies of Wooley [26] for making the transition from com-
plete Vinogradov-type systems to incomplete systems associated with Waring’s problem
have the potential to be employed here to a greater extent. Thus, we may expect
some small improvements in the bounds for v0(k), which we have estimated trivially by
v0(1, 2, . . . , k). In fact, we may illustrate the potential of our methods by considering
certain systems of small degree.

Theorem 1.4. For systems of rQ quadratic and rC cubic equations one has the bounds

G̃∗(2, 3; rQ, rC) 6

{
4rQ + b(20/3)rCc+ 1 if rQ > rC ,

8rC + b(8/3)rQc+ 1 for rC > rQ.
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Furthermore, for rC > rQ we also have

G∗(3, 2; rC , rQ) 6 7rC + d(11/3)rQe.

Note that for systems of rQ quadratic forms and one cubic form Theorem 1.4 yields

G̃∗(2, 3; rQ, 1) 6 4rQ + 7 = 2 · (2rQ + 3) + 1,

so the bound achieves the square root barrier in this case, thus joining the small group
of examples for which we are able to establish bounds of this quality. Unfortunately,
for other situations we do not obtain equally strong results, largely due to the lack of
sufficiently powerful mean values. We also note that it may be possible to remove the
explicit assumption of non-singularity for the real and p-adic solutions by adapting work
of the first author [4]. We intend to pursue some of these refinements in future papers.

In Section 2, we establish our main mean value estimate, and we then prove Theo-
rem 1.1 in Sections 3 and 4 by applying the circle method. Finally, in Section 5 we
establish a few auxiliary results that will allow us to refine our arguments to obtain
the bounds advertised in Theorem 1.4 for systems of cubic and quadratic equations in
Section 6.

The authors are grateful to Trevor Wooley for many helpful conversations and sugges-
tions. This work originated with a visit of the first author to West Chester University
and was facilitated by a subsequent workshop at Oberwolfach; the authors thank both
institutions for their hospitality and support.

2. The mean value estimate

The following notational conventions will be observed throughout the paper. Any
expression involving the letter ε will be true for any (sufficiently small) ε > 0. Con-
sequently, no effort will be made to track the respective ‘values’ of ε. Also, any state-
ment involving vectors is to be understood componentwise. In this spirit, we write
(q,b) = (q, b1, . . . , bn) whenever b ∈ Zn, and we interpret a vector inequality of the
shape C 6 b 6 D to mean that C 6 bi 6 D for i = 1, . . . , n.

For α ∈ [0, 1)r define

γj,l,n =

rl,n∑
i=rl,n−1+1

cijαi (1 6 j 6 s, 1 6 n 6 ν(l), 1 6 l 6 t) (2.1)

and write γj = (γj,l,n)16n6ν(l),16l6t. Furthermore, set fj(α;A) = f(γj;A) where A =
[1, P ] or A = A(P,R), with the convention that the explicit mention of the set A will be
suppressed whenever there is no danger of confusion. We partition the indices {1, . . . , s}
into M + 1 blocks

{1, . . . , s} = B0 ∪
t⋃

h=1

µh−µh+1⋃
m=1

Bh,m, (2.2)

where each block Bh,m is of size 2uh with any excess variables placed into the block B0,
and define

s0 =
t∑

h=1

(µh − µh+1)uh. (2.3)
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Consider the mean value

Iu,k,µ(A) =

∫
[0,1)r

t∏
h=1

µh−µh+1∏
m=1

∏
j∈Bh,m

fj(α;A) dα. (2.4)

This mean value may be bounded in terms of simpler mean values.

Theorem 2.1. For A = [1, P ] or A = A(P,R) one has

Iu,k,µ(A)�
t∏

h=1

(Juh,kh(A))µh−µh+1 ,

where Juh,kh(A) denotes the mean value

Juh,kh(A) =

∫
[0,1)$h

|fkh(γ;A)|2uh dγ.

In particular, this implies that we will have a perfect mean value estimate for Iu,k,µ(A)
as soon as we have perfect estimates for the primitive mean values Juh,kh(A) for 1 6
h 6 t.

Corollary 2.2. Suppose uh is large enough that one has

Juh,kh(A)� P 2uh−(K1+···+Kh)+ε (1 6 h 6 t).

Then

Iu,k,µ(A)� P 2s0−K+ε.

This follows from the theorem on observing that
t∑

h=1

(K1 + · · ·+Kh)(µh − µh+1) = K1µ1 + · · ·+Ktµt = K.

Proof of Theorem 2.1. Set A = [1, P ] or A = A(P,R), and write

s0(h) =
h∑
l=1

(µl − µl+1)ul (1 6 h 6 t) and s0(0) = 0,

so that s0(t) = s0.
First of all, by making a trivial estimate and applying the trivial inequality

|z1 · · · zn| 6 |z1|n + · · ·+ |zn|n, (2.5)

we find that

Iu,k,µ(A)�
∫

[0,1)r

t∏
h=1

µh−µh+1∏
m=1

|f(γj(h,m);A)|2uh dα (2.6)

for some j(h,m) ∈ Bh,m. Observe that the mean value on the right hand side of (2.6)
counts solutions to the system

t∑
h=1

µh−µh+1∑
m=1

ci,j(h,m)ξh,m(kl,n) = 0 (i ∈ Il,n, 1 6 n 6 ν(l), 1 6 l 6 t), (2.7)
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where we wrote

ξh,m(k) =
∑

j∈B(h,m)

(−1)jxkj .

We now choose the sets Jl occurring in (1.3) according to (2.6) as

Jl = {j(h,m) : 1 6 m 6 µh − µh+1, l 6 h 6 t},
where j(h,m) ∈ Bh,m for all h and m. Let J = J1, write Cl,n for the (µl ×M)-matrix
defined by

Cl,n = (cij)i∈Il,n,j∈J (1 6 n 6 ν(l), 1 6 l 6 t), (2.8)

and let

ξl,n =
(
ξh,m(kl,n)

)
16m6µh−µh+1,l6h6t

∈ Zµl .

Then the system (2.7) can be written more compactly as

Cl,nξl,n = 0 (1 6 n 6 ν(l), 1 6 l 6 t).

We prove the statement by induction. Consider the case l = 1. In view of the
nonsingularity condition (1.3), we have detC1,n 6= 0 for 1 6 n 6 ν(1), and it follows
that the equations

C1,1ξ1,1 = · · · = C1,ν(1)ξ1,ν(1) = 0

are satisfied if and only if

ξ1,1 = · · · = ξ1,ν(1) = 0. (2.9)

Consider now those equations within (2.9) that correspond to h = 1. On recalling that
|B(1,m)| = 2u1, we see that this subsystem consists of µ1 − µ2 copies of the system

2u1∑
j=1

(−1)jx
k1,n

j = 0 (1 6 n 6 ν(1)),

whose solutions are counted by the mean value Ju1,k1(A). It follows that the total number
of solutions of the subsystem corresponding to h = 1 is given by (Ju1,k1(A))µ1−µ2 .

