MULTIPLE EXPONENTIAL SUMS OVER SMOOTH NUMBERS

SCOTT T. PARSELL

ABSTRACT. We obtain estimates for mean values of double exponential sums over smooth
numbers by developing a suitable version of the Vaughan-Wooley iterative method. These
estimates are then used within the fabric of the Hardy-Littlewood method to provide a
lower bound for the density of rational lines on the hypersurface defined by an additive
equation when the dimension is sufficiently large in terms of the degree. We also consider
applications to a two-dimensional generalization of Waring’s problem.

1. INTRODUCTION

Let F(x) be a form of degree k in s variables, with integer coefficients. In 1945, Brauer [4]
demonstrated the existence of an m-dimensional linear space on the hypersurface F'(x) = 0
over some solvable extension of QQ, provided that s is sufficiently large in terms of k and
m, and in 1957 Birch [3] obtained the same result over Q for odd k. Unfortunately, the
elementary methods of Brauer and Birch do not yield any reasonable bounds on the number
of variables required, although explicit calculations have been done more recently for small
values of k by Lewis and Schulze-Pillot [8] and Wooley [15], [16]. Moreover, up to this point
no estimates have been provided for the density of rational lines on a given hypersurface.

In this paper, we obtain an explicit upper bound for the number of variables required to
guarantee the expected density of lines on the hypersurface F'(x) = 0 in the case when F
is an additive form of degree k. Our approach is via the Hardy-Littlewood method, and we
will be required to develop considerable analytic machinery in order to get started. The
method depends fundamentally on sharp estimates for certain multiple exponential sums
over smooth numbers, which we obtain by extending the ideas of Vaughan [11] and Wooley
[13], [17]. Such estimates are of interest in their own right and may also be applied, for
example, to the two-dimensional generalization of Waring’s problem proposed by Arkhipov
and Karatsuba [1], which we consider in Section 9.

When P and R are positive integers, write

A(P,R)={n€[1,P]NZ: p|n, p prime = p < R}
for the set of R-smooth numbers up to P, and define the exponential sum
fla; P,R) = Z e(apz” + oty + -+ apy”). (1.1)
z,yeEA(P,R)
Further, define the mean value

S.(P.R) = / flas P, R)Pda,

Tk+1
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and observe that Sg(P, R) is the number of solutions of the system of equations

S

> (bl - ) =0 (0<i<k) (1.2)

m=1
with

Tins Yms Ty I € A(P, R) (1 <m < s).
The following theorem provides a simple upper bound for Ss(P, R).

Theorem 1. Let k > 2 be a positive integer, and put r = [%} Further, write

1\"!
_ 1.2 =
s1 =k (1 Qk) +r,

and let s be a positive integer with s > s1. Then for any € > 0 there exists n = n(s, k,e)
such that

SS(P, R) < p4sfk(k+1)+A5+6’ (13)

where R < P" and

1 (s—s1)/r
Ag=k(k+1)[1—-— )
s = klk+ )< Qk)

For example, if s ~ 2k2(logk + loglogk), then we have A, < k2e~*/¥ < (logk)~2.
Whenever Ay has the property that, for every € > 0, there exists n = n(¢) such that (1.3)
holds whenever R < P", we say that A, is an admissible exponent.

We note for comparison that Arkhipov, Karatsuba, and Chubarikov [2] have obtained
estimates for the number of solutions of the “complete” system

S

> (@, — E5h) =0 (0<i,j<k)

m=1
with
1 < oy Yo Ty Y < P (1 <m < s)

which lead, via a standard argument, to admissible exponents for (1.2) behaving roughly
like k3e=%/2%’ 5o that one must take s > 6k3log k in most applications.
We also remark that, when R = P", an elementary argument yields the lower bound

S.(P, R) > P2 4 piskk+l) (1.4)
and that a weak upper bound of the form
Ss(p, R) < P457%k(k+1)+Ag+s,

follows on fixing y,y and applying the results of [17] to the equations in x, X.
In Section 6, we obtain the following sharper result as a consequence of repeated efficient
differencing.
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Theorem 2. Write r = [%], and put

so = k(k+1) and  s; = 3rk(log(4rk) — 2loglog k).
Further, define

 Jarker3lsmso)fark, when 1 < 5 < sy,
’ e*(logk)? (1 — i)(s_sl)/r, when s > s1.

Then there exists a constant K such that the exponent A, is admissible whenever k > K.

Notice that the admissible exponents one obtains from Theorem 2 decay in most cases
roughly like k2e~3%/2*  whereas those obtained from Theorem 1 decay like k2e~5/*”.

The mean value estimates of Theorems 1 and 2 may be transformed into Weyl estimates
by using the large sieve inequality in a standard way. Thus in Section 7 we will prove the
following result.

Theorem 3. Forp > 0, definem,, to be the set of o € RE*Y such that whenever a; € Z and
q € N satisfy (ao, ..., ax, q) = 1 and |qo; — a;| < P*"F*R* (0 <i < k) one has ¢ > P*RFL,
Suppose that 0 < A < % and that A, denotes an admissible exponent. Then given ¢ > 0
there exists n = n(e, k) such that whenever R < P" one has

sup |f(a; P,R)| < protte,

QEM) (k1)

where

- A— (1 NA,
o(A) = Jmax, 5% . (1.5)

1
2(k+1) "

In our applications involving the circle method, we will find it useful to take A =
After performing a simple optimization, one obtains the following simplification.

