SIMULTANEOUS ADDITIVE EQUATIONS:
REPEATED AND DIFFERING DEGREES

JULIA BRANDES AND SCOTT T. PARSELL

ABSTRACT. We obtain bounds for the number of variables required to establish Hasse
principles, both for existence of solutions and for asymptotic formulee, for systems of
additive equations containing forms of differing degree but also multiple forms of like
degree. Apart from the very general estimates of Schmidt and Browning—Heath-Brown,
which give weak results when specialized to the diagonal situation, this is the first result
on such “hybrid” systems. We also obtain specialised results for systems of quadratic
and cubic forms, where we are able to take advantage of some of the stronger methods
available in that setting. In particular, we achieve essentially square root cancellation
for systems consisting of one cubic and r quadratic equations.

1. INTRODUCTION

When ¢;; are nonzero integers and d; are natural numbers with d; > ... > d,, we
consider the solubility of the general system of additive forms

Zcijx?i = (1<i<r) (1.1)
j=1
in integers x1,...,x,. There is a fundamental dichotomy in the strategy for handling

such systems, which depends on whether all forms are of the same degree. When the
degrees are the same, the classical approach is to make a linear change of variables
so that the mean values factor into a product of one-dimensional integrals, as in the
work of Davenport and Lewis [13], Cook [11], [12], and Briidern and Cook [6], though
recently new ideas have become available in the work of Briidern and Wooley [7, 8,
10, 9]. Meanwhile, when the d; are distinct, such investigations are made possible by
the iterative method of Wooley [22], [23], [24], which yields mean value estimates for
exponential sums of the shape

fk(aa -’4) - Z G(Oél,fkl + e+ Oétl'kt)
€A

when A is a set of suitably smooth integers. Here the second author [16] has obtained
bounds for pairs of equations in a handful of particular cases by optimizing over a large
collection of iterative schemes in the style of Vaughan and Wooley [21]. In [15], these
results were extended to pairs of diophantine inequalities and to more general mixed
systems with all degrees distinct.
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Additive systems in which some, but not all, of the degrees are repeated would seem to
require a hybrid of the two approaches, and the purpose of this paper is to present such
a strategy. The bounds we ultimately obtain are in line with what might be expected,
given the results discussed above.

It is convenient for the analysis to sort the equations in (1.1) by placing the various
degrees in order of decreasing multiplicity. For 1 <1 <t write ky,..., k() for those
distinct values of the exponents di,...,d, that occur with the same multiplicity ;.
Plainly, we may suppose that pq > -+ > p;. Write further p; = (1) and

T =)+ + vl —1)+mn (1<n<v(),1<I<) (1.2)

and let r; = 7y,(y, so that r; = py+- -+ p; = r, and with the conventions that 7o = r_;
and ro o = 0. We adopt the notation

Il,n - [Tl,n—l + 17Tl,n] (]- < n %
IZI[TZ,1+1,TI] (1<l<t)

After re-arranging the equations, we may then further suppose that the system takes
the shape

N
=
—
VAN
VAN
N

Zcijxf’*" =0 (i€l <n<ru(),1<I<t).
j=1
We write Kl = kl,l +---+ kl,u(l); and
K=di+ - +d =mEKi+ -+ wmk;

for the total degree of the system (1.1). We further write M = p; and adopt the
convention that pg = 41 = 0. We note that the two viewpoints (dy, ..., d,) and (k; )
of organizing the degrees of the forms appearing in the system are both occasionally
useful, so we retain both notations.

In most cases, the number of variables required to establish local solubility in the
current state of technology (see for example the work of Knapp [14]) is larger than
what is needed to establish a local-global principle via the circle method, so we focus
our attention on the latter problem. We aim for two types of Hasse principles, one
for existence of solutions and one for asymptotic formulee. For the problem concerning
existence of solutions, we make use of smooth number technology. Write

A(P,R) = {n € [1,P] : p|n,p prime = p < R}

for the set of R-smooth numbers up to P. Throughout, we fix R = P" for some
sufficiently small positive number n = 7(s, d).

We say that the system (1.1) is highly non-singular if for every 1 < n < v(l) and every
1 <!l < tone has

det(cij)iez, . jess # 0 (1.3)

for every p-tuple J; C {1,...,s}. At the cost of a few extra variables, one may replace
this condition by a weaker but more complicated rank condition across the blocks of
variables defined in Section 2 below. Since both conditions are satisfied by almost all
systems of the shape (1.1), we choose the former hypothesis for its simplicity and for
the additional flexibility it affords us in the analysis.
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Define
wp =v(1) + -+ v(h). (1.4)

For any vector of distinct natural numbers kj, = (kin)1<n<v@), Write
1<I<h

ky, = 1<m3X(l){kl’n}’ k =k, and p=p =min{u,...,[um}
1<I<h

Furthermore, let ug(ky,) denote the least integer u with the property that
[ U AP R dy < poe (e, (15)
[0,1)Fn

Let G*(dy,...,d,) = G*(k; u) denote the smallest integer s for which every highly non-
singular system (1.1) has the property that there exists a nontrivial positive integer
solution whenever there exist non-singular positive real solutions and non-singular p-
adic solutions for all primes p. Similarly, let vy(k;) denote the least integer v with the
property that

/[ i1 Py pr (16)
0,1)%h

Then write G*(dy, . ..,d,) = G*(k; ) for the analogous number of variables required
(under the same local solubility hypotheses) to show that the number of solutions x €
[1, P]® of every highly non-singular system is given by

N(P) = (C+o(1))P % (1.7)
for some positive constant C' = C(s, d).

Theorem 1.1. (A) Let s(kj,) = max{uo(kp), k(1 +wp)} for 1 < h <t. Then one has

t
G*(k;p) <2 (1 — pns)s(kn) + M.
h=1

(B) Let 5(kj,) = max{uvo(kp), k(1 + @)} for 1 < h <t. Then one has

t
G*(k; p) < QZ(Mh — piny1)S(kp) + 1.
h=1

Apart from general results of Birch [2] and Schmidt [18] and recently Browning and
Heath-Brown [5], which apply to more general (non-diagonal) systems, the bound in
Theorem 1.1 is the first of its kind, in which the diagonal structure is exploited to
obtain competitive bounds on the number of variables required. We note that, in the
presence of sufficiently strong mean value estimates so that the above maxima were
k(1 + @) for all h, the bounds in (A) and (B) would become k(M + r) + M and
k(M + r) + 1, respectively. While conclusions of such strength are currently beyond
our grasp, Theorem 1.1 can be made explicit by inserting bounds from the literature.
In particular, by applying the results of Wooley [27, Theorem 1.1] and very recently
Bourgain, Demeter and Guth [3, Theorem 1.1] one obtains the following.
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Corollary 1.2. Suppose that d; > 3 for alli, and write 5,(k;,) = max{%/%h(/%h—i—l), Th(1+
wp)} for 1 < h <t. Then one has
t—1
G*(ky ) < pk(k+1) +2) (g — )51 (kn) + 1.

h=1

Here we are able to take vg(ky) = %ffh(%h +1) in Theorem 1.1 (B), and in this instance
one easily verifies that vo(ky) = $k(k 4 1) exceeds 3k(1 + w;). Similarly, the results of
Wooley [23] (see also [15, Corollary 1.3]) show that one has ug(ky) < (14 o(1))H (kp),
where

H(ky) = kywon(log ky + 3log wy),

with refined conclusions available for various ranges of the parameters. One may there-
fore derive bounds analogous to Corollary 1.2 for the function G*(k; ). We highlight
in particular some consequences of our results for the simplest collections of exponents
not covered by previous work.