Suppose now that for some l with 2 6 l 6 t the systems

ξh,1 = · · · = ξh,ν(h) = 0 (1 6 h 6 l − 1), (2.10)

have been solved, so that all variables xj with j ∈ Bh,m, 1 6 m 6 µh − µh+1, and
1 6 h 6 l−1 are determined. This fixes the values of ξh,m(kl′,n) for all 1 6 m 6 µh−µh+1

and 1 6 h 6 l − 1 for all degrees kl′,n with 1 6 n 6 ν(l′), l 6 l′ 6 t. We now seek to
solve the subsystem associated to the degrees kl,1, . . . , kl,ν(l). Upon writing

al,n =
(
ξh,m(kl,n)

)
16m6µh−µh+1,16h6l−1

∈ ZM−µl

for the vector of variables already determined, then the system is of the shape Cl,nζl,n = 0
for 1 6 n 6 ν(l), where ζl,n = (al,n; ξl,n). The nonsingularity condition implies that
Cl,n = [Al,n|Bl,n], where Bl,n is a (µl × µl)-matrix with det(Bl,n) 6= 0 for 1 6 n 6 ν(l).
Hence the system in question is equivalent to the system

Bl,nξl,n + Al,nal,n = 0 (1 6 n 6 ν(l)). (2.11)
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Write p = −(Al,nal,n)16n6ν(l) ∈ Zρl and αl for the vector comprising those components
of α corresponding to the set Il. Further, write k(l) = (kl,1, . . . , kl,ν(l)) and set f = fk(l).
Then the number of solutions of the system (2.11) is given by∫

[0,1)ρl

t∏
h=l

µh−µh+1∏
m=1

|f(γj(h,m);A)|2uhe(αl · p) dαl

6
∫

[0,1)ρl

t∏
h=l

µh−µh+1∏
m=1

|f(γj(h,m);A)|2uh dαl,

and here the latter integral counts solutions of the system

Bl,nξl,n = 0 (1 6 n 6 ν(l)).

Since the non-singularity condition implies that det(Bl,n) 6= 0, we therefore deduce that
the number of solutions to (2.11) is bounded above by the number of solutions of the
system

ξl,n = 0 (1 6 n 6 ν(l)),

and the contribution stemming from the case h = l can be interpreted as µl−µl+1 copies
of the system

2ul∑
j=1

(−1)jx
kl,n
j = 0 (1 6 n 6 ν(l)).

Combining this with (2.10), we find that the number of choices for the variables in each
of the blocks B(l,m) with 1 6 m 6 µl − µl+1 is bounded above by the mean value
Jul,kl(A). It now follows by induction that

Iu,k,µ(A)�
t∏
l=1

(Jul,kl(A))µl−µl+1 ,

and this completes the proof of the theorem. �

3. The minor arcs

We now describe our Hardy-Littlewood dissection. For the purpose of the very general
Theorem 1.1 we can afford to economize on effort by working exclusively with a narrow
set of major arcs. The weakness of the ensuing minor arc estimates is of little consequence
to the quality of our bounds, and we avoid pruning arguments.

We take X 6 P to be a parameter tending to infinity with P . Define the major arc

M(q, a;X) = {α ∈ [0, 1)r : |qαi − ai| 6 XP−di , 1 6 i 6 r},

and write M(X) for the union of all M(q, a;X) with 1 6 a 6 q, (q, a) = 1, and
1 6 q 6 X. We then write m(X) = [0, 1)r\M(X) for the minor arcs.

We establish a Weyl-type estimate by exploiting the non-singularity condition for an
M -tuple of exponential sums.
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Lemma 3.1. Suppose that α ∈ m(X). Then there exists σ > 0 such that for each
M-tuple (j1, . . . , jM) of distinct indices there exists an index ji for which one has

|fji(α; [1, P ])| 6 PX−σ.

Proof. Fix j as in the statement of the lemma, let σ < 1/(2k), and suppose that for some
α ∈ [0, 1)r one has |fji(α; [1, P ])| > PX−σ for each i = 1, . . . ,M . Then [15], Lemma 2.4,
implies that there exists q � X2kσ for which

‖qγji,l,n‖ � X2kσP−kl,n (1 6 n 6 ν(l), 1 6 l 6 t, 1 6 i 6M). (3.1)

For ease of reference to the coordinate transform matrices defined in the previous section,
we find it convenient to partition the indices as in (2.2), with j1, . . . , jM occurring in
distinct blocks. Thus we write j = (ji)16i6M = (j(m,h))16m6µh−µh+1,16h6t, and for each
l and n write

γ∗l,n =
(

(γj(h,m),l,n)16m6µh−µh+1
l6h6t

)T
and αl,n = (αrl,n−1+1, . . . , αrl,n)T .

We also write γl,n for the extension of γ∗l,n to all 1 6 h 6 t. Then the relations (2.1) give

γl,n = CT
l,nαl,n (1 6 n 6 ν(l), 1 6 l 6 t),

where Cl,n = [Al,n|Bl,n] is the µl ×M coefficient matrix defined in (2.8). It follows from
(1.3) that det(Bl,n) 6= 0 and hence that

αl,n = (BT
l,n)−1γ∗l,n (1 6 n 6 ν(l), 1 6 l 6 t).

Thus for each i with rl,n−1 + 1 6 i 6 rl,n, one has

αi =
t∑
h=l

µh−µh+1∑
m=1

bj(h,m),iγj(h,m),l,n,

where the bj(h,m),i are entries of the matrix (BT
l,n)−1 whose moduli are hence bounded

above by some absolute constant. It follows from (3.1) that

‖qαi‖ 6
t∑
h=l

µl−µl+1∑
m=1

|bj(h,m),i|‖qγj(h,m),l,n‖ � X2kσP−kl,n .

We therefore deduce that α ∈M(X) for X sufficiently large, and the result follows. �

We now complete the analysis of the minor arcs for Theorem 1.1. For case (B), we
set s = 2s0 + 1, write fj(α) = fj(α; [1, P ]), and set

Ñs,k,µ(B) =

∫
B

s∏
j=1

fj(α) dα. (3.2)

For j = 1, . . . ,M and σ > 0, let m(j) denote the set of α ∈ [0, 1)r for which |fj(α)| 6
PX−σ. For a given index j, we partition the remaining 2s0 indices into blocks Bh,m

with |Bh,m| = 2uh, where uh = v0(kh) as in (1.6), so that

Ñs,k,µ(m(j))� PX−σIu,k,µ([1, P ]). (3.3)



10 J. BRANDES AND S. T. PARSELL

Lemma 3.1 ensures that there exists σ for which m ⊆ m(1) ∪ · · · ∪ m(M), and it follows
from Corollary 2.2 that whenever X is a small power of P and ε is small enough one has

Ñs,k,µ(m)� PX−σP 2s0−K+ε � P s−KX−σ/2. (3.4)

In case (A) we set s = 2s0 +M and partition the indices j = M + 1, . . . , s as before, but
with the block sizes uh = u0(kh) determined by (1.5). Here we write

Ns,k,µ(B) =

∫
B

M∏
i=1

fi(α)
t∏

h=1

µh−µh+1∏
m=1

∏
j∈Bh,m

gj(α) dα,

where we suppose that fi(α) = fi(α; [1, P ]) for 1 6 i 6 M and gj(α) = fj(α,A(P,R))
for M + 1 6 j 6 s. Then it follows from Lemma 3.1 that

Ns,k,µ(m)� PMX−σIu,k,µ(A(P,R)),

and when ε is sufficiently small an application of Corollary 2.2 delivers the bound

Ns,k,µ(m)� P s−KX−σ/2. (3.5)

This completes the analysis of the minor arcs in the setting of Theorem 1.1.

4. The major arcs

We complete the proof of Theorem 1.1 by obtaining the expected contribution from
our thin set of major arcs. Although the analysis is in principle relatively routine,
the combination of repeated and differing degrees requires us to exercise some care in
adapting existing approaches. As with our minor arc estimates, we make critical use of
the non-singularity condition to extract non-singular sub-matrices of coefficients.