Corollary 3.1. Given € > 0, there exists n = n(e, k) such that whenever R < P" one has
sup ]f(a; P, R)‘ < P2—al(k)+5’

acm, j;
where

o1(k)" ~ 2k log k
as k — oo.

We now consider the multidimensional analogue of Waring’s problem discussed in [1].
Let Wy(n, P) denote the number of solutions of the system of equations

By Tyl =y (0S5 <K) (1.6)

with z;,y; € [1, P] N Z. Obviously, W,(n, P) = 0 if the relative sizes of the n; are incom-
patible, since then the equations (1.6) will be insoluble even over the positive reals. Thus
we will need to impose some conditions in order to proceed.

Theorem 4. Suppose that
s > Wk logk + Qk*loglog k 4+ O(k?),
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and fix real numbers g, . . ., pr with the property that the system
G T = (0S5 < k) (1.7)

has a non-singular real solution with 0 < n;,& < 1. Suppose also that the system (1.6)
has a non-singular p-adic solution for all primes p. Then there exist positive numbers

Py = Py(s,k, ) and 6 = 6(s, k, ) such that, whenever P > Py and
Inj — Pru;| < oP* (0<j<k), (1.8)
one has
W, (n, P) > P2k,

We remark that the p-adic solubility condition imposed in the theorem in fact need only
be checked for finitely many primes p, as we will see in Section 9 that primes sufficiently
large in terms of k£ may be dealt with unconditionally using exponential sums.

Theorem 4 leads, via the binomial theorem, to the conclusion that suitable polynomials
of degree k with integer coefficients may be represented as sums of kth powers of linear
polynomials. That is, we seek to write

p(t) = (@it +y1)" + -+ (wst + yo)* (1.9)

We will say that the polynomial

p(t) = i (f) n;t’ (1.10)

is locally representable if

(1) there exist real numbers P, d, and py, . .., t such that (1.8) holds and such that the
system (1.7) has a non-singular real solution with 0 < n;,& < 1, and
(2) the system (1.6) has a non-singular p-adic solution for all primes p.

Now let G (k) denote the least integer s such that, whenever the polynomial p(t) given
by (1.10) is locally representable and ny,...,n; are sufficiently large, one has the global
representation (1.9) for some natural numbers 1, ..., x5 and yq, . .., ys.

From Theorem 4 we immediately obtain an upper bound for G (k).

Corollary 4.1. One has
Gi(k) < ¥k’ logk + L2k loglog k + O(k?).

We note that Arkhipov and Karatsuba [1] have previously outlined a program for obtain-
ing bounds of the form Gj(k) < Ck*logk using the theory of multiple exponential sums
over a complete interval developed in [2]. Corollary 4.1 thus gives an explicit asymptotic
version of this result, showing that one may take C' ~ 14/3.

It is worth noting that the analogous problem over the complex numbers has been con-
sidered recently by algebraic geometers (see for example [7], [9]). By exploiting a surpris-
ing connection with the theory of partial differential operators, one finds that precisely
s = (%w terms are required to guarantee a representation of the shape (1.9) for arbitrary
polynomials of degree k over C. In fact, similar results are known when p(t) is replaced by
a form in several variables.
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Finally, we return to the problem posed at the beginning of the paper, namely, counting
rational lines on the hypersurface defined by an additive equation. Let ¢y, ..., ¢, be nonzero
integers, and write N,(P) for the number of solutions of the polynomial equation

a(rit+y)f + -+ es(@st +ys) =0 (1.11)

with x;,y; € [—P, P] N Z. Equivalently, by the binomial theorem, Ny(P) is the number of
solutions of the system of equations

oy Tyl ety =0 (0<5<k) (1.12)
with x;,y; € [-P, PN Z.
Theorem 5. Suppose that
s> Y2 log k + 242 loglog k + O(k?),

and that the system of equations (1.12) has a non-singular real solution and a non-singular
p-adic solution for all primes p. Then for P sufficiently large one has

NS(P) > P2S_k(k+1).

As in Theorem 4, the p-adic solubility hypothesis here need only be verified for small
primes, as the primes p > po(k) are easily dealt with by an analytic argument.

Given a line ¢ : xt +y, we define the height of ¢ by h(¢) = max(|z;|, |y;|). To obtain the
density result mentioned in the opening, we seek a lower bound for the number of lines ¢ on
our hypersurface that satisfy h(¢) < P. Among the solutions counted by N (P), we may
of course have several that correspond to the same line, so Theorem 5 does not directly
yield such a lower bound. In Section 10, however, we will actually derive the estimate of
Theorem 5 when the variables are restricted to lie in dyadic-type intervals and then show
that in this situation the number of solutions of (1.12) corresponding to any particular line
is at most O(1). Thus we will prove the following theorem.

Theorem 6. Let Ly(P) denote the number of distinct rational lines ¢ lying on the hyper-
surface

b+ e =0 (1.13)

and satisfying h(£) < P. Then, under the hypotheses of Theorem 5, one has
LS(P) > P2S_k(k+1).