Corollary 1.3. Let k and n be integers with k > n > 2. Then one has the bounds

Gk k,n) <2k(k+1)+1, G*(k,k,n,n) < 2k(k+1)+1,

- TR
G (ko mm) < k(k+1)4+n(n+1)+1 z.fk:\%n(n%—l)
k(k+3)+1 if k> 5n(n+1),

and

G*(k,k,n) < (6+0(1))klogk, G*(k,k,n,n) < (8+o0(1))klogk,

G*(k,n,n) < (44 o(1))klogk + 2nlogn.

Observe that here it suffices to have k& > n > 2, as in the results for é*(k,k,n)
and G*(k,k,n,n) we use the bounds vy(k,n) < 3k(k + 1) only, which hold for all

k > 3 regardless of the value of n. For é*(k,n,n) one needs additionally the bound
vo(n) < 3n(n + 1), which holds for n > 3 by the bound of Wooley and Bourgain-—
Demeter—Guth as above and for n = 2 by Hua’s Lemma.

While these bounds follow as a direct consequence of our more general estimates, one
would expect that a more detailed analysis of these special cases should yield better
results. In particular, the strategies of Wooley [26] for making the transition from com-
plete Vinogradov-type systems to incomplete systems associated with Waring’s problem
have the potential to be employed here to a greater extent. Thus, we may expect
some small improvements in the bounds for vy(k), which we have estimated trivially by
vo(1,2,...,k). In fact, we may illustrate the potential of our methods by considering
certain systems of small degree.

Theorem 1.4. For systems of rqg quadratic and rc cubic equations one has the bounds

G*(2,3;7q,7¢) < drq +[(20/3)rc] +1 - if rq 2 e,
8rc + [(8/3)rg| +1  for re =rg.
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Furthermore, for rc > rg we also have
G*(3,2;rc,rg) < Tre + [(11/3)rg].
Note that for systems of rg quadratic forms and one cubic form Theorem 1.4 yields
G*(2,3:10,1) <drg+T7=2-(2ro +3) + 1,

so the bound achieves the square root barrier in this case, thus joining the small group
of examples for which we are able to establish bounds of this quality. Unfortunately,
for other situations we do not obtain equally strong results, largely due to the lack of
sufficiently powerful mean values. We also note that it may be possible to remove the
explicit assumption of non-singularity for the real and p-adic solutions by adapting work
of the first author [4]. We intend to pursue some of these refinements in future papers.

In Section 2, we establish our main mean value estimate, and we then prove Theo-
rem 1.1 in Sections 3 and 4 by applying the circle method. Finally, in Section 5 we
establish a few auxiliary results that will allow us to refine our arguments to obtain
the bounds advertised in Theorem 1.4 for systems of cubic and quadratic equations in
Section 6.

The authors are grateful to Trevor Wooley for many helpful conversations and sugges-
tions. This work originated with a visit of the first author to West Chester University
and was facilitated by a subsequent workshop at Oberwolfach; the authors thank both
institutions for their hospitality and support.

2. THE MEAN VALUE ESTIMATE

The following notational conventions will be observed throughout the paper. Any
expression involving the letter € will be true for any (sufficiently small) ¢ > 0. Con-
sequently, no effort will be made to track the respective ‘values’ of . Also, any state-
ment involving vectors is to be understood componentwise. In this spirit, we write
(¢,b) = (q,b1,...,b,) whenever b € Z", and we interpret a vector inequality of the
shape C' < b < D to mean that C < b; < D fori=1,...,n.

For a € [0,1)" define

Ti,n

Yin = >, o (1<j<s1<n<w(),1<I<1) (2.1)

=1 p—1+1

and write v; = (Vj1n)1<n<v(),1<i<t- Furthermore, set f;(a; A) = f(;;.A) where A =
[1, P] or A = A(P, R), with the convention that the explicit mention of the set A will be
suppressed whenever there is no danger of confusion. We partition the indices {1, ..., s}
into M + 1 blocks

t Kh—Hh+1

{1...sy=20ulJ | Pum (2.2)

where each block %}, ,,, is of size 2u;, with any excess variables placed into the block %,

and define

t

So =Y _(1th — ftns1)un. (2.3)

h=1
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Consider the mean value
t HMh—Hh41

Luyepu(A 41 H II II /(a4 de (2.4)

m=1 Jeghm

This mean value may be bounded in terms of simpler mean values.

Theorem 2.1. For A=[1,P] or A= A(P R) one has

I, ku << H " kh Mh—uh+1 :
where Jy, x, (A) denotes the mean value
Jup ki (A) = / |fkh (v; A>|2Uh d.
[0,1)%n

In particular, this implies that we will have a perfect mean value estimate for I,y ,,(A)
as soon as we have perfect estimates for the primitive mean values J,, k, (A) for 1 <
h <t

Corollary 2.2. Suppose uy, is large enough that one has
Jup 1, (A) & Prn—BttKte (1 < p < 1),
Then
Taseu(A) < Pro=K+e,

This follows from the theorem on observing that
t

Z(K1 o+ Kn) (i — pnr) = Ko + -+ Ky = K.
h=1

Proof of Theorem 2.1. Set A= [1, P] or A= A(P, R), and write
h

so(h) = (m—pe)u (1<h<t) and  s(0) =0,

=1
so that so(t) = so.
First of all, by making a trivial estimate and applying the trivial inequality
Izl...zn|<|Z1|n+..._’_|zn|n’ (25)
we find that

t Hh—Hh41

Iu,k,u.(A) < / H H |f(’7](hm )‘21% da (26)

01" h=1 m=1
for some j(h,m) € By . Observe that the mean value on the right hand side of (2.6)
counts solutions to the system

t Hh—Hh+1

Z Z Ci,j(h7m)§h,m(kl,n) =0 (l € L,na 1 < n < V(l), 1 < l < t>7 (27)
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where we wrote
gh,m(k) - Z (_1)]'33;3'
je€#(h,m)
We now choose the sets J; occurring in (1.3) according to (2.6) as
Ji=1j(h,m) : 1 <m < pp — pragr, L < h < 2

where j(h,m) € By, for all h and m. Let J = Ji, write Cj,, for the (p; x M)-matrix
defined by

Cin = (Cij)ictijes (1<n<v(l), 1<K, (2.8)
and let

€l,n = (Sh’m(kl’n))1<mguh—uh+1,l§h<t € 7M.

Then the system (2.7) can be written more compactly as
Cinbin=0 (1<n<r(),1<IL).

We prove the statement by induction. Consider the case | = 1. In view of the
nonsingularity condition (1.3), we have detC;,, # 0 for 1 < n < v(1), and it follows
that the equations

Ciié&ii==Crm&0) =0

are satisfied if and only if

&a==&,,1)=0. (2.9)
Consider now those equations within (2.9) that correspond to h = 1. On recalling that
|2(1,m)| = 2uy, we see that this subsystem consists of p1; — us copies of the system
2uq
S (=1 =0 (1<n<u(1),
j=1
whose solutions are counted by the mean value J,, x, (A). It follows that the total number

of solutions of the subsystem corresponding to h = 1 is given by (Jy, x, (A))*7#2.
Suppose now that for some [ with 2 < [ <t the systems

gh,l == £h71/(h) =0 (]- < h < [ — 1)a (210)

have been solved, so that all variables x; with j € %},,,, 1 < m < pn — fpg1, and
1 < h <1—1 are determined. This fixes the values of &, ,, (k) for all 1 < m < pp—pip 41
and 1 < h <[ —1 for all degrees ky,, with 1 <n < v(l'), 1 <1 <t. We now seek to
solve the subsystem associated to the degrees k;1, ..., ki, ). Upon writing