Set X = (logP )1/(6r) if A = A(P,R) and X = P 1/(6r) when A = [1, P ], and consider
the slightly expanded major arcs

N(X) =
X⋃
q=1

q⋃
a=1

(q,a)=1

N(q, a;X),

where N(q, a;X) is given by the set of all α ∈ [0, 1)r satisfying

|αl,n − q−1al,n| 6 XP−kl,n (1 6 n 6 ν(l), 1 6 l 6 t).

Then n(X) = [0, 1)r \N(X) ⊆ m(X), and the work of the previous section implies that
the contribution of the minor arcs is negligible compared to the expected main term.

We write

S(q, a) =

q∑
x=1

e
(
(a1,1x

k1,1 + · · ·+ at,ν(t)x
kt,ν(t))/q

)
and recall that the argument of [20], Theorem 7.1 (see also [15], equation (2.2)) gives

S(q, a)� (q, a)1/kq1−1/k+ε. (4.1)



SIMULTANEOUS ADDITIVE EQUATIONS 11

Further define ω = 0 if A = [1, P ] and ω = 1 when A = A(P,R), and set

v(β;P ) =

∫ P

ωR

ρ

(
log z

logR

)ω
e(β1,1z

k1,1 + · · ·+ βt,ν(t)z
kt,ν(t)) dz,

where ρ denotes Dickman’s function. We recall from the arguments of [20, Theorem 7.3]
and [22, Lemma 8.6] (see also [15], equations (2.3) and (2.4)) the estimate

v(β;P )� P

(
1 +

t∑
l=1

ν(l)∑
n=1

|βl,n|P kl,n

)−1/k

. (4.2)

It then follows easily that when α = a/q + β ∈ N(q, a, X) ⊆ N(X), one has

fj(α) = q−1S(q,Λj)v(δj;P ) +O(X2P ω(logP )−ω),

where

Λj,l,n =

rl,n∑
i=rl,n−1+1

cijai (1 6 j 6 s, 1 6 n 6 ν(l), 1 6 l 6 t) (4.3)

and

δj,l,n =

rl,n∑
i=rl,n−1+1

cijβi (1 6 j 6 s, 1 6 n 6 ν(l), 1 6 l 6 t), (4.4)

so that δ = γ −Λ/q. We write Sj(q, a) = S(q,Λj) and vj(β;P ) = v(δj;P ), and define

S(X) =
∑
q6X

∑
16a6q
(q,a)=1

s∏
j=1

q−1Sj(q, a) and J(X) =

∫
I(P,X)

s∏
j=1

vj(β;P ) dβ,

with

I(P,X) =
t×
l=1

ν(l)

×
n=1

[−XP−kl,n , XP−kl,n ]µl .

Then since volN(X)� X2r+1P−K , one finds that∫
N(X)

f1(α) · · · fs(α) dα = S(X)J(X) +O(P s−K(logP )−ν) (4.5)

for some ν > 0.
We now show that one can complete the singular series and singular integral as usual

by defining, for each fixed P ,

S = lim
Y→∞

S(Y ) and J = lim
Y→∞

J(Y ). (4.6)

We first complete the singular series. Write

A(q) = q−s
∑

16a6q
(q,a)=1

s∏
j=1

Sj(q, a),
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and note that A(q) is multiplicative in q, whence the singular series, if convergent, can
be written as

S =
∏
p

∞∑
i=0

A(pi). (4.7)

We show that the product in (4.7) converges.

Lemma 4.1. Suppose that the system (1.1) is highly non-singular with s > 2s0, where
s0 is given by (2.3) with

uh >
k

2
(1 +$h) (1 6 h 6 t).

Then the singular series is absolutely convergent, and one has

S−S(X)� X−δ

for some δ > 0.

Proof. We partition the indices as in (2.2) and let vh = 2uh + (s − 2s0)/M > 2uh for
1 6 h 6 t. Then one has

t∑
h=1

vh(µh − µh+1) = s,

and hence by (2.5) there exists j ∈ B1,1 × · · · ×Bt,µt with the property that

∑
16a6q
(q,a)=1

s∏
j=1

Sj(q, a)�
∑

16a6q
(q,a)=1

t∏
h=1

µh−µh+1∏
m=1

|Sj(h,m)(q, a)|vh .

We now apply the change of variables (4.3). Thus, on writing al,n = (arl,n−1+1, . . . , arl,n)T

and Λ∗l,n = (Λj(h,m),l,n)Th,m with 1 6 m 6 µh − µh+1 and l 6 h 6 t, we obtain Λ∗l,n =

BT
l,nal,n, where the matrix Bl,n is as in (2.11). In particular, one has detBl,n 6= 0 for

all 1 6 n 6 ν(l) and 1 6 l 6 t. As a result, the remaining coefficients Λj(h,m),l,n with
1 6 m 6 µh − µh+1 and 1 6 h 6 l− 1 may be expressed as linear combinations of those
Λj(h,m),l,n having h > l. Then on writing

Λj(h,m) = (Λj(h,m),l,n)16n6ν(l)
16l6t

and Λ = (Λj(h,m))16m6µh−µh+1
16h6t

,

the invertibility of the transformation further implies that the coefficients of Λ occurring
in these relations satisfy (q,Λ) � 1 whenever (q, a) = 1. Hence there exist constants
C,C ′ for which

∑
16a6q
(q,a)=1

t∏
h=1

µh−µh+1∏
m=1

|Sj(h,m)(q, a)|vh �
∑
|Λ|6Cq

(q,Λ)6C′

t∏
h=1

µh−µh+1∏
m=1

|S(q,Λj(h,m))|vh .
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It follows from (4.1) that

A(pi)� p−is
∑
|Λ|6Cpi

(pi,Λ)6C′

t∏
h=1

µh−µh+1∏
m=1

|S(pi,Λj(h,m))|vh

� p−is/k+ε
∑
|Λ|6Cpi

(pi,Λ)6C′

t∏
h=1

µh−µh+1∏
m=1

(pi,Λj(h,m))
vh/k.

Let κ(p) denote the largest integer satisfying pκ(p) 6 C ′ and define eh,m via (pi,Λj(h,m)) =
peh,m . Then one has

A(pi)� p−is/k+ε
∑

e

( t∏
h=1

µh−µh+1∏
m=1

peh,mvh/k
)

Ξ(pi, e),

where the sum is over all 0 6 eh,m 6 i with the condition that eh,m 6 κ(p) for at
least one pair of indices (h,m), and Ξ(pi, e) denotes the number of Λ 6 Cpi satisfying
(pi,Λj(h,m)) = peh,m for every h and m. Recalling that for h < l the coefficients Λj(h,m),l,n

are linearly dependent on (Λj(h,m),l,n)h>l, it suffices to determine the number of choices
for those coefficients where h > l, in which case the number of choices for any given
Λj(h,m),l,n is certainly bounded above by pi−eh,m . It follows that

Ξ(pi, e)�
t∏
l=1

t∏
h=l

µh−µh+1∏
m=1

(
pi−eh,m

)ν(l) � pir
t∏

h=1

µh−µh+1∏
m=1

p−eh,m$h ,

where we used (1.2) and (1.4). Thus altogether we have the estimate

A(pi)� p−is/k+ir+ε
∑

e

t∏
h=1

µh−µh+1∏
m=1

peh,m(vh/k−$h).