We note that, when s is large in terms of k, the theory of a single additive equation (see
for example [12]) shows that the hypersurface defined by (1.13) contains “trivial” lines,
corresponding to the case where either x; = 0 or y; = 0 for each i in (1.11). By a trivial
estimate, however, the number of such lines is O(P®). Hence Theorem 6 shows that in this
situation most of the points on (1.13) that lie on lines in fact lie on non-trivial lines.

For a hypersurface defined by an additive cubic equation, the author’s forthcoming work
[10] shows that the estimate of Theorem 6 holds unconditionally whenever s > 57.

The author wishes to thank Professor Trevor Wooley for suggesting these problems and
for providing substantial advice and encouragement during the writing of this paper. The
author also acknowledges the important comments of the referee.
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2. PRELIMINARY LEMMATA

Before embarking on the proofs of our mean value estimates, we need to make some
preliminary observations. We start by showing that solutions of (1.2) in which some z; and
y; or some Z; and y; have a large common factor can effectively be ignored. When v > 0,
let Ss(P, R;~y) be the number of solutions of (1.2) with (z;,y;) < P” and (z;,y;) < P? for
all j.

Lemma 2.1. For every v > 0, one has Ss(P, R) < P*%° + Sy(P, R; 7).
Proof. Write S!(P, R; ) for the number of solutions of (1.2) with (z;,y;) > P" or (%;,7;) >
P7 for some j, so that Ss(P, R) = Ss(P, R;7y) + S.(P, R;~). Then we have

SUPRy) =) d*a; P/d, R)f(—e; P, R)|f(e;; P,R)|*?dee.  (2.1)
d>P7 T'““
Now suppose that S%(P, R;~y) > Ss(P, R;~), so that S,(P, R) < 25.(P, R;~), and let
A = inf{\ : Sy(P, R) < P*}.

If Ay = 2s, then we are done, so in view of (1.4) we may assume that \; > 2s. By applying
Holder’s inequality to (2.1), we obtain

1/2s 1-1/2s
s« ([ rdaranEaa) ([ ferppda)

d>PY

from which we deduce that

2s
Ss(P,R) < (Z Sy(P/d, R)1/25> & PN be
d>Pv

for all € > 0, since Ay > 2s. This provides a contradiction for € sufficiently small, so in fact

we have S!(P, R;v) < Ss(P, R; ), and the conclusion of the lemma follows. O
We next record an estimate for the number of solutions of an associated system of
congruences. When fi,..., f; are polynomials in Z[x,. .., x|, write By(q, p;u;f) for the
set of solutions modulo ¢*p* of the simultaneous congruences
fi(ze, ... 2) =wu; (mod ¢" TPt (1< 5 <) (2.2)
with (J;(f;x),pq) = 1, where
ofi
Ji(f;x) = det ( /i (x )) . (2.3)
Ox; 1<i,j<t
Lemma 2.2. Suppose that fi,..., far € Z|x1, ..., T2 have degrees bounded in terms of k.

Then whenever 2r < k+ 1 we have
C&I‘d([}’gr (q7 ;U f)) Lk (pq)r(Qr—l)—i-E(q7 p)Qr(Qk—2r+1)'

Proof. Write ¢ = q/(q,p) and p = p/(q,p), so that (¢,p) = 1. Then by considering the
jth congruence in (2.2) modulo (j’“*jﬂ, we obtain from Lemma 2.2 of Wooley [17] that
the number of solutions modulo ¢* is O, (" ~Y+¢). Similarly, the number of solutions
modulo p* is O, ,(p"* ~Y+¢). Hence by the Chinese Remainder Theorem the number of
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solutions modulo G*p* is O, ((pG)"® ~Y+¢). Trivially, each of these solutions lifts in at
most (g, p)*" ways to Z/(¢"p*), and the lemma follows immediately. O

We now develop some notation for analyzing real singular solutions of systems such as
(1.2). Let 1)1, ..., 19, be nontrivial polynomials in Z[z, y| of total degree at most k. When
Z,J c{1,2,...,2r} with card(J) = 2card(Z) and z, w € Z*", define the Jacobian

%(’Zia wz)
J(Z,T;¢) =det | &7 ‘ :
€T jeT

Write J; = {1,...,d}, and let Z} denote the set of all subsets of Ja, of size d. We will
call the 4r-tuple of integers (z1,ws, ..., 22, wo,) highly singular for v if J(Z, Jo;%) = 0
for each 7 € 7. Also write

Wi (2, w) %(z w)
L . — Oz ’ Oz )
d; j(z,w; 1) = det ( %ﬁf Gow) B ) ) :

Let S, (P; 1)) denote the set of all integral 4r-tuples (z1, wy, . .., 22, wo, ) with 1 < z;, w; <
P which are highly singular for 1.