_ M—
Ay = (€h7m(kl’n))1<m<Mh—Nh+1,1<h<l—1 €Z H

for the vector of variables already determined, then the system is of the shape Cj,,{;, = 0
for 1 < n < v(l), where ¢, = (a,,;&,,). The nonsingularity condition implies that
Cin = [Ain|Bin), where By, is a (py X py)-matrix with det(B;,) # 0 for 1 < n < v(l).
Hence the system in question is equivalent to the system

Bin&in+ Aipa, =0 (1< n<v(l)). (2.11)
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Write p = —(Ahnal,n)lgngy(l) € 7/ and oy for the vector comprising those components
of o corresponding to the set Z;. Further, write k(1) = (ki 1, ..., ki) and set f = fiq).
Then the number of solutions of the system (2.11) is given by

t Hh—Hh+1

/ T II 1F@mm: A2 eloq - p) dey
L5 =1
t Hh—Hh+1
</ IT II 1/ tm: AP deu,
0L 50 m=1

and here the latter integral counts solutions of the system
Blﬂglﬂ’b =0 (1 < n < l/(l))

Since the non-singularity condition implies that det(B;,,) # 0, we therefore deduce that
the number of solutions to (2.11) is bounded above by the number of solutions of the
system

gl,nzo (1<R<V(Z)),

and the contribution stemming from the case h = [ can be interpreted as p; — ;41 copies
of the system

2uy

j=1
Combining this with (2.10), we find that the number of choices for the variables in each

of the blocks A(I,m) with 1 < m < p; — 41 is bounded above by the mean value
Jux, (A). Tt now follows by induction that

t
[UykW' (A> << H(Jul7kl (A))‘L&liul"’l?
=1
and this completes the proof of the theorem. O

3. THE MINOR ARCS

We now describe our Hardy-Littlewood dissection. For the purpose of the very general
Theorem 1.1 we can afford to economize on effort by working exclusively with a narrow
set of major arcs. The weakness of the ensuing minor arc estimates is of little consequence
to the quality of our bounds, and we avoid pruning arguments.

We take X < P to be a parameter tending to infinity with P. Define the major arc

M(g,a; X)) ={a€[0,1) :|qu; —a;]| < XP % 1<i<r},

and write M(X) for the union of all M(¢g,a; X) with 1 < a < ¢, (¢,a) = 1, and
1 < ¢ < X. We then write m(X) = [0,1)"\(X) for the minor arcs.

We establish a Weyl-type estimate by exploiting the non-singularity condition for an
M-tuple of exponential sums.
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Lemma 3.1. Suppose that o« € m(X). Then there exists o > 0 such that for each
M -tuple (j1,...,7m) of distinct indices there exists an index j; for which one has

| fii(a; [1, P])| < PX™°.

Proof. Fix j as in the statement of the lemma, let ¢ < 1/(2k), and suppose that for some
a € [0,1)" one has |f;,(a; [1, P])| > PX 7 foreachi=1,..., M. Then [15], Lemma 2.4,
implies that there exists ¢ < X?** for which

lavianll < X#7P7Rr (L<n <w(D), 1 SIS 1< i< M), (3.1)

For ease of reference to the coordinate transform matrices defined in the previous section,
we find it convenient to partition the indices as in (2.2), with ji,..., ) occurring in
distinct blocks. Thus we write j = (ji)1<i<mr = (5(m h))1<m<pn—pnsa,1<h<t, and for each
[ and n write
T
’ﬁ:n - ((Vj(h,m),l,n)ng“h_“hH) and Qi = <Oé7‘l,n71+17 ce aarl,n)T
I<h<t
We also write v, for the extension of v, to all 1 < h <. Then the relations (2.1) give
Yin = Cloaun (1<n<w(l),1<I<1),

where Cj,, = [A;,|Bix] is the py x M coeflicient matrix defined in (2.8). It follows from
(1.3) that det(B;,,) # 0 and hence that

o, = (Bl ', (1<n<w)1<I<1).
Thus for each ¢ with r;,, 1 +1 <7 < 7y,, one has

t Hh—Hh41

Oéi:Z Z bj(h,m),ﬁj(h,m),l,m
h=l =1

where the b;(, m); are entries of the matrix (Bfn)_1 whose moduli are hence bounded
above by some absolute constant. It follows from (3.1) that

t HI—Hi41

lgeall <> > [bjchim.i
h=l =1

We therefore deduce that a € M (X)) for X sufficiently large, and the result follows. [

|<<X2I“’P_klan,

|q’Yj(h,m),l,n

We now complete the analysis of the minor arcs for Theorem 1.1. For case (B), we
set s = 259 + 1, write f;(a) = f;(a;[1, P)), and set

N pu(B) = /93 [1 /() de. (3.2)

For j =1,...,M and o > 0, let m\) denote the set of a € [0,1)" for which |f;(a)| <
PX~?. For a given index j, we partition the remaining 2s, indices into blocks %}, ,
with |B.m| = 2up, where uy, = vo(ky) as in (1.6), so that

Ny p(m9) <« PX Ty u([1, P)). (3.3)
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Lemma 3.1 ensures that there exists ¢ for which m € m® U ... Um®)_ and it follows
from Corollary 2.2 that whenever X is a small power of P and ¢ is small enough one has

Nygpu(m) < PX ™0 p2o-kte « ps=K x=o/2 (3.4)
In case (A) we set s = 259+ M and partition the indices j = M +1,..., s as before, but
with the block sizes up, = ug(ky) determined by (1.5). Here we write

t Mh—Hh+1

Nogon (B /Hfz T I I 9@ de.

h=1 m=1 jEBpm

where we suppose that fi(a) = fi(e; [1, P]) for 1 < i < M and gj(a) = fj(er, A(P, R))
for M +1 < j < s. Then it follows from Lemma 3.1 that

Nogeu(m) < PY X" Lap u(A(P, R)),
and when ¢ is sufficiently small an application of Corollary 2.2 delivers the bound
Noyp(m) < PEX9/2, (3.5)

This completes the analysis of the minor arcs in the setting of Theorem 1.1.

4. THE MAJOR ARCS

We complete the proof of Theorem 1.1 by obtaining the expected contribution from
our thin set of major arcs. Although the analysis is in principle relatively routine,
the combination of repeated and differing degrees requires us to exercise some care in
adapting existing approaches. As with our minor arc estimates, we make critical use of
the non-singularity condition to extract non-singular sub-matrices of coefficients.

Set X = (log P)Y/®" if A = A(P,R) and X = PY") when A = [1, P], and consider
the slightly expanded major arcs

q

X
-U U ot

:1
a:

where 91(g, a; X) is given by the set of all a € [0,1)" satisfying
g, — ¢ tag,] S XP P (1<n<r(),1 <1<,

Then n(X) = [0,1)" \ 9(X) € m(X), and the work of the previous section implies that
the contribution of the minor arcs is negligible compared to the expected main term.
We write

q
S(a,a) = Z e ((araz™t + - + apypa™ o) /q)

=1

and recall that the argument of [20], Theorem 7.1 (see also [15], equation (2.2)) gives
S(q.a) < (q,a)hq' 4, (4.1)
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Further define w = 0 if A =[1, P] and w = 1 when A = A(P, R), and set

P log z \
vBiP) = [;Rp(loggR) e(Braz™t 4 4 B2 o) dz,

where p denotes Dickman’s function. We recall from the arguments of [20, Theorem 7.3]
and [22, Lemma 8.6] (see also [15], equations (2.3) and (2.4)) the estimate

t v(l) —1/k
v(8; P) <<P(1+ZZ|BM|P’%) . (4.2)

=1 n=1

It then follows easily that when @ = a/q + 8 € (g, a, X) C MN(X), one has
fila) = q'S(q, Aj)v(8;; P) + O(X*P*(log P) ™),

where
Tl,n
Nun= > cya; (1<j<s,1<n<v(),1<I<t) (4.3)
=r;n_1+1
and
Tl,n
Sjum= Y B (1<j<s,1<n<v(),1<I<t), (4.4)
=Ty p—1+1

so that § =~ — A/q. We write S;(¢,a) = S(q,A;) and v;(8; P) = v(d;; P), and define

=> Y []¢'Si(g.a) and J(X)= v;(B; P)dB,

g<X 1<a<q j=1 (PX) =1
(q,a):l

with
t v(l)

I(P,X) = X X[~X P Fn X phunjm

I=1n=1

Then since vol N(X) <« X* 1P~ one finds that
[ fie0 - feder = SN +O(P (o5 P) ) (4.

for some v > 0.