Observe that the sum over e essentially amounts to a divisor function with the additional
constraint that at least one of the eh,m must be bounded above by κ(p) in order to satisfy
coprimality. Thus after executing the summation one finds that A(pi)� p−i(s/k−r)+ξ+ε,
where

ξ 6 i
( t∑
h=1

(µh − µh+1)(vh/k −$h)
)
− (i− κ(p)) min

h
(vh/k −$h)

= i(s/k − r)− (i− κ(p)) min
h

(vh/k −$h),

and since pκ(p) is bounded by an absolute constant, we obtain

A(pi)� p−iminh(vh/k−$h)+ε. (4.8)

On recalling that

uh >
k

2
(1 +$h) (1 6 h 6 t),
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the fact that vh > 2uh implies that one has A(pi)� pi(−1−τ) for some τ > 0, uniformly
for i ∈ N. It follows that

S =
∏
p

(
1 +

∞∑
i=1

A(pi)

)
6
∏
p

(1 + cp−1−τ )

for some constant c > 0, and this establishes the convergence of the singular series in
the setting of Theorem 1.1. The second assertion of the lemma follows immediately. �

We now turn to the completion of the singular integral.

Lemma 4.2. Suppose that the system (1.1) is highly non-singular with s > 2s0, where
s0 is given by (2.3) with

uh >
1
2
k$h (1 6 h 6 t).

Then the singular integral is absolutely convergent, and one has

J− J(X)� P s−KX−ν

for some ν > 0.

Proof. Firstly, observe that by a change of variables one has

J(X)� P s−K
∫

[−X,X]r

s∏
j=1

vj(β; 1) dβ.

We now partition the indices as in (2.2). By (2.5), there exists j ∈ B1,1 × · · · ×Bt,µt

with the property that

J− J(X)� P s−K
∫
R

t∏
h=1

µh−µh+1∏
m=1

|vj(h,m)(β; 1)|2uh dβ,

where the set R contains all vectors β satisfying

max
16l6t

max
16n6ν(l)

max
i∈Il,n
|βi| > X.

We make the change of variables (4.4), and write

βl,n = (βrl,n−1+1, . . . , βrl,n)T and δ∗l,n =
(

(δj(h,m),l,n)16m6µh−µh+1
l6h6t

)T
.

We then find as above that δ∗l,n = (Bl,n)Tβl,n and detBl,n 6= 0 (1 6 n 6 ν(l), 1 6 l 6 t).
Hence the remaining coordinates δj(h,m),l,n with 1 6 m 6 µh − µh+1 and 1 6 h 6 l − 1
are linear combinations of those δj(h,m),l,n having 1 6 m 6 µh− µh+1 and l 6 h 6 t, and
the non-singularity of the coordinate transform implies further that

max
16l6t

max
16n6ν(l)

max
l6h6t

max
16m6µh−µh+1

|δj(h,m),n,l| � X

whenever β ∈ R. We will write δ(i) for the vector comprising all δj(h,m),l,n with i 6 l 6
h 6 t, 1 6 n 6 ν(l), and 1 6 m 6 µh − µh+1. After integrating with respect to those
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components of δ = δ(1) having l = 1, one obtains from (4.2) that

J�
∫
Rr

t∏
h=1

µh−µh+1∏
m=1

(
1 +

t∑
l=1

ν(l)∑
n=1

|δj(h,m),l,n|
)− 2uh

k

dδ

�
∫
Rr−r1

t∏
h=1

µh−µh+1∏
m=1

(
1 +

t∑
l=2

ν(l)∑
n=1

|δj(h,m),l,n|
)− 2uh

k
+ν(1)

dδ(2),

provided that uh >
k
2
ν(1) for all h. The resulting integral may be simplified by exploiting

the fact that the variables δj(1,m),l,n with l > 2 are linear combinations of the components

of δ(2). This implies that

J�
∫
Rr−r1

t∏
h=2

µh−µh+1∏
m=1

(
1 +

t∑
l=2

ν(l)∑
n=1

|δj(h,m),l,n|
)− 2uh

k
+ν(1)+(µ1−µ2)(− 2u1

k
+ν(1))

dδ(2)

�
∫
Rr−r1

t∏
h=2

µh−µh+1∏
m=1

(
1 +

t∑
l=2

ν(l)∑
n=1

|δj(h,m),l,n|
)− 2uh

k
+ν(1)

dδ(2),

where in the last step we used the assumption u1 >
k
2
ν(1) again to simplify the exponent.

We may now iterate the procedure for increasing values of l. Thus, provided that
uh >

k
2
(ν(1) + ν(2)) for all h > 2, the same argument yields

J�
∫
Rr−r2

t∏
h=2

µh−µh+1∏
m=1

(
1 +

t∑
l=3

ν(l)∑
n=1

|δj(h,m),l,n|
)− 2uh

k
+ν(1)+ν(2)

dδ(3)

�
∫
Rr−r2

t∏
h=3

µh−µh+1∏
m=1

(
1 +

t∑
l=3

ν(l)∑
n=1

|δj(h,m),l,n|
)− 2uh

k
+ν(1)+ν(2)

dδ(3),

and after t iterations we obtain convergence if uh >
1
2
k$h (1 6 h 6 t). Furthermore, it

is clear that under the same condition one has

J− J(X)� P s−K
∫
R

t∏
h=1

µh−µh+1∏
m=1

|vj(h,m)(β, 1)|2uh dβ � P s−KX−ν (4.9)

for some ν > 0. �

A coordinate transform now shows that J = P s−Kχ∞ with

χ∞ =

∫
Rr

∫
[0,1]s

e
( r∑
i=1

βiΘi(ζ)
)

dζ dβ,

where Θi(x) = ci1x
di
1 + · · · + cisx

di
s , and it follows from Lemma 4.2 that χ∞ is a finite

constant. Furthermore, the argument of [16, Lemma 7.4] is easily adapted to prove that,
under the conditions of Lemma 4.2, this constant is positive whenever the system (1.1)
possesses a non-singular real solution in the positive unit hypercube.
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Also, a standard argument yields

χp =
∞∑
i=0

A(pi) = lim
i→∞

p−i(s−r)M(pi),

where M(pi) denotes the number of solutions of the congruences to the modulus pi which
correspond to the equations (1.1). It follows from (4.8) that χp = 1 + O(p−1) > 1

2
for p

sufficiently large, and for small primes one uses Hensel’s lemma to deduce that χp > 0
if the system (1.1) possesses a non-singular p-adic solution. The proof of Theorem 1.1
is now complete on recalling (3.4), (3.5), (4.5), Lemma 4.1, and Lemma 4.2, and the
constant in (1.7) is given by C = χ∞

∏
p χp.

5. Auxiliary estimates for systems of cubics and quadratics

The proof of Theorem 1.4 requires a more careful treatment. In this section we collect
a number of auxiliary results that will be of use when we complete the proof in the final
section. Here the system is given by

ci1x
3
1 + · · ·+ cisx

3
s = 0 (1 6 i 6 rC),

di1x
2
1 + · · ·+ disx

2
s = 0 (1 6 i 6 rQ), (5.1)

whence the relation (2.1) reduces to

γ2,j =

rQ∑
i=1

dijα2,i and γ3,j =

rC∑
i=1

cijα3,i, (5.2)

and the exponential sum takes the shape

fj(α;A) =
∑
x∈A

e(γ3,jx
3 + γ2,jx

2) = f(γj).

We will commonly write γj = (γ3,j, γ2,j) for 1 6 j 6 s and γ(i) = (γi,1, . . . , γi,s) for
i ∈ {2, 3}. Furthermore, γ = (γ(3),γ(2)). Note in particular that, since the respective
ranks of the coefficient matrices (cij) and (dij) are rC and rQ, only r = rQ + rC of the
2s entries of γ are independent.