Lemma 2.3. Suppose that in,..., 9 satisfy the condition that dyo is non-trivial and
deg,,(d; ;) < deg,(dy ) whenever i+ j <i' + j'. Then we have

card(S,(P;)) < PP 1.
Proof. Let To(P;)) denote the set of integral 4r-tuples (z,w) with 1 < z;, w; < P for
i1=1,...,2r and
dl,g(zi, Wi, ¢) = O (24)
for all i. For a 4r-tuple counted by 7o(P; %) and a given i, there are at most O(P) choices
for z; and w; satisfying (2.4), since we have assumed that d; » is non-trivial, and it follows
that card(7o(P;)) < P,
Now for 1 < d <r — 1, we say that (z,w) € Ty(P; ) if
J(Z, Toaih) # 0 (2.5)
for some 7 € Z; but
J(Z U{i}, Joaro; ) =0 (2.6)

for all i € Jo. \ Z. Consider a 4r-tuple counted by 7;(P;p) for some 1 < d < r — 1.
There are O(1) choices for Z and O(P??) choices for the z; and w; with i € Z. Now we fix
i € Jor \Z and expand the determinant in (2.6) using 2 x 2 blocks along the rows containing
z; and w;. Then on using (2.5) together with our hypothesis on ), we see that the relation
(2.6) is a non-trivial polynomial equation in the variables z; and w; and hence has O(P)
solutions. Thus we have

C&I‘d(’]:j(P; ’l/))) < P2d+(2r—d) _ P2r+d

and hence

ﬁ
|
—

card(S,(P; 1)) < Y card(Ty(P; ) < P71
0
as desired. O

Iy
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Finally, we recall an estimate of Wooley [14] for the number of integers in an interval

with a given square-free kernel. We adopt the notation so(N) = H .
pIN

Lemma 2.4. Suppose that L is a positive real number and r is a positive integer with
logr < log L. Then for each € > 0, one has

card{y < L : so(y) = so(r)} < L°.
Proof. This is Lemma 2.1 of Wooley [14]. O

3. THE FUNDAMENTAL LEMMA

For 0 < i < k, let ¢;(z,w;c) be polynomials with integer coefficients in the variables
Z,W,C1,. .., ¢, and satisfying the conditions of Lemma 2.3. Further, suppose that C; and
Cl satisty 1 < C] < C; < P, write

C = ﬁ C;,
i=1

and let D;(c) be polynomials with total degrees bounded in terms of k such that D;(c) # 0
for C! < ¢; < C;. We let ¢, n, and v denote small positive numbers, whose values may
change from statement to statement. Generally, n and v will be chosen sufficiently small in
terms of €, and the implicit constants in our analysis may depend at most on ¢, n, v, s, and
k. Since our methods will involve only a finite number of steps, all implicit constants that
arise remain under control, and the values assumed by 7 and ~ throughout the arguments
remain uniformly bounded away from zero.

When r < [%}, let S5, (P,Q, R;¢) = S5, (P,Q, R;¢; C,D;~) be the number of solu-
tions of the system

Z N (Vi(2n; W €) — i (2, Wn; €))
n=1

. (3.1)
+Di(e) Y (ah i = T) =0 (00 < k)
m=1

with
(Tms Ym) < P7and (T, Jm) < P7 (1 <m < s), (3.3)
1< zp,wp, 2p, 0, < P and m, € {£1} (1 <n<r), (3.4)

and
Ci<¢<C (1<j<u) (3.5)

Further, write S,,(P, @, R; ) for the number of solutions of (3.1) with (3.2), (3.3), (3.4),
(3.5), and

Jor(z,w;c) A0 and Jy.(z,W;c) #£ 0, (3.6)
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where (recalling the notation of the previous section) we have put
<]27‘(Z7 W C) = J(jry j27‘7 ¢(Z7 Wi C))
Finally, let T, (P, @, R, 0;1) denote the number of solutions of

Z N (Vi(2n; W €) — i (2, Wn; €))
n=1

s (3.7)
D Y kT, ) =0 (0<i <k
m=1
with (3.4), (3.5),
P’ <p,qg< PR and (¢qp) <P, (3.8)
Unny Vs U, U € A(QP7 R) (1 <m < s), (3.9)
(U, V) < P77 and (T, ) < P70 (1 <m < s), (3.10)
and
(J2r(2z, w3 ), pq) = (Jor(Z, Wi €), pg) = 1. (3.11)

Lemma 3.1. Given e > 0, there exists a positive number n = n(e, s, k) such that whenever
R < P" one has

Ser(P,Q, R;9p) < CP¥15,(Q, R) + CQ3 pr+stte 1 plis=20ter (P .Q, R, ;).

W)

Proof. Let Sy denote the number of solutions counted by S; (P, @, R; ) such that (z, w, Z,
W,Z, W) is

is highly singular for 4, and let S; denote the number of solutions such that (z,
not highly singular for 4, so that S, (P, Q, R;¢) = S; + Ss.

(i) Suppose that S; > Sy, so that Ss,.(P, @, R;1) < 2S5;. By Lemma 2.3, we see that
there are O(P> ') permissible choices for z, w,z, and w. Now let

fc(a; Qa R) = Z e (Z OZZ‘DZ'(C)ZL‘k_iyi> .

z,y€A(Q,R) i=0
(z,y)<PY

For a fixed choice of z,w,z, w, ¢, and 7, the number of possible choices for x,y, %X, and y
is at most

[ el @ R)Pdac < 5.(Q. )

so we have S; < P¥~1C'S,(Q, R), which establishes the lemma in this case.