We now show that one can complete the singular series and singular integral as usual
by defining, for each fixed P,

S = lim 6(Y) and J= lim J(Y). (4.6)

Y —oo Y —o0

We first complete the singular series. Write

Alg)=q Y []Sila.2)

1<agq j=1
(g,2)=1
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and note that A(g) is multiplicative in ¢, whence the singular series, if convergent, can
be written as

e=]]> Aw". (4.7)
p =0
We show that the product in (4.7) converges.

Lemma 4.1. Suppose that the system (1.1) is highly non-singular with s > 2sy, where
o 1s given by (2.3) with

Uh?%(l—i—wh) (1< h<t).

Then the singular series is absolutely convergent, and one has
G-6(X)< X
for some 6 > 0.

Proof. We partition the indices as in (2.2) and let v, = 2uy, + (s — 2s9)/M > 2uy, for
1 < h <t. Then one has

t

th(ﬂh - Mh+1) =3

h=1

and hence by (2.5) there exists j € %1 x - -+ X %, ,, with the property that

s t Hh—Hh41
S IISitea < > IT T 1Sim (@ a)™
1<a<q j=1 1<a<q h=1 m=1
(g,a)=1 (g,a)=1
We now apply the change of variables (4.3). Thus, on writing a;,, = (ar,,,_,+1, .- - ,arl’n)T

and A}, = (Ajtnm)in)hm With 1 < m < pp — ppyr and [ < b < t, we obtain A}, =
Bfnalvn, where the matrix B;,, is as in (2.11). In particular, one has det B;,, # 0 for
all 1 <n <v(l)and 1 <1<t As a result, the remaining coefficients Ajg, 1, with
1<m < pup— pper and 1 < h <1 — 1 may be expressed as linear combinations of those
Aj(hmyn having h > [. Then on writing

Ajthm) = (Njhm)in) 1<n<u) and A = (Ajtnm))1<m<pn—pnins
1<i<t 1<h<t
the invertibility of the transformation further implies that the coefficients of A occurring

in these relations satisfy (¢, A) < 1 whenever (¢,a) = 1. Hence there exist constants
C, C" for which

t Hh—Hh+1 t Hh—HKh+1
ST I 1Siem@al< > IT T 15 Ajwm)l™
1<ag<q h=1 m=1 |A|<Cq h=1 m=1

(g,2)=1 (g,A)<C’
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It follows from (4.1) that

t op
Apy<p > 11

|AI<Cp? h=1 m=
(pt,A)<C’

Ajhm) [

h— Nh+1
1

t Hh—Hh41

<<p7is/k+s Z H H (piaAj(h,m))vh/k-

AI<Cpi b=l m=1

(p",A)<C”
Let x(p) denote the largest integer satisfying p*® < C’ and define ey, ,,, via (p', ANitnm) =
p°mm. Then one has

t HUh—Hh+1
A(pz)<<p—zs/k+sZ<H H pehmvh/k) <p e)

where the sum is over all 0 < ep,,, < ¢ with the condition that e, < x(p) for at
least one pair of indices (h,m) and Z(p’, e) denotes the number of A < Cp' satisfying
(p', Ajhmy) = pm for every h and m. Recalling that for i < [ the coefficients Ajg ) i.n
are linearly dependent on (Aj(xm)in)nsi, it suffices to determine the number of choices
for those coefficients where h > [, in which case the number of choices for any given
Aj(hm)n is certainly bounded above by pi=¢nm Tt follows that

Hh— Mh+1 t Hh—Hht1

7, Ehm v(l) <<pz7"H H p—eh,mwh,
h=1 m=1

=
where we used (1.2) and 4) Thus altogether we have the estimate

t Hh—Hht1

A(pz) < p—is/k+ir+6 Z H H peh,m(vh/k_wh).

e h=1 m=1
Observe that the sum over e essentially amounts to a divisor function with the additional
constraint that at least one of the ey, ,,, must be bounded above by «(p) in order to satisty
coprimality. Thus after executing the summation one finds that A(p’) < p=i(s/F=7)+&+e
where
t
(D (an = s on/ k= ) ) = (i = () min(vn /e = )
h=1
=i(s/k—r)—(i—k(p)) m}jn(vh/k — wp),

§

N

and since p*®) is bounded by an absolute constant, we obtain
A(pz) <<p—zm1nh(vh/k—wh) € (48)
On recalling that

U (14 wop) (1< h <),

l\DI??
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the fact that v, > 2uy, implies that one has A(p*) < p=1=) for some 7 > 0, uniformly
for ¢+ € N. It follows that

e=]] (1 - Zf;A(pi)> <J[a+ep)

p

for some constant ¢ > 0, and this establishes the convergence of the singular series in
the setting of Theorem 1.1. The second assertion of the lemma follows immediately. [

We now turn to the completion of the singular integral.

Lemma 4.2. Suppose that the system (1.1) is highly non-singular with s > 2sgy, where
So 1s given by (2.3) with

up > sk, (1< h <)
Then the singular integral is absolutely convergent, and one has
I-3X) <« PEXT
for some v > 0.

Proof. Firstly, observe that by a change of variables one has

IX) < PE /[ B nas
ey

We now partition the indices as in (2.2). By (2.5), there exists j € %11 X -+ X By,
with the property that

t HKHh—Hh+1

3-a(x <<PSK/H 1 tosnm (o0 0o

where the set R contains all vectors 3 satisfying

max max max|f;| > X.
1<IKt 1<n<v(l) €4 n

We make the change of variables (4.4), and write

T
Bin = <5rl,n71+1’ S >ﬁrz,n)T and 5Zn = ((5 (h, m),l,n 1<m<pp— Mh+1>
I<h<t

We then find as above that &, = (Bin)" Bin and det Bi, #0 (1 <n < v(l),1 <1 <1).
Hence the remaining coordinates 0;j(4,m) 1, With 1 <m < pp — piagr and 1< h -1
are linear combinations of those d;( m),» having 1 <m < pp — ppyq and [ < h < ¢, and
the non-singularity of the coordinate transform implies further that

max max max  max 10i(hmymit| > X

1<IKt 1<n<y () ISh<t 1ISmMSpp—fh41
whenever 3 € R. We will write §) for the vector comprising all d;(, )1, With i <1 <
h<t 1<n<v(l),and 1 <m < pp — ppy1- After integrating with respect to those
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components of § = §1) having [ = 1, one obtains from (4.2) that

2up

t Bh—Hht1 t v() — =k
3<</ H H (1—0—22’(5]'(@7@,17”‘) do

B p=1 m=1 I=1 n=1
t Hh—Hht1 t v() _%Th'*"/(l)
< / H H (1 + Z Z |5j(h,m),l,n|> dé®@,
R p=1 m=1 =2 n—1

provided that u;, > gu(l) for all h. The resulting integral may be simplified by exploiting
the fact that the variables d;(1,m), With [ > 2 are linear combinations of the components
of 6. This implies that