For i ∈ {2, 3} define

Mi(X) =
⋃

16q6X

{α ∈ [0, 1) : ‖qα‖ < XP−i}

and

Ni(X) =
⋃

06a<q6X

{α ∈ [0, 1) : |α− a/q| < XP−i},

and write M∗(X) = M3(X) × M2(X). The respective complementary sets will be
denoted with lower case letters and adorned with the same suffices or asterisks. Further-
more, for X < Q write Mi(Q,X) = Mi(Q) \Ni(X) and M∗(Q,X) = M∗(Q) \N∗(X).

Lemma 5.1. Suppose that f(α) = f(α; [1, P ]), set Q = P 3/4, and let Y be a positive
number.
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(i) For any u > 2, one has

sup
αk2
∈Mk2

(Q)

∫
Mk1

(Q,Y )

|f(α)|2udαk1 � P 2u−k1(Y −1/3 + P 3/2−u+ε).

(ii) For any u > 7, one has∫
M∗(Q,Y )

|f(α)|udα� P u−5(Y −1/6 + P 3−u/2+ε).

Proof. It follows from [1, Lemma 4.4] that for α = a/q + β ∈M∗(Q) one has

f(α)� q−1S(q, a)v(β;P ) +Q2/3+ε.

In the case of the second expression we therefore obtain the bound∫
M∗(Q,Y )

|f(α)|udα�
∫
M∗(Q,Y )

|q−1S(q, a)v(β;P )|udα +Q2u/3+ε volM∗(Q),

and it follows from the argument of Lemma 8.3 (ii) in [28] that∫
M∗(Q,Y )

|q−1S(q, a)v(β;P )|udα� P u−5Y −1/6

whenever u > 7. Upon noting that volM∗(Q) � Q4P−5, this establishes the bound
claimed in (ii).

We now consider case (i). To simplify notation, we write i = k1 and j = k2 for the
remainder of the proof. Analogously to the above argument, for αj ∈Mj(Q) we have∫

Mi(Q,Y )

|f(α)|2udαi �
∞∑
q=1

q∑
ai=1

(a,q)=1

|q−1S(q, a)|2u
∫ ∞
Y P−i

|v(β;P )|2udβi

+Q4u/3+ε volMi(Q). (5.3)

Now (4.2), together with the argument of Lemma 4.2, yields∫ ∞
Y P−i

|v(β;P )|2udβi � P 2u

∫ ∞
Y P−i

(1 + |βi|P i + |βj|P j)−2u/3dβi � P 2u−iY −1/3

for all u > 2. Furthermore, we have

∞∑
q=1

q∑
ai=1

(a,q)=1

q−2uS(q, a)2u �
∏
p

∞∑
l=0

A[aj ](p
l),

where

A[aj ](q) = q−2u

∣∣∣∣∣
q∑

ai=1
(a,q)=1

S(q, a)2u

∣∣∣∣∣.
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Observe that (4.1) gives q−2uS(q, a)2u � q−2u/3+ε whenever (q, a) = 1, whence for
sufficiently small δ > 0 we have

A[aj ](p
l)�

pl∑
ai=1

(a,p)=1

p−(2/3)ul+ε � p(1−2u/3)l+ε � p−1−δ

for l > 3 and u > 2. Furthermore, for l ∈ {1, 2} we have the estimate

S(pl, a)� (pl, a)1/2pl/2+ε (5.4)

following from [17], Corollary II.2F and from the argument of the proof of [20, Theo-
rem 7.1] (see also Lemma 7.1 in [28]). We therefore have the bound

A[aj ](p
l)�

pl∑
ai=1

(a,p)=1

p−ul+ε � p(1−u)l+ε

for l ∈ {1, 2}, and thus altogether

∞∑
l=0

A[aj ](p
l) = 1 +O(p1−u+ε + p3−2u+ε).

It follows that for some suitable absolute constants c1, c2, c3 and δ > 0 we have∏
p

∞∑
l=0

A[aj ](p
l)�

∏
p

(1 + c1p
1−u+ε + c2p

3−2u+ε)�
∏
p

(1 + c3p
−1−δ),

whenever u > 2 and ε is small enough. The proof is now completed on inserting our
estimates into (5.3), noting that volMi(Q) � Q2P−i for i ∈ {2, 3}, and recalling that
Q = P 3/4. �

In order to establish a suitable pruning lemma for smooth exponential sums we first
need an additional auxiliary result. Let

I(β3, β2) =

∫ P

1
2
P

e(β2x
2 + β3x

3)dx.

The following is a modification of Theorem 7.3 of [20].

Lemma 5.2. We have

I(β3, β2)� P (1 + P 2|β2|+ P 3|β3|)−1/2.

Proof. As in the proof of Theorem 7.3 of [20] we observe that the claim is, via a change
of variables, equivalent to∫ 1

1
2

e(β2x
2 + β3x

3)dx� (1 + |β2|+ |β3|)−1/2.
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Let p(x) = 2β2x + 3β3x
2. If A denotes the set of all x ∈ [1/2, 1] satisfying |p(x)| >

(|β2|+ |β3|)1/2, then the contribution from this set is given by∫
A

e(β2x
2 + β3x

3)dx� (|β2|+ |β3|)−1/2.

It thus remains to bound the contribution of C = [1/2, 1]\A . Either C is empty, in which
case there is nothing to prove, or we can find α ∈ [1/2, 1] with |p(α)| < (|β2| + |β3|)1/2.
On the other hand, by the triangle inequality we have

|p(α)| > |2β2α| − |3β3α
2| > |β2| − 3|β3|.

In the case when |β2| > 6|β3|, we thus have 1
2
|β2| 6 |p(α)| 6 (|β2|+ |β3|)1/2 6 (7

6
|β2|)1/2,

so |β2| 6 14/3, but for |β3| � |β2| � 1 the claim is trivial. We may therefore assume
that |β2| < 6|β3|, so that for each α ∈ C one has |p(α)| 6 (7|β3|)1/2. Since we made the
assumption that α > 1/2, this implies that 1

2
|2β2 + 3β3α| 6 (7|β3|)1/2. It follows that

the measure of C is bounded above by

vol{1/2 6 α 6 1 : |2β2 + 3β3α| 6 2(7|β3|)1/2} � |β3|−1/2.

This establishes the statement. �

More generally, a similar argument can be used to show that for any set of degrees
k1 < · · · < kt one can find some suitable constant 0 < ξ < 1 such that∫ P

ξP

e

( t∑
j=1

βjx
kj

)
dx� P

(
1 +

t∑
j=1

P kj |βj|
)−1/t

,

replacing the exponent 1/kt that can be directly inferred from Theorem 7.3 of [20] with
the stronger 1/t.

We are now in a position to establish the main pruning lemma for systems of cubic
and quadratic forms, and here we largely follow the treatment devised by Brüdern and
Wooley [7]. In what follows, we write g(α) = f(α; [1

2
P, P ]) and h(α) = f(α;A), where

A denotes either [1, P ] or A(P,R).

Lemma 5.3. Let A ∈ Q be fixed, and let Q = P 3/4.

(i) For any δ > 0 one has the relation

sup
λ,µ∈R

sup
α2∈M2(Q)

∫
M3(Q,X)

|g(α3, α2)2+δh(Aα3 + λ, µ)2|dα3 � P 1+δX−δ/2.