(ii) Suppose that Sy > Sy, so that S,,.(P,Q, R;v¢) < 2S;. By rearranging variables,
we see that S, ,.(P,Q, R;v¢) < S3, where S3 denotes the number of solutions of (3.1) with
(3.2), (3.3), (3.4), and (3.5), and Jo.(z,w;c) # 0. Then by using the Cauchy-Schwarz
inequality as in the corresponding argument of Wooley [17] to manipulate the underlying
mean values, we see that

Ss,r(PquR; 1/") < S47
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where Sy represents the number of solutions of (3.1) satisfying (3.2), (3.3), (3.4), (3.5),
Jor(z,w;c) # 0, and Jy.(z, W; c) # 0.

We now further classify the solutions counted by S;. Write x D(L) y if there is some
divisor d of x with d < L such that z/d has all of its prime divisors amongst those of y.
Let S5 denote the number of solutions counted by S, for which

z; D(P?) Jor(z,w;c) or %; D(P’) Jy (2, W;c) (3.12)
or
y; D(P?) Jor(z,w;c) or §; D(P?) Jon(2,W;c) (3.13)

for some j, and let Sg denote the number of solutions for which neither (3.12) nor (3.13)
holds for any j. Then we have

Ss.r(P, Q, R; ) < S5+ S,
and we divide into further cases.
(iii) Suppose that S5 > Sg, and further suppose that (3.12) holds. Write
S(z,w;c) = {r € A(Q,R) : x D(P°) Jo.(z,w;c)},

and let
gC,n(a;paQ7R> = Z Z E a;xayazaw;can))a
z€S(z,wW;C
Jgr(zw c)#0 yee.%{(Q R))
(z,y)<PY
where
k
E(a? z,Y,2,W;C, 7’) = Z &Z(DZ(C> ke Z + nlwl(zla Wy, C) +oe nrwi(zra Wy C))
=0
Then
< ) / Henles P,Q, R)F; y(c; P) folct; Q, R da,
c,n,w Rl
where
Fl (s P)= Y e(E(e;0,0,2 w;c,w)).

Jor (z,w;c)#0

By using the Cauchy-Schwarz inequality and considering the underlying Diophantine equa-
tions as in [17], we deduce that

Ser(P,Q, Rs9p) < Y Vg, hic),
g,h,c

where V (g, h; ¢) denotes the number of solutions of the system

r s—1
Z%(%(men;c) _wi(énawm Z b Z - k Z?J%)
n=1 m=1

i(e)((e2)* ™'y — (dx)*™'y') (0<i<k)
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with (3.2), (3.3), (3.4), (3.5), and

1<de<P’ x<Q/d, T<Qfe, y,§<Q, so(z)=g, s0(T)=h

Write
Gemglas P) = > e(E(e;0,0,2,w;c,m))
g\JQr(Z:‘\x;c);éO
and
Gem(ox ZGcng Z Z (Z )(df’c)k Z?f) .
9@ d<pP?® x<Q/d i=0
so(x)=g
y<@Q
Then
S0r(P,Q, Rip) < / (Gem(0)felet Q. R)* 2| dev. (3.14)
cn Tk+1
By Cauchy’s inequality, we have
|Gem(@)]” < Hicn(a)Hae(ar), (3.15)
where
Hienla) = Z |Gemglc; P)J?
9<@Q
and

TS ) o 911  SRICIEE

9=Q |d<P? 2<Q/d y<Q \i=0
so(z)=g
Now by interchanging the order of summation and using Cauchy’s inequality together with
Lemma 2.4 as in [17], we obtain

o) = X 5 ¢S anory)

9=Q | z,y<Q J<p?
s0(z)=g d<Q/x

< ZQlJrs Z POQ/HL'

9=Q z,y<Q
so(z)=g

< Q3pite. (3.16)
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Thus an application of Holder’s inequality in (3.14) gives

1-1 1
Ssr <K (; /THI|H17cm(a)f~:(a)2s|da> (; /Tkﬂ|H1,cm(a)H2,C(O‘)S|dC“>
1
< Q*pUte (ZZ/ Genglay; P)\Qda> Ser(P,Q, R;ap)'~

cn g<@Q
where we have written f.(a) for f.(a; @, R) and used a standard estimate for the divisor
function. But for a fixed choice of ¢, 7, z, and w, the Inverse Function Theorem, in combi-
nation with Bézout’s Theorem, shows that there are O(1) choices of z and w satisfying

CIJ|H

Znn(¢z(2m Wn; C) - ¢z(5m wn; C)) =0 (0 <1< k)
n=1
with Jo.(z, w;c) # 0. Hence by another divisor estimate we see that

ZZ/ cng a P>’2da<<cp2r+s

cn g<@
and the result follows in the case where (3.12) holds. The case where (3.13) holds is handled
in exactly the same manner.

(iv) Suppose that Sg > S5, and consider a solution counted by Sg. For a given index j,
let ¢ and p denote the largest divisors of z; and y;, respectively, with

(¢, Jor(z, w3 €)) = (p, Jor(z, W;c)) = 1.