L £ = 2y 1)+ (1 —piz)(— 2L+ (1))
J <</ II II (1 D2 |5j(h,m>7z,n|) d6®
R h—2 m=1 1=2 n=1
t Hh—Hh4+1 t v() *%Thﬂ’(l)
< / H H (1 + Z Z |5j(h,m),l,n|) d6(2)7
R ph—2 m=1 1=2 n—=1

where in the last step we used the assumption u; > %V(l) again to simplify the exponent.
We may now iterate the procedure for increasing values of [. Thus, provided that
up, > E(v(1) +v(2)) for all h > 2, the same argument yields

b Bh—Hhi1 t v —2h (1) 40(2)
SR 0 1 01 G (D 9) wiC ) 16
R™"2 0 m=1 =3 n=1
t Hh—Hhi1 t v() — 2 (1) 40(2)
< [T (142 wmnl) 159
"2 h=3 m=1 1=3 n=1

and after ¢ iterations we obtain convergence if u; > %kwh (1 < h < t). Furthermore, it
is clear that under the same condition one has

t HUh—Hhi1
I-3IX) < P / IT I e @B 0P dB < P5 X (4.9)
Rh=1 m=1
for some v > 0. Il

A coordinate transform now shows that J = P* ¥y, with

w= /[ e(gﬂi@xo) acap,

where ©;(x) = cl-la:f" + -+ ¢ and it follows from Lemma 4.2 that Yo is a finite
constant. Furthermore, the argument of [16, Lemma 7.4] is easily adapted to prove that,
under the conditions of Lemma 4.2, this constant is positive whenever the system (1.1)
possesses a non-singular real solution in the positive unit hypercube.
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Also, a standard argument yields

Xp = ;A(p) = lim p~ "M ('),
where M (p") denotes the number of solutions of the congruences to the modulus p® which
correspond to the equations (1.1). It follows from (4.8) that x, =1+ O(p~') > 3 for p
sufficiently large, and for small primes one uses Hensel’s lemma to deduce that x, > 0
if the system (1.1) possesses a non-singular p-adic solution. The proof of Theorem 1.1
is now complete on recalling (3.4), (3.5), (4.5), Lemma 4.1, and Lemma 4.2, and the
constant in (1.7) is given by C' = x [, Xp-

5. AUXILIARY ESTIMATES FOR SYSTEMS OF CUBICS AND QUADRATICS

The proof of Theorem 1.4 requires a more careful treatment. In this section we collect

a number of auxiliary results that will be of use when we complete the proof in the final
section. Here the system is given by

3

@i+ et =0 (1<i<re),
dpai + -+ digr? =0 (1 <i<rg), (5.1)
whence the relation (2.1) reduces to
Q rc
Vo5 = Z dijog; and s = Z Cij Qs i, (5.2)

=1 =1
and the exponential sum takes the shape
files A) = e(ys;2° + 7250%) = ().
zeA
We will commonly write v; = (73,72,) for 1 < j < s and ¥ = (v;1,...,7) for
i € {2,3}. Furthermore, v = (v®,~4®). Note in particular that, since the respective
ranks of the coefficient matrices (¢;;) and (d;;) are r¢ and rg, only r = rg + r¢ of the

2s entries of 7 are independent.
For i € {2,3} define

M(X) = J {a€0,1):[lgall < XP~}
1<g<X
and
MW(X)= |J {a€l0,1):|a—a/q <XP},
0<a<g<X

and write M (X) = M3(X) x My(X). The respective complementary sets will be
denoted with lower case letters and adorned with the same suffices or asterisks. Further-
more, for X < @ write M;(Q, X) = M,;(Q) \ M(X) and M*(Q, X) = M*(Q) \ 9*(X).

Lemma 5.1. Suppose that f(a) = f(a;[1,P]), set Q = P34, and let Y be a positive
number.
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(i) For any u > 2, one has

Ay €My (Q) J My, (Q,Y)

(i) For any uw > 7, one has
/ |f(a)|"da < PU=5 (Y16 4 p3-u/2tey,
M*(Q,Y)

Proof. Tt follows from [1, Lemma 4.4] that for &« = a/q + 3 € 9*(Q) one has
fle) < ¢7'S(g,a)0(8; P) + Q¥
In the case of the second expression we therefore obtain the bound
[ Ir@pda [l S(aa)(8 ) da - @ vol o Q)
M*(Q)Y) MH(Q,Y)

and it follows from the argument of Lemma 8.3 (ii) in [28] that
[ s apsi e < Pty
M*(Q,Y)

whenever v > 7. Upon noting that vol 0*(Q) < Q*P~5, this establishes the bound
claimed in (ii).

We now consider case (i). To simplify notation, we write i = k; and j = ko for the
remainder of the proof. Analogously to the above argument, for a;; € 9;(Q) we have

0 q 0
F(e) e < S [ (s PP,
/Mi(Q,Y) qz; azZ:l yp
(a,9)=1
+ Q"3 yol M(Q). (5.3)
Now (4.2), together with the argument of Lemma 4.2; yields
/ ‘U(,@; P)’Qudﬁi < pZu/ (1 + |BZ‘P1 + ‘5jypj)72u/3d5i < P2u7iyfl/3
yPp—i yp-i

for all u > 2. Furthermore, we have

Z Z q_QuS(qv a)2u < H Z A[aﬂ(pl)>

=1 a;=1 p 1=0
(a,q)=1
where
q
Awjy@)=a7] Y Sla.a)™|.
a;i=1

(a,9)=1
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Observe that (4.1) gives ¢~ %S(q,a)* < ¢ ?*/>*¢ whenever (¢,a) = 1, whence for
sufficiently small § > 0 we have

pl

A[aj](pl) < Z p_(2/3)Ul+€ <<p(1—2u/3)l+a <<p_1_5

a;=1
(a,p)=1

for [ > 3 and u > 2. Furthermore, for [ € {1,2} we have the estimate
S, a) < (p',a)'/?p!/te (5.4)

following from [17], Corollary I1.2F and from the argument of the proof of [20, Theo-
rem 7.1] (see also Lemma 7.1 in [28]). We therefore have the bound

1

p
A[aj](]?l) < Z p—ul—i-e <<p(1—u)l+a
G,i:l
(a,p)=1

for [ € {1,2}, and thus altogether
ZA[aj](pl) =14+ O(pl—u+a +p3—2u+e).
1=0

It follows that for some suitable absolute constants c;, ¢z, c3 and d > 0 we have

[T Awg ") < [T+ e + eap®2) < T(1 + ™),
p

p 1=0 p

whenever v > 2 and ¢ is small enough. The proof is now completed on inserting our
estimates into (5.3), noting that vol 9;(Q) < Q*P~" for i € {2,3}, and recalling that
Q — P3/4. O

In order to establish a suitable pruning lemma for smooth exponential sums we first

need an additional auxiliary result. Let
P

1(B3, f2) = / (B + Bya®)da.

ip
2
The following is a modification of Theorem 7.3 of [20].
Lemma 5.2. We have
I(Bs, B2) < P(1+ P3| + P*|33])7"/2.

Proof. As in the proof of Theorem 7.3 of [20] we observe that the claim is, via a change
of variables, equivalent to

1
Z e(Bor® + By’ du < (1+ |Bo] + |Bs]) ™2,

2
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Let p(z) = 2B2x + 36322 If & denotes the set of all z € [1/2,1] satisfying |p(z)| >
(|82] + |B3])!/2, then the contribution from this set is given by

L e(Bar? + Bar®)da < (|Ba] + |Ba) V2.

It thus remains to bound the contribution of ¢’ = [1/2,1]\.«7. Either € is empty, in which
case there is nothing to prove, or we can find o € [1/2, 1] with |p(a)| < (|82 + |Bs])'/2.
On the other hand, by the triangle inequality we have

p(a)| = [282ax] = [3B30%| = |Ba] — 3|85].