(ii) Additionally, one has

sup
λ,µ∈R

sup
α2∈M2(Q)

∫
M3(Q,X)

|g(α3, α2)h(Aα3 + λ, µ)6|dα3 � P 4X−1/6.

Proof. We first show (i). This follows almost directly from the argument of the proof of
[7, Lemma 9]. If A = B/S, where B ∈ Z and S ∈ N, then by a change of variables one
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has ∫
M3(Q,X)

|g(α3, α2)2+δh(Aα3 + λ, µ)2|dα3

= S

∫
S−1M3(Q,X)

|g(Sα3, α2)2+δh(Bα3 + λ, µ)2|dα3.

Let κ denote the multiplicative function defined by

κ(pi) =

{
p−i/3 i > 3,

p−i/2 i ∈ {1, 2}.

Then as a consequence of Lemma 4.4 in [1], equations (4.1) and (5.4), and Lemma 5.2,
for every α ∈M∗ there exists q 6 Q such that

g(α3, α2)� κ(q)P (1 + P 2|β2|+ P 3|β3|)−1/2 + q2/3+ε,

and one easily confirms that the first term in this expression is the dominating one. It
follows that ∫

M3(Q,X)

|g(α3, α2)2+δh(Aα3 + λ, µ)2|dα3

�
∑

16q6Q

(κ(q)P )2+δ

q∑
a3=1

(a,q)=1

∫ ∞
X

|h(B(a3/q + β3) + λ, µ)|2

(1 + P 2|β2|+ P 3|β3|)1+δ/2
dβ3,

and in a similar manner to the treatment in [7] we deduce that for every µ ∈ R one has

q∑
a3=1

(a,q)=1

|h(B(a3/q + β3) + λ, µ)|2 6
q∑

a3=1
(a3,q)=1

∑
x,y∈A

e((x3 − y3)Ba3/q)

6 |B|
∑

16x,y6P

(x3 − y3, q)� P 2qεq3,

where q3 denotes the cubic kernel of q defined via q = q0q
3
3 with q0 cubefree. It follows

that altogether we have∫
M3(Q,X)

|g(α3, α2)2+δh(Aα3 + λ, µ)2|dα3

� P 4+δ

Q∑
q=1

qε(κ(q))2+δq3

∫ ∞
X

(1 + P 2|β2|+ P 3|β3|)−1−δ/2dβ3

� P 1+δX−δ/2
∞∑
q=1

qε(κ(q))2+δq3.

Finally, the sum over q converges whenever ε is small enough compared to δ.
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In order to prove the second statement of the lemma, we observe that by Hölder’s
inequality we have∫

M3(Q,X)

|g(α3, α2)h(Aα3 + λ, µ)6|dα3

�
(∫
M3(Q,X)

|g(α3, α2)3h(Aα3 + λ, µ)2|dα3

)1/3(∫ 1

0

|h(Aα3 + λ, µ)|8dα3

)2/3

.

By considering the underlying equations it transpires that the second integral is bounded
above by ∫ 1

0

|h(α3, α2)|8dα3 �
∫ 1

0

|f(α3, 0)|8dα3 � P 5,

where we used Theorem 1 of [19]. It now follows from (i) that the expression in question
is bounded above by (P 2X−1/2)1/3(P 5)2/3 � P 4X−1/6 as claimed. �

6. Proof of Theorem 1.4

We now have the means at hand to complete the proof of Theorem 1.4. Our first
task in this section is to obtain a sharper version of the Weyl-type estimate contained
in Lemma 3.1.

Lemma 6.1. Suppose that Q 6 P 3/4 and α ∈ m(Q). Then for all M-tuples j there
exists an index ji with

|fji(α; [1, P ])| 6 P 1+εQ−1/3.

Proof. Fix j, and suppose that for some α ∈ [0, 1)r one has |fji(α)| > P 1+εQ−1/3 for
each 1 6 i 6M . Then by applying Theorem 5.1 of [1], as in the argument of Lemma 5.2
of [28], we find that there exist q 6 Q and τ > 0 such that

‖qγ2,ji‖ � QP−2−τ and ‖qγ3,ji‖ � QP−3−τ (1 6 i 6M).

The invertibility of the coordinate transform implies, as in the proof of Lemma 3.1, that
for large enough P one has

‖qα2,i‖ 6 QP−2 (1 6 i 6 rQ) and ‖qα3,i‖ 6 QP−3 (1 6 i 6 rC).

As before, we conclude that α must lie in M(Q), and the enunciation follows. �

Recall the definitions (2.4) and (3.2). From now on set Q = P 3/4, and as before we
let X = P 1/(6r) for the asymptotic estimate and X = (logP )1/(6r) for the lower bound.
Recall the definition of M and N from Sections 3 and 4 and set M(Q,X) = M(Q) \
N(X). In what follows, we will abbreviate Ñs,k,µ(B) = Ñs(B) and Iu,k,µ(A) = Iu(A)

for simplicity. Our first goal is to estimate Ñs(m(Q)), where we have A = [1, P ].
Write m(j) for the set of α ∈ [0, 1)r for which |fj(α)| 6 P 3/4+ε, and let σ = s − 2s0.

For any given σ-tuple (j1, . . . , jσ) ∈ {1, . . . , s} the non-singularity condition implies that
the remaining 2s0 variables may be assembled into a mean value of the shape Iu([1, P ]),
and thus Lemma 6.1 implies that

Ñs(m
(j1) ∩ · · · ∩m(jσ))� P

3
4
σ+εIu([1, P ]).
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Consider a fixed α ∈ m(P 3/4). Lemma 6.1 ensures that one can find an index j1 ∈
{1, . . . , r} with α ∈ m(j1). Iterating this procedure, after k − 1 steps we can find an
index jk ∈ {1, . . . , r + k − 1} \ {j1, . . . , jk−1} with α ∈ m(jk). Since α ∈ m(P 3/4) has
been arbitrary, after σ steps it follows that

m(P 3/4) ⊆
⋃

(m(j1) ∩ · · · ∩m(jσ)),

where the union is over all σ-element subsets of {1, . . . , σ + r − 1}. We may conclude
that

Ñs(m(P 3/4))� P
3
4
σ+εIu([1, P ]).

We first consider the case rQ = rC = r/2, so that t = 1 and ν(1) = 2. Recalling
Wooley’s bound

J5,(2,3)([1, P ])� P 5+1/6+ε (6.1)

of [28, Theorem 1.3], Lemma 6.1 together with Theorem 2.1 yields for u1 = 5 that

Ñs(m(P 3/4))� P
3
4

(s−2s0)+ε(J5,(2,3)([1, P ]))r/2 � P
3
4

(s−5r)+ε(P 5+1/6+ε)r/2.

Note that the exponent is smaller than s − K = s − 5r/2 whenever s > (16/3)r, and
since (16/3)r = (32/3)rQ = (32/3)rC this is in line with the enunciation of the theorem.