Then, since neither (3.12) nor (3.13) holds, we have ¢ > PY and p > P?. Thus we can find
divisors ¢; of x; and p; of y; such that P’ < ¢;,p; < P’R and (q;p;, Jo(z, w;c)) = 1, and
we proceed similarly with the Z; and g;, except that we replace J,(z, w; c) by Jo.(Z, W; c).
Hence we see that Sg < Vi, where V] denotes the number of solutions of

Z N (Vi (20, W €) — Vi 2, Wn; ©))
n=1

Z unJ pJUJ) (ijﬁﬂk—i(ﬁjﬁj)i) =0 (0<i<k).

with (3.4), (3.5), and for 1 < j g s
P’ < q;,p;,4;,p; < PR, (%,p5); (@5,p5) < P7, (3.17)
uj, vy, 05,0 € AQP™" R),  (uj,vy), (@;,7;) < P,
and

(ijja J2T(Z7W; C)) - (djﬁjv J2T’(Z7V~V; C)) =L

Now write

Fepg(as P.R) = > e(E(a;0,0,2,w;c,n))

z,wW
(q,J2r(z,w;c))=1
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and
Fej(@) = fe(a;pje; QP~’, R) fo(—a;p 0 QP R),
where
q;pja = (ozoqf, oqqf_lpj, e ozkp;‘?) and q;pjo = (a0q~f, a1q~f_1]5j, c akﬁ?).

Then we have

TH! o p.d i=1

where

T=qi - qpr---ps and T =qi---qsp1--Ds,
and where the sum is over q, p, q, p satisfying (3.17). Let

Xc,n,j(a) = }FC,’I],T('(a; P7 R) fc(quja; QP_Ga R)2S},

and let Y., ;(a) be the analogous function for the ¢; and p;. Then by (3.18) and two
applications of Holder’s inequality (as in [17]), we obtain

Se<< Y. H (Z/TWXC,,] )da>1/25 (cz:/jrkﬂnn,j(a)da)l/%.

a,p,q,p j=1 \¢,n

Now we observe that

[ Kewsle)da = W(PQ Rogsop)
c,n T !

where W(P,Q, R, q,p) denotes the number of solutions of (3.7) with (3.4), (3.5), (3.9),
(3.10), and (3.11). Thus we have

S6 < Z HW(Pa Q7R7 Qjapj)l/Qs W(p7Q7R7 gjaﬁj)l/%a

q,p,q,p j=1

whence by Holder’s inequality

1-1/2s
SG < < Z 1) < . H P Q R qjupj) (P7Q7R76j7ﬁj)>
q,p,q,p j=1

Q,pP,q,p

2 1/2s
< (PGR)4S_2 (H ZW(P7Q7R7 QJ7p])>

j=1 aq,p

< (P'RY*2T,,.(P,Q, R, 0;),

1/2s

and this completes the proof of the lemma. O

The following modification of Lemma 3.1 may be more useful for smaller values of k.
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Lemma 3.2. Given e > 0, there exists a positive number n = n(e, s, k) such that whenever
R < P" one has

Ser(P,Q, R;vp) < CP'S,(Q, R) + Q*P***S, 1 ,(P,Q, R; ¢)
+ pUs=20te T (P.Q, R, 0;1).

Proof. The only change occurs in part (iii) of the proof, where the number of solutions
counted by S5 is estimated. Substituting the bounds (3.15) and (3.16) into (3.14), we
obtain

S (PQRW) < QPN [ (Genyfoi PPl QR da

cn g<@Q
and the lemma follows on considering the underlying Diophantine equations and recalling
a standard estimate for the divisor function. O

Now let T},.(P, Q, R, 6; 1) denote the number of solutions of (3.7) with (3.4), (3.5), (3.8),
(3.9), (3.10) and also

20 =%, (mod ¢"p*) and w, =W, (mod¢*p*) (1<n<r). (3.19)

Lemma 3.3. Given € > 0, there ezists a positive number vy = Yo(e, s, k) such that when-
ever v < 7o one has

Ty (P,Q, R, 0:4p) < (PPR)"* V7T, (P, Q, R, 0; %)

Proof. When ¢ and p satisfy (3.8), let B, ,(u;c,n) denote the set of solutions (z, w) of the
system of congruences

Ti(z, wic,m) =u; (mod ¢ ~'p') (0<i<k) (3.20)
with 1 < 2,,,w, < (gp)* and (gp, Jo,(z, w; c)) = 1, where

Yi(z,w;c,m) Z% (20, wni €

By Lemma 2.2 we have
card(B,,(u; ¢, n)) < (pg) =1+,

on taking v sufficiently small in terms of e. Now observe that for each solution counted by
Ts,r(Pa Q, R, 0; ’%b) we have

Ti(z, w;c,n) = T;(z,w;c,n) (mod ¢*~'p’),

so for each i we can classify the solutions of (3.7) according to the common residue class
modulo ¢*~ip® of Y;(z, w;c,n) and T;(z, w;c,n). Let

H,, (o;z,w;c,m) = Z Z <Z a;Ti(x,y;c, 77))

x€[1,P]" YE€([1, P]’“
In= Zn(q p )yn wn(q p )