In the case when |32 > 6|3s], we thus have § |82 < [p(a)| < (|| + |85)/% < (Z]62])Y2,
so |B2] < 14/3, but for |f5] < |B2| < 1 the claim is trivial. We may therefore assume
that |Bs| < 6/Bs|, so that for each o € € one has [p(a)| < (7|8s])'/2. Since we made the
assumption that o > 1/2, this implies that 1|28, 4+ 38sa| < (7]63])"/2. It follows that
the measure of ¥ is bounded above by

vol{1/2 < a < 1: 128, + 3Bsa| < 2(7|83))/%} < |Bs| 72

This establishes the statement. O

More generally, a similar argument can be used to show that for any set of degrees
ki1 < --- < k; one can find some suitable constant 0 < & < 1 such that

P t t -1/t
[Tt )ar (e S roisl)
er \5

J=1

replacing the exponent 1/k; that can be directly inferred from Theorem 7.3 of [20] with
the stronger 1/t.

We are now in a position to establish the main pruning lemma for systems of cubic
and quadratic forms, and here we largely follow the treatment devised by Briidern and
Wooley [7]. In what follows, we write g(o) = f(a; [P, P]) and h(a) = f(a;.A), where
A denotes either [1, P] or A(P, R).

Lemma 5.3. Let A € Q be fived, and let Q = P3/4.
(i) For any § > 0 one has the relation

sup  sup / lg(as, o) O h(Aas + A\, p)?|das < PHOX /2,
AHER aeM2(Q) J M3(Q,X)
(i) Additionally, one has
sup  sup / lg(avs, ) h(Aas + X, 1) |das < PAX Y0,
MS(Q7X)

AURER azeM2(Q)

Proof. We first show (i). This follows almost directly from the argument of the proof of
[7, Lemma 9]. If A= B/S, where B € Z and S € N, then by a change of variables one
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has

/ lglas, a0)*h(Aag + A, 1)l dag
M3(Q,X)

= S/ lg(Sas, )P h(Bas + A, 1)?|das.
IM3(Q,X)

Let x denote the multiplicative function defined by
( 7,) p—i/?) 7/ 2 3)

k(p') = .
PI=p2 ie 2.

Then as a consequence of Lemma 4.4 in [1], equations (4.1) and (5.4), and Lemma 5.2,
for every a € 9* there exists ¢ < @) such that

9(0437042) < Ii(q)P(l 4 p2‘52| + P3|53D71/2 4 q2/3+s,

and one easily confirms that the first term in this expression is the dominating one. It
follows that

/ lglas, az)* P h(Aas + A, p)’|da
M3(Q,X)

< X ey S [T MBI s,

1<4<Q = (1+ P?|Bo] + P3| Bs]) /2

and in a similar manner to the treatment in [7] we deduce that for every u € R one has

Z \h(B(as/q + Bs) + X, )| Z Z (z° — y°)Bas/q)

az=1 az=1 zyeA
(a,q)=1 (a3,9)=1
<IBl > (@ =y q) < P¢gs,
1<z,y<P

where g3 denotes the cubic kernel of ¢ defined via ¢ = qogs with go cubefree. It follows
that altogether we have

/ g, a2) 2 h(Aag + A, 1)?|das
M3(Q,X)

Q 00
€ P sl o [ (1 PP+ PYBal)
X

q=1
< P1+6X—6/2 Z qe(lﬁ(q))2+6Q3.
q=1

Finally, the sum over g converges whenever ¢ is small enough compared to d.
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In order to prove the second statement of the lemma, we observe that by Hoélder’s
inequality we have

/ lglas, an)h(Aas + A, 1)°|das
MB(Q7X)

2/3

1/3 1
< (/ lg(as, a2)3h(Aa3 + A, ,u)2|doz3) (/ |h(Aas + A, u)|8da3)
M3(Q,X) 0

By considering the underlying equations it transpires that the second integral is bounded
above by

1 1
/ Ih(as, az)[*das < / (e, 0)[Fday < PP,
0 0

where we used Theorem 1 of [19]. It now follows from (i) that the expression in question
is bounded above by (P2X~1/2)1/3(P%)2/3 <« PAX~1/6 a5 claimed. O

6. PROOF OF THEOREM 1.4

We now have the means at hand to complete the proof of Theorem 1.4. Our first
task in this section is to obtain a sharper version of the Weyl-type estimate contained
in Lemma 3.1.

Lemma 6.1. Suppose that Q < P3* and a € m(Q). Then for all M-tuples j there
exists an index j; with

|fii(es [1, P])| < PHHEQTE.
Proof. Fix j, and suppose that for some a € [0,1)" one has |f, ()| > P*Q~/? for

each 1 < i < M. Then by applying Theorem 5.1 of [1], as in the argument of Lemma 5.2
of [28], we find that there exist ¢ < @ and 7 > 0 such that

lgyasll < QP72 and  |lgys,ll < QP73 (1<i<M).

The invertibility of the coordinate transform implies, as in the proof of Lemma 3.1, that
for large enough P one has

lgaol K QP (1<i<rg) and |qas,| <QP? (1<i<reo).

As before, we conclude that a must lie in 9(Q)), and the enunciation follows. O

Recall the definitions (2.4) and (3.2). From now on set Q = P%*, and as before we
let X = PY(") for the asymptotic estimate and X = (log P)'/%") for the lower bound.
Recall the definition of 9 and M from Sections 3 and 4 and set M(Q, X) = M(Q) \

9(X). In what follows, we will abbreviate Ny ,(B) = Ny(B) and Ik, (A) = I,(A)
for simplicity. Our first goal is to estimate N,(m(Q)), where we have A = [1, P).

Write m@ for the set of a € [0,1)" for which |f;(a)| < P¥**, and let 0 = s — 2s,.
For any given o-tuple (ji,...,J,) € {1,..., s} the non-singularity condition implies that
the remaining 2s, variables may be assembled into a mean value of the shape I,,([1, P)),
and thus Lemma 6.1 implies that

N,(mU) .. nmbo)) <« Pi7t1,([1, P)).
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Consider a fixed @ € m(P%*). Lemma 6.1 ensures that one can find an index j; €
{1,...,r} with a € mU)_ Tterating this procedure, after k — 1 steps we can find an
index ji € {1,...,7 +k —1}\ {j1,...,jr_1} with @ € mU»). Since a € m(P3*) has
been arbitrary, after o steps it follows that

m(P%4) C U(m(jl) N---Nmb)),
where the union is over all o-element subsets of {1,...,0 4+ — 1}. We may conclude
that
N, (m(P*4)) < P17 I,([1, P)).
We first consider the case rg = r¢ = r/2, so that ¢ = 1 and v(1) = 2. Recalling
Wooley’s bound
Js,2.3)([1, P]) < PF1/0% (6.1)
of [28, Theorem 1.3], Lemma 6.1 together with Theorem 2.1 yields for u; = 5 that
Ns(m(P3/4>> < P%(57250)+5(J5’(273)([1,P]))r/2 < P%(575r)+5<P5+1/6+5)r/2.