In the cases with rQ 6= rC we have

t = 2, k = 3, ν(1) = ν(2) = 1. (6.2)

If rQ > rC the parameters are given by

µ1 = rQ, µ2 = rC , u1 = 2, u2 = 5, (6.3)

and we deduce from Theorem 2.1 that

I(2,5)([1, P ])� (J2,2([1, P ]))rQ−rC (J5,(2,3)([1, P ]))rC � (P 2+ε)rQ−rC (P 5+1/6+ε)rC ,

where we used Hua’s inequality and Wooley’s bound (6.1) as above. This shows

Ñs(m(P 3/4))� P
3
4

(s−(4rQ+6rC))+3rC+2rQ+rC/6+ε,

and for s > 4rQ + (20/3)rC the exponent is smaller than s− (2rQ + 3rC).
For rC > rQ we take

µ1 = rC , µ2 = rQ u1 = 4, u2 = 5,

and in this case Wooley’s bound (6.1) together with Hua’s Lemma yields

Ñs(m(P 3/4))� P
3
4

(s−(8rC+2rQ))+ε(J4,3([1, P ]))rC−rQ(J5,(2,3)([1, P ]))rQ

� P
3
4

(s−(8rC+2rQ))+ε(P 5+ε)rC−rQ(P 5+1/6+ε)rQ ,

which is acceptable whenever s > 8rC + (8/3)rQ.

In the case A = A(P,R) the analysis is more delicate, due to the fact that we have
only a limited number of complete exponential sums at our disposal. In this case we
take

µ1 = rC , µ2 = rQ, u1 = 3, u2 = 5, (6.4)
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and we aim to prove the theorem with s = 7rC + d(11/3)rQe. We write ∆ = rC − rQ
and let

N∗s (B) =

∫
B

6∆∏
j=1

hj(α)
s∏

j=6∆+1

gj(α) dα,

where gj(α) = g(γj) and hj(α) = h(γj), and g(α) and h(α) are as in the preamble to
Lemma 5.3 with A = A(P,R). By considering the underlying diophantine equations,
one finds that the number of solutions of the system (5.1) with x ∈ [1, P ]s is bounded
below by N∗s ([0, 1)r), whence it suffices to establish a lower bound for the latter quantity.
It follows from [25, Theorem 1.2] that for a suitable choice of R there exists a number
τ > 0 satisfying

J3,3(P ;A(P,R))� P 3+1/4−τ , (6.5)

and we note for future reference that the current bounds imply τ < 1/24. Let m(j)

denote the set of α ∈ [0, 1)r for which |gj(α)| 6 P 3/4+ε. By Lemma 6.1, one has

m ⊆ m(6∆+1) ∪ · · · ∪m(7∆+rQ),

so after re-indexing and summing over j, we find that N∗s (m) is bounded above by a sum
of at most rC expressions of the shape

P τ(4∆−1)+ε

∫
[0,1)r

6∆∏
j=1

|hj(α)|
7∆∏

j=6∆+1

|gj(α)|1−4τ

s∏
j=7∆+1

|gj(α)| dα.

We now apply (2.5) in such a way that, for some sets of indices J1, J2, and J3 with
|J1| = |J2| = ∆ and |J3| = rQ, one has

N∗s (m)�Pψ+ε

∫
[0,1)r

( ∏
j∈J1

|hj(α)|6
)( ∏

j∈J2

|gj(α)|1−4τ

)( ∏
j∈J3

|gj(α)|32/3

)
dα.

Here we have written

ψ = τ(4∆− 1) + d2
3
rQe − 2

3
rQ, (6.6)

and we have used the fact that s = 7∆ + 10rQ + d2
3
rQe. We next apply (5.2). Writing

λi = (λ2,i, λ3,i), where λk,i is a linear combination of the γk,l with l 6= i, we find that

N∗s (m)� Pψ+ε

∫
[0,1)r

( ∏
j∈J2

∣∣h(γj + λj)
6g(γj)

1−4τ
∣∣ )( ∏

j∈J3

|g(γj)|32/3

)
dγ

� Pψ+ε

(
sup
λ∈R2

sup
γ2∈[0,1)

∫
[0,1)

∣∣h(γ + λ)6g(γ)1−4τ
∣∣ dγ3

)∆(∫
[0,1)2

|g(γ)|32/3dγ

)rQ
.

(6.7)
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It follows from [28, Theorem 1.3] that the second integral is bounded above by P 17/3+ε.
Meanwhile, upon abbreviating Mi(Q) by Mi, we also have

sup
γ2∈[0,1)

∫
[0,1)

∣∣h(γ + λ)6g(γ)1−4τ
∣∣ dγ3 �

(
sup
γ∈m∗
|g(γ)|1−4τ

)∫
[0,1)

|h(γ + λ)|6 dγ3

+ sup
γ2∈M2

∫
M3

∣∣h(γ + λ)6g(γ)1−4τ
∣∣ dγ3.

In the first term, (6.5) together with Lemma 5.2 of [28] yields(
sup
γ∈m∗
|g(γ)|1−4τ

)∫
[0,1)

|h(γ + λ)|6 dγ3 � P
3
4
−3τ+ε

∫ 1

0

|h(γ)|6dγ � P 4−4τ+ε.

In order to estimate the contribution from the major arcs we observe that an application
of Hölder’s inequality yields∫

M3

∣∣h(γ + λ)6g(γ)1−4τ
∣∣ dγ3 �

(∫
M3

|g(γ)5/2h(γ + λ)2|dγ3

)ω1
(∫ 1

0

|h(γ)|φdγ3

)ω2

,

where ω1 = (2 − 8τ)/5, ω2 = (3 + 8τ)/5, and φ = (26 + 16τ)/(3 + 8τ). Observe in
particular that for τ < 1/24 one has φ > 8. It follows that the first integral is O(P 3/2)
by Lemma 5.3 (i), and the second one is O(P φ−3+ε) by Hua’s Lemma, whence we obtain
an overall contribution of

P (3/5)(1−4τ)P (φ−3)(3+8τ)/5+ε � P 4−4τ+ε

from the major arcs. Together with the minor arcs contribution we find

sup
γ2∈[0,1)

∫
[0,1)

∣∣h(γ + λ)6g(γ)1−4τ
∣∣ dγ3 � P 4−4τ+ε,

and therefore∫
[0,1)r

( ∏
j∈J2

|h(γj + λj)|6|g(γj)|1−4τ

)( ∏
j∈J3

|g(γj)|32/3

)
dα� P 4∆(1−τ)+εP (17/3)rQ .

On recalling (6.6) and (6.7), we thus obtain

N∗s (m)� P τ(4∆−1)+εP d
2
3
rQe− 2

3
rQP 4rC+(5/3)rQ−4τ∆ � P 4rC+d 5

3
rQe−τ/2

for ε sufficiently small.
It follows from our definitions of major and minor arcs that

Ns(n(X))� Ns(m(Q)) +Ns(M(Q,X)), (6.8)

where Ns(B) denotes either Ñs(B) or N∗s (B). In view of the preceding estimates,
(6.8) shows that the analysis of the minor arcs n(X) will be complete upon obtaining a
satisfactory bound for Ns(M(Q,X)).

Lemma 6.2. Let 1 6 X 6 Q1/(2M) be arbitrary, and suppose that the system (5.1) is
highly non-singular with s given via (2.3) where u is as in (6.3) or (6.4). Then we have

Ns(M(Q,X))� P s−KX−1/(6M).
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Proof. The relation (5.2) implies that, whenever α ∈M(Q), then for every pair of indices
i, j there exists an integer bi,j with |bi,j| 6 B = rmaxi,j{cij, dij} such that γki,j − bi,j ∈
Mki(Q). We show that when α 6∈ N(X), then necessarily one has γ 6∈ N(Y ) + Zr for
Y = X1/M . For this purpose, observe that for i ∈ {1, 2} only µi of the entries of γ(ki)

are independent. Now suppose that all entries of γ(ki) are in Nki(Y ) + Zr. Then for
every j ∈ {1, . . . , µi} there exist qj 6 X and Λki,j ∈ Z with |γki,j − Λki,j/qj| 6 Y P−ki .
The invertibility of the coordinate transform (5.2) implies that we may retrieve the αki

from the γ(ki), and we therefore deduce that

|αki,l − aki,l/q| 6 κY P−ki (1 6 l 6 µi)

for some constant κ depending at most on the (cij) and (dij). However, we have q =
q1 · · · qµi 6 Y µi , whence

αki,j ∈ Nki(Y
µi) ⊆ Nki(Y

M) = Nki(X) (1 6 j 6 ri).