Then
TPQRO) <X [ Byl feas(o: QP B) e,

,p ¢cn
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where

& ¢ p*
Hyp(ose,m) = E E T
uo=1 u;=1

up=1 |(

Z Hq,p(QSZaWWan)
B

9.0 (W;e,m)

and

fc,q,p(O‘S L,R) = Z <Z a; D;( (py) )

z,y€A(L,R) i=0
(z,y)<PY

Now by Cauchy’s inequality,

pk
H,,(c;c,n) Z Z Z card(B, ,(u;c,mn)) Z |H,,(c;z, w;c,m)|?,

up=1 u1=1 up=1 (z,w)€Bq,p(u;c,m)

and thus

TAPQRO) < (PRFEDES S [H fo da

q,p z,wW
c,n 1<zp, <q p
1<wn <gFpF

< (P'RCr=DF T (P,Q, R, 6;9).
This completes the proof. O

4. EFFICIENT DIFFERENCING

Define the difference operator A} recursively by

AL(f(z,y);hig) = f(z+hy+g)— flz,y)
and
A}k'ﬂ(f(%y)% ha, ..., hj+1;91, ce 7gj+1)
= AT(A;(JC(%?J); byl g 95)5 Ryvas Gia),

with the convention that

A(f(z,y);h;g) = flx,y).
Further, write

wi7j(z,w;h,g;m,n):A;(zk”'wi;h’l,... hyi gy, 95),

)Ty
where
hi = hi(min;)"  and g = gi(min,)", (4.1)
and put

.y = {%} . (42)
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Our first task is to show that the polynomials 9 ; satisfy the conditions of Lemma 2.3,
so that the results of the previous section may be applied. We start by expressing A} in
terms of the more familiar difference operators A; defined by

Ai(f(x);h) = flz+h) = f(z)
and
Ajia(f(@)iha, - b)) = A(A(f(); hay oo hy)i Bs).

For simplicity, we introduce the functions

Xi,j(Z,w; h7 g) = A;( k ‘ Z hl, ceey hj;gla e 7gj> (43)
and observe that

¢i,j (Za w; h7 g, 1m, n) = X’i,j(za w, hlu g,)7

where h' and g’ are defined by (4.1). As in Section 2, we write J,; for the set {1,...,d},

and also write Ay for the set J; \A. When A = {iy,... i} C J; with i1 < -+ < ip,
define

¢ (w; g, A) = A (W' girs - Gir), (4.4)
and when A is as above and B = {ji,...,j:} C J; with j; < --- < j, define
P (20, A B) = Ay((2 4 by + -+ by, ) gy, hy,). (4.5)

Lemma 4.1. We have

Xij(zwih; g) = Z > P (2ih, A Ay (wi g, A).
m=0 ACJ;
|Al=m

Proof. We fix i, h, and g and proceed by induction on j. For brevity, we write x; ;(z, w),
gm(w; A), and p;(z; A, B) for the functions defined by (4.3), (4.4), and (4.5), respectively.
For 7 = 0 we have

Xio(z,w) = 27w = po(2;0, 0)go(w; 0).

Now assume the result holds for 7 — 1. Then we have
Xij (2, w) = Xij-1(z + hj,w+ g;) — Xij-1(z,w),
so by the inductive hypothesis we obtain

ijzw Zzewzwmfl)

m=0 ACJ; 1
\A\:m

where
Oij = pj—1-m(2z + hj; A, -’lefl>Qm(w + 955 A) = pji—1-m(2; A, Ajfl)Qm(uﬁ A).
The above expression can be rewritten as

0;; = pj—m(2; A, vzlj)qm(w; A)+pj—1om(z+ by A, Aj—l)Qm—i—l(w; AU {j}),
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so we have

j_
Xij = ( > picm(z A A g (w; A) + ) pj_(m+1)(2;A;Aj)qm+1(w;A))

m=0 .AC(]jfl AC\Z'
[Al=m |A|=m+1
jeA
j—1 . J )
= > piemEH A AN (w; A+ DD piom(z A A g (w5 A),
m=0 .ACJj m=1 .ACJj
[ Al=m | Al=m
J¢EA jeEA

and the lemma follows.
Now we show that the 2 x 2 Jacobians satisfy the condition imposed in Lemma 2.3.
Lemma 4.2. Suppose that 0 < j < k and 11 < io < k — j. Then we have
diy i (2,03 x;) = p(2)wir izl 1 O, (whtie=?),
where p(2) is a non-trivial polynomial of degree at most 2k.

Proof. When i < k — j, we have by Lemma 4.1 that

MXij _ 0 —i ‘ -
823 T 0z (A5 hay e hy)) w4+ O (w'™)
and
OXsi ‘ - ;
GXU;J = iAj(zkfz; hi,..., hj)wlil + 0. (w'?),

and we recall (see for example Exercise 2.1 of Vaughan [12]) that
Aj(ZFhy, o k) = k(k— 1) (k— 5+ V)hy---hi2" 7 + O(ZF77h).
Hence if 75 < k — j then we have
di, 5, (2,03 %) = pl2)w 2= 4 O (wirtiz=2),
where the leading term of p(z) is
(hy - hj)?(k —i)l(k — ig)!
(k—iy — )k — iy — j)!
and the lemma follows in this case on noting that
(k—iv = j)ia — (k — 12 — j)ir = (k — j)(i2 — i) # 0.