Note that the exponent is smaller than s — K = s — 5r/2 whenever s > (16/3)r, and
since (16/3)r = (32/3)rg = (32/3)r¢ this is in line with the enunciation of the theorem.
In the cases with rg # rc we have

t=2, k=3, v(l)=vr(2)=1. (6.2)
If rg > r¢ the parameters are given by
H1=TQ, H2=Tc, up =2, up =29, (6.3)
and we deduce from Theorem 2.1 that
La5) (1 P1) < (aa([1, P)) 77 (s 2 ([1, P)) < (P2F)are (Pr/oTeye,
where we used Hua’s inequality and Wooley’s bound (6.1) as above. This shows

Ns(m(P3/4)) < P%(S—(47’Q+6Tc))+3Tc+2TQ+Tc/6+E7

and for s > 4rg + (20/3)r¢ the exponent is smaller than s — (2rg + 3r¢).
For r¢ > ro we take

p1=Trc, pH2=TqQ up =4, wup=2>5,
and in this case Wooley’s bound (6.1) together with Hua’s Lemma yields
N (m(P¥1)) < Pale=Bret2ra)t=( 1, o ([1, P]))e "9 (J5 (1, P]))
< p%(S*(8T0+27’Q))+5<P5+€)7’C*TQ (P5+1/6+8)7‘Q,
which is acceptable whenever s > 8r¢ + (8/3)r.
In the case A = A(P, R) the analysis is more delicate, due to the fact that we have

only a limited number of complete exponential sums at our disposal. In this case we
take

1 =rc, M2 =TQ, up =3, Uy =29, (6.4)
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and we aim to prove the theorem with s = 7ro + [(11/3)rg]. We write A = r¢ —rg
and let

:/%th(a) I 9i(@) da

j=6A+1

where g;(a) = g(v;) and h;(a) = h(7;), and g(a) and h(c) are as in the preamble to
Lemma 5.3 with A = A(P, R). By considering the underlying diophantine equations,
one finds that the number of solutions of the system (5.1) with x € [1, P]* is bounded
below by N*([0,1)"), whence it suffices to establish a lower bound for the latter quantity.
It follows from [25, Theorem 1.2] that for a suitable choice of R there exists a number
7 > 0 satisfying

J3,3(P; A(P7 R)) < P3+1/47T7 (65)

and we note for future reference that the current bounds imply 7 < 1/24. Let m©)
denote the set of a € [0,1)" for which |g;(a)| < P¥**¢. By Lemma 6.1, one has

m C mOA+D . ymTatre),

so after re-indexing and summing over j, we find that N(m) is bounded above by a sum
of at most r¢ expressions of the shape

TA s
e | H\h I T @l I lae)lda
[0,1)" J=6A+1 J=TAY1

We now apply (2.5) in such a way that, for some sets of indices J;, Jo, and J3 with
|J1| = |J2| = A and |J5] = rg, one has

(It (T =) I o

JET Jj€T2 JET3

Ni(m) <P¥te /

0,1)"
Here we have written
w = T(4A — 1) + [%TQ—I — %TQ, (66)

and we have used the fact that s = 7A + 10rq + [2rg]. We next apply (5.2). Writing
Ai = (A2, Asi), where )y ; is a linear combination of the v;; with [ # 4, we find that

Vi) < P [ (T it A =] ) (Tl )

D" N je, J€Ts

A
TQ
<<P’”+E<sup sup/ |h(v + X)°g( 14T!d’y> (/ \9(7)!32/3d7) -
A€R2 ~2€[0,1) J[0,1) [0,1)2
(6.7)
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It follows from [28, Theorem 1.3] that the second integral is bounded above by PY7/3+,
Meanwhile, upon abbreviating 9t;(Q) by 9;, we also have

sup [ [ty + A9 v < (sup o)) / Iy + N
[0,1) [0,1)

'726[071) yeEmM*
+ sup / |h(y + X) ()| dys.
Y2€M2 J M3
In the first term, (6.5) together with Lemma 5.2 of [28] yields

yeEmM*

1

—4T 3 _3r4e —4T14¢€

(sup lg(n)I* 4)/ b+ ) dyg < P | )ty < o
0,1 0

In order to estimate the contribution from the major arcs we observe that an application
of Holder’s inequality yields

/%\h(er)\) ) 4T|d7 < (/%\ (¥)*?h(y + A) ]d73> (/ \h(~ |¢’d73> ’

where w; = (2 — 87)/5, wy = (3 +87)/5, and ¢ = (26 + 167)/(3 + 87). Observe in
particular that for 7 < 1/24 one has ¢ > 8. It follows that the first integral is O(P3/?)
by Lemma 5.3 (i), and the second one is O(P?~3¢) by Hua’s Lemma, whence we obtain
an overall contribution of

PB3/5)(1-47) p(6-3)(3+87)/5te - pi—dr+e

from the major arcs. Together with the minor arcs contribution we find
sup / |A(y + X)°g() | dvys < P,
72€[0,1) J[0,1)
and therefore
| (TT it + A Platu) =) ( TT It e prai=oiee e
00" N jeg ieTs
On recalling (6.6) and (6.7), we thus obtain

N;"(m) < PT(4A—1)+EP’V%TQ—‘—%TQP4TC+(5/3)TQ—4TA < P4rc+[%rQ]—‘r/2

for e sufficiently small.
It follows from our definitions of major and minor arcs that

Ns(n(X)) < Ns(m(Q)) + Ns(M(Q, X)), (6.8)

where N,(%B) denotes either Ny(B) or N*(B). In view of the preceding estimates,
(6.8) shows that the analysis of the minor arcs n(X) will be complete upon obtaining a
satisfactory bound for Ny(M(Q, X)).

Lemma 6.2. Let 1 < X < QY™ be arbitrary, and suppose that the system (5.1) is
highly non-singular with s given via (2.3) where u is as in (6.3) or (6.4). Then we have

N,(M(Q, X)) < P x—1/6M),
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Proof. The relation (5.2) implies that, whenever a € (@), then for every pair of indices
i,j there exists an integer b, ; with |b; ;| < B = rmax; ;{c;j, d;;} such that v, ; — b; ; €
My, (Q). We show that when a ¢ 91(X), then necessarily one has v ¢ N(Y) + Z" for
Y = XM For this purpose, observe that for i € {1,2} only s; of the entries of ~*:)
are independent. Now suppose that all entries of ¥*9 are in 9, (Y) + Z". Then for
every j € {1,...,p;} there exist ¢; < X and Ay, ; € Z with |y, ; — Ay, ;/q;] < Y P,
The invertibility of the coordinate transform (5.2) implies that we may retrieve the oy,
from the v, and we therefore deduce that

| — ag /gl <Y PR (1< 1< )
for some constant x depending at most on the (¢;;) and (d;;). However, we have ¢ =
G- qu, < YH, whence

Qg € M (V) C M, (YY) = M (X)) (1< <)

It follows that whenever a € M(Q, X), then there exists some pair of indices (k;,7)
with vy, ; € ny, (Y) + Z, so altogether v € M(Q.,Y)+Z" N [-B, B]".

For the rest of the argument we abbreviate 9 = 9MM(Q), N = NY) and M =
M(Q,Y), and we use the same conventions for the respective symbols when equipped
with suffices or asterisks.

For rqg # rc and A = [1,P] set v; = 2u; + (s — 2s9)/M for i € {1,2}, so that
(1 — p2)v1 + povy = s. The relations (2.5) and (5.2) together with the above argument
imply that there exist sets of indices [J; and J, with | J1| = 1 — pe and | J2| = pa, such
that

Nm@x) < [ O § WELCEIEN VATCAIRE

US| JET2
< [ TDier I 1reledr
M@Y) jeqy JET2

Note that by the non-singularity condition we may assume that all entries (4, ,)ics are
determined by the entries (v, ;);ez. We therefore obtain

M@ < [ T (@2, 0 TT 17(5)dby;

* —1 *
()27 x M JET2

4 /( T M) T 1)
M+ )12

JET2
where we wrote
le(%v’Y(kQ)) :/ H | (ks Vo) AV -
B 1€J1
Observe that we have v; > 2u; = 4 and vy > 2uy = 10 regardless of which of r¢ or rg
is larger. Writing

T<Q:) = sup / |f(7k177k2)‘v1d7k17
¢

Vhg €My
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we may therefore deploy Lemma 5.1 to obtain

s x < rempe( [ seran)” [ ey

1) :

*

*

< P(U2—5)M2+(v1—k1)(u1 —[LQ)Y—I/G.