It follows that whenever α ∈ M(Q,X), then there exists some pair of indices (ki, j)
with γki,j ∈ nki(Y ) + Z, so altogether γ ∈M(Q, Y ) + Zr ∩ [−B,B]r.

For the rest of the argument we abbreviate M = M(Q), N = N(Y ) and M =
M(Q, Y ), and we use the same conventions for the respective symbols when equipped
with suffices or asterisks.

For rQ 6= rC and A = [1, P ] set vi = 2ui + (s − 2s0)/M for i ∈ {1, 2}, so that
(µ1 − µ2)v1 + µ2v2 = s. The relations (2.5) and (5.2) together with the above argument
imply that there exist sets of indices J1 and J2, with |J1| = µ1−µ2 and |J2| = µ2, such
that

Ñs(M(Q,X))�
∫
M(Q,X)

∏
i∈J1

|f(γi)|v1

∏
j∈J2

|f(γj)|v2dα

�
∫
M(Q,Y )

∏
i∈J1

|f(γi)|v1

∏
j∈J2

|f(γj)|v2dγ.

Note that by the non-singularity condition we may assume that all entries (γk2,i)i∈J1 are
determined by the entries (γk2,j)j∈J2 . We therefore obtain

Ñs(M(Q,X))�
∫

(M∗)µ2−1×M∗
TJ1(Mµ1−µ2

k1
,γ(k2))

∏
j∈J2

|f(γj)|v2dγj

+

∫
(M∗)µ2

TJ1(Mµ1−µ2−1
k1

×Mk1 ,γ
(k2))

∏
j∈J2

|f(γj)|v2dγj,

where we wrote

TJ1(B,γ(k2)) =

∫
B

∏
i∈J1

|f(γk1,i, γk2,i)|v1dγk1,i.

Observe that we have v1 > 2u1 = 4 and v2 > 2u2 = 10 regardless of which of rC or rQ
is larger. Writing

T (C) = sup
γk2
∈Mk2

∫
C

|f(γk1 , γk2)|v1dγk1 ,
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we may therefore deploy Lemma 5.1 to obtain

Ñs(M(Q,X))� T (Mk1)µ1−µ2

(∫
M∗
|f(γ)|v2dγ

)µ2−1 ∫
M∗
|f(γ)|v2dγ

+ T (Mk1)µ1−µ2−1T (Mk1)

(∫
M∗
|f(γ)|v2dγ

)µ2

� P (v2−5)µ2+(v1−k1)(µ1−µ2)Y −1/6.

Upon noting that s = v1(µ1 − µ2) + v2µ2 and K = 5µ2 + k1(µ1 − µ2), this yields the
desired conclusion.

Similarly, for rQ = rC = r/2 we deduce from (2.5) and Lemma 5.1 (ii) that

Ñs(M(Q,X))� P s−2s0

∫
(M∗)r/2−1×M∗

( r/2∏
i=1

|f(γi)|10

)
dγ � P s−2s0+(5/2)rY −1/6,

and the result follows on noting that s0 = K = 2rQ + 3rC = (5/2)r in this case.
Finally, in the smooth case we have |J1| = ∆ = rC − rQ and |J2| = rQ, and as in the

argument leading to (6.7) we obtain

N∗s (M(Q,X))� P d(2/3)rQe
∫
M(Q,Y )

∏
i∈J1

|h(γi + λi)
6g(γi)|

∏
j∈J2

|g(γj)|10dγ

for suitable vectors λi = (λ2,i, λ3,i) ∈ R2, where λk,i is a linear combination of the
coefficients γk,l with l 6= i. By writing

T̂J1(B,γ(2)) = sup
λ∈R2∆

∫
B

∏
i∈J1

|h(γi + λi)
6g(γi)|dγ3,i,

we see that

N∗s (M(Q,X))� P d(2/3)rQe
∫

(M∗)rQ−1×M∗
T̂J1(M∆

3 ,γ
(2))

∏
j∈J2

|g(γj)|10dγj

+ P d(2/3)rQe
∫

(M∗)rQ
T̂J1(M∆−1

3 ×M3,γ
(2))

∏
j∈J2

|g(γj)|10dγj.

Letting

T̂ (C) = sup
γ2∈M

sup
λ∈R2

∫
C

|h(γ + λ)6g(γ)|dγ3,

then by an argument analogous to the one above with Lemma 5.3 (ii) in the place of
Lemma 5.1 (i) we obtain

N∗s (M(Q,X))� P d(2/3)rQeT̂ (M3)∆

(∫
M∗
|f(γ)|10dγ

)rQ−1 ∫
M∗
|f(γ)|10dγ

+ P d(2/3)rQeT̂ (M3)∆−1T̂ (M3)

(∫
M∗
|f(γ)|10dγ

)rQ
� P d(2/3)rQeP 4∆P 5rQY −1/6 � P s−KY −1/6.

This completes the proof of the lemma. �
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The analysis of the minor arcs n(X) = [0, 1]r \ N(X) is now completed on inserting
Lemma 6.2, together with the estimates ensuing from Lemma 6.1, into (6.8).

For the major arc analysis, only small modifications to the arguments of Section 4 are
required. In completing the singular series, we again have to make a case distinction
as to whether rQ > rC or not. If rQ > rC we have (6.2) and (6.3), and with these
parameters (4.8) becomes

A(pi)� p−i(
1
3

(10+1/r)−2)+ε + p−i(
1
3

(4+1/r)−1)+ε � p−
i
3

(1+1/r)+ε, (6.9)

from which it follows that
∞∑
i=3

A(pi)� p−1−1/r+ε. (6.10)

For i ∈ {1, 2} we make recourse to the estimate (5.4). Following through the argument
of the proof of Lemma 4.1, one thus obtains

A(pi)� p−i(
1
2

(4+1/r)−1)+ε + p−i(
1
2

(10+1/r)−2)+ε � p−1−1/(2r)+ε (i = 1, 2). (6.11)

Now on combining (6.10) and (6.11) one has for a suitable constant c that

S 6
∏
p

(1 + cp−1−1/(3r))� 1.

If rC > rQ we have (6.4), and thus

A(pi)� p−i(
1
3

(10+1/r)−2)+ε + p−i(
1
3

(6+1/r)−1)+ε � p−i(1+1/(3r))+ε,

which is also satisfactory. Finally, in the case rQ = rC the bound is given by the first
term in (6.9), whence A(pi)� p−4i/3 for all i. It follows that the singular series converges
also in the setting of Theorem 1.4, and also that S−S(X)� X−δ for some δ > 0.

For the singular integral, the results of Lemma 4.2 are satisfactory even in the case
of Theorem 1.4. To verify this, we first observe that when rQ 6= rC one has u1 > 2 >
3/2 = (k/2)ν(1) and u2 = 5 > 3 = (k/2)(ν(1) + ν(2)), whereas when rQ = rC we have
u1 = 5 > 3 = (k/2)ν(1). The proof of Theorem 1.4 is now complete on recalling the
concluding discussion of Section 4.
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