Upon noting that s = vy(py — po) + veps and K = 5ug + ky(pg — pe), this yields the
desired conclusion.
Similarly, for rg = r¢ = r/2 we deduce from (2.5) and Lemma 5.1 (ii) that

r/2

NS(M(Q7X)) < PS—QSO/ H |f ~i ‘I(J)d,7 < P 280+(5/2)TY 1/6

(m*)'r/2 1y M* (

and the result follows on noting that sy = K = 2rg + 3r¢ = (5/2)r in this case.
Finally, in the smooth case we have | 71| = A = r¢ — rg and | J2| = rg, and as in the
argument leading to (6.7) we obtain

N*(M(Q, X)) < P/l / TT 15 + A0l TT o)y
MQY) je jeds

for suitable vectors A; = (A2, A3;) € R?, where \g; is a linear combination of the
coefficients 7, with [ # ¢. By writing

T7,(B,4?) = sup / T 12y + X)°g(v)|dys.i,
AcR2A B icT

we see that

NMQX)) < PeRrel [ T @) [] lgn)
(Dﬁ*)’rQ7 X M* ]EJQ

4 Ple/dr] / T (M5 % My, ~@) T lg(y) P
(m=)"Q JjET2
Letting
f( = sup sup/\h v+ A)°g(7)|dvs,

Y2EM AeR?
then by an argument analogous to the one above with Lemma 5.3 (ii) in the place of
Lemma 5.1 (i) we obtain

VM@ ) < P Tt ([ ete) [ e

n p[<2/3>rQ1T(m3)A—1T(M3)< / If(v)\lod’Y)
m*

< P’V(2/3)TQ.IP4AP5TQY_1/6 < PS_KY_I/G.
This completes the proof of the lemma. O
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The analysis of the minor arcs n(X) = [0, 1]" \ DX ) is now completed on inserting
Lemma 6.2, together with the estimates ensuing from Lemma 6.1, into (6.8).

For the major arc analysis, only small modifications to the arguments of Section 4 are
required. In completing the singular series, we again have to make a case distinction
as to whether rg > r¢ or not. If rg > r¢ we have (6.2) and (6.3), and with these
parameters (4.8) becomes

A(pz') <<pfi(%(10+l/r)f2)+€ +p7i(%(4+1/r)71)+8 <<p—§'(1+1/r)+a7 (6.9)
from which it follows that

D AQ) < p i (6.10)
=3

For i € {1,2} we make recourse to the estimate (5.4). Following through the argument
of the proof of Lemma 4.1, one thus obtains

A(pi) < p—i(%(4+1/r)—1)+e +p—i<%(10+1/r)—2>+5 < p7171/(2r)+e (i=1,2). (6.11)
Now on combining (6.10) and (6.11) one has for a suitable constant ¢ that

<[+ V) <1
P
If r¢ > rg we have (6.4), and thus

A(pi) <<p7i(%(10+1/r)72)+5 +p7i<%(6+1/r)71)+5 <<p—i(1+1/(3r))+s

)

which is also satisfactory. Finally, in the case rqg = r¢ the bound is given by the first
term in (6.9), whence A(p') < p~*/3 for all i. It follows that the singular series converges
also in the setting of Theorem 1.4, and also that & — &(X) < X~ for some § > 0.

For the singular integral, the results of Lemma 4.2 are satisfactory even in the case
of Theorem 1.4. To verify this, we first observe that when rg # rc one has u; > 2 >
3/2 = (k/2)v(1) and uy =5 > 3 = (k/2)(v(1) + v(2)), whereas when rg = rc we have
u;p =5 >3 = (k/2)v(1). The proof of Theorem 1.4 is now complete on recalling the
concluding discussion of Section 4.

REFERENCES

[1] R. C. Baker, Diophantine inequalities, Clarendon Press, Oxford, 1986.

[2] B. J. Birch, Homogeneous forms of odd degree in a large number of variables, Mathematika 4
(1957), 102-105.

[3] J. Bourgain, C. Demeter, and L. Guth, Proof of the main conjecture in Vinogradov’s mean value
theorem for degrees higher than three, arXiv:1512.01565 (2015), preprint.

[4] J. Brandes, A note on p-adic solubility for forms in many variables, Bull. London Math. Soc. 47
(2015), 501-508.

[5] T. D. Browning and D. R. Heath-Brown, Forms in many variables and differing degrees, J. Eur.
Math. Soc. (2015), to appear.

[6] J. Briiddern and R. J. Cook, On simultaneous diagonal equations and inequalities, Acta Arith. 62
(1992), 125-149.

[7] J. Briidern and T. D. Wooley, The Hasse principle for pairs of diagonal cubic forms, Annals of
Math. 166 (2007), 865-895.

, Subconvexity for additive equations: pairs of undenary cubic forms, J. Reine Angew. Math.

696 (2014), 31-67.

8]



28 J. BRANDES AND S. T. PARSELL

9] —, Correlation estimates for sums of three cubes, Ann. Sc. Norm. Super. Pisa Cl. Sci. (2015),
to appear.
[10] , The Hasse principle for systems of diagonal cubic forms, Math. Ann. (2015), in press.

[11] R. J. Cook, Pairs of additive equations, Michigan Math. J. 19 (1972), 325-331.

[12] , Pairs of additive equations III: Quintic equations, Proc. Edinburgh Math. Soc. 26 (1983),
191-211.

[13] H. Davenport and D. J. Lewis, Simultaneous equations of additive type, Philos. Trans. Roy. Soc.
Ser. A 264 (1969), 557-595.

[14] M. P. Knapp, Diagonal equations of different degrees over p-adic fields, Acta Arith. 126 (2007),
139-154.

[15] S. T. Parsell, On simultaneous diagonal inequalities, III, Quart. J. Math. 53 (2002), 347-363.

[16] , Pairs of additive equations of small degree, Acta Arith. 104 (2002), 345-402.

[17] W. M. Schmidt, Equations over Finite Fields. An Elementary Approach, Springer, Berlin, Heidel-
berg, New York, 1976.

[18] , The density of integer points on homogeneous varieties, Acta. Math. 154 (1985), 243-296.

[19] R. C. Vaughan, On Waring’s problem for cubes, J. Reine Angew. Math. 365 (1986), 122-170.

[20] , The Hardy-Littlewood method, 2nd ed., Cambridge University Press, Cambridge, 1997.

[21] R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, Acta Math. 174
(1995), 147-240.

[22] T. D. Wooley, On simultaneous additive equations II, J. Reine Angew. Math. 419 (1991), 141-198.

[23] , On exponential sums over smooth numbers, J. Reine Angew. Math. 488 (1997), 79-140.

[24] , On simultaneous additive equations IV, Mathematika 45 (1998), 319-335.

[25] , Sums of three cubes, Mathematika 47 (2000), 53-61.

[26] , The asymptotic formula in Waring’s problem, Internat. Math. Res. Notices (2012), 1485—
1502.

[27] , The cubic case of the main conjecture in Vinogradov’s mean value theorem,
arXiv:1401.3150 (2014), preprint.

(28] , Rational solutions of pairs of diagonal equations, one cubic and one quadratic, Proc.

London Math. Soc. 110 (2015), no. 2, 325-356.

JB: MATHEMATISCHES INSTITUT, BUNSENSTR. 3-5, 37073 GOTTINGEN, GERMANY,
jbrande@uni-math.gwdg.de

STP: DEPARTMENT OF MATHEMATICS, WEST CHESTER UNIVERSITY, 25 UNIVERSITY AVE.,
WEST CHESTER, PA 19383, U.S.A., sparsell@ucupa.edu