Now if ¢ = k — j we obtain from Lemma 4.1 that

((k — iy — j)ig — (k — iy — j)iy) 222271

OXij 1
o Oz i
R (w'™")
and

aXi,j

e = i(k— i) hy - hjw ™" + O, (w'?).

17
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Thus if 19 = k — j then we have

io(h - hy)?(k — i)k —d2)! 4y i k—iy—j—2 i1 -in—
dz’ o= i1—j 19) i1—] 11+i2—1

+ OZ(U}’L‘1-|—Z'2—2)7
and this completes the proof. O

We now consider the effect of substituting ; ; (2, w; h, g; m, n) for ¢;(z, w; ¢) in the anal-
ysis of Section 3. For 1 < j <k, suppose that 0 < ¢; < 1/2k, and put

M;=P%, H;= PMJ‘_%a and  Q; = P(M, - M;)~".

Further, write

i=1 1=1

We replace (3.5) by the conditions
1<hi,gi <H (1<i<}), (4.6)

and take

On replacing h; by h;(m;n;)* and g; by gi(m;n;)*¥ in the above results, we see that
Yo, - - -, Yar—1,; satisfy the hypotheses of Lemma 2.3 whenever r < r;. Thus we may apply
Lemma 3.1 to relate S, (P, Qj, R;v;) to T, (P,Qj, R, ¢j11;%;). The following lemma
then relates T, (P, Q;, R, ¢j41;%;) to Ssr,,, (P, Qj, R; 1, 1) and hence allows us to repeat
the differencing process.

Lemma 4.3. Suppose that r < 2w and 0 < j < k. Then given € > 0, there exists
n =nl(e, s, k) such that whenever R < P" one has

TPy B byiainty) & PO A 5,(Q 0. )

€ r—2( 1] Y 1—r/2w
+ PPHE(H2 M2 S0(Qis, R) TP (Suw (P Qs Rity11))
Proof. Write 0 = ¢;1, and define

k
Ea,b,d(a; h: g, 1m, Il) = Z € (Z aiwi,j(za w5 ha g, 1m, l'l)) )
i=0

r/2w
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and

Japlesmm) = > (Z% qu)*” (py)>

:E:yEA(Q]-‘rl? )
(zy)<PY

Then on considering the underlying Diophantine equations, we have

= - . . r . 2s
T = g E Kprpe(a;h,g;m,m)"| g (0 m,m)|*der.
k+1
hvgvmvnMj+1<p7q§Mj+1R T
(p.g)<P”

Let Uy be the number of solutions counted by Ts,r with z, = Z, or w,, = w,, for some
n, and let U; be the number of solutions in which z, # z, and w,, # w, for all n, so that
T,, =Uy+ Us.

First suppose that Uy > Uy, so that Ts,r < Uy. Then

Uy < P37 2koin Z Z / Ko (s h, g;m, n)" g, ,(c; m, n)*de,
Tk+1

h,gmn M;11<p,q<M; 1R

and by using Holder’s inequality twice as in [17], we find that
T < P(S 2k¢]+1)r+8H2 ]+1 (Q]Jrla ) (48)

Now suppose that U; > Uy, so that TS,T < U;y. Note that for each solution counted by
U; we can write

2n =2z + ﬁnqkpk and wn = w, + gnqkpk

for 1 < n < r, where h,, j, are integers satisfying 1 < |hy|, |gn| < Hjiy. Thus we see that

Uy < Z Us(m)

ne{£1}"

where Us(n) is the number of solutions of the system

> i (2, wis b hus g, iy m, g, p)

=1

+ Di(m,m)g*'p" Y (ul v, — i 0h,) =0 (0<i<k)

1§Bla§l§Hj+l ( SZST):

Mjy1 <p,q < Mja R, and (q,p) < P

k
G(aah7§7Q7p) = Z € (Z &iwi,jJrl(Zaw;ha ha gaga m, q; nap)) )

1<z, w<P
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we have by Holder’s inequality that

Us(n) < ) Z/ G(a;h,§,q.p)| 19gp(c; m,n)|* do

h,gmn ¢p 1<g,h<H]+1
H27‘ 2 fl ~ )|r| ( . |2sd
< HY a;h, G, q,p)|"|gqp(c; m,m)[Fder.
k+1
hgmngphg

Thus on using Holder’s inequality twice more and considering the underlying Diophantine
equations, we see that

r/2w 1-r/2w
on) < B2 Y ( / |G|QW|gq,p|28da) ( / |gq,p|28da)
Th+1 Th+1

h7g7m7n
q,p;h,g

v /2w 1-r/2w
< Hﬁf(Ss,w(P,Qm,R;¢j+1)) (PEHJQJrl J+1 95 (Qj41, )) ’

and the lemma follows on combining this with (4.8). O

In analogy with Lemma 4.2 of [17], one might hope to refine the above argument to allow
the factor of PB3=2k%+1)7 in the first term of the estimate to be replaced by P?", but it is not
clear that this can be achieved. As will be seen in Section 6, such an improvement would
have a significant impact on the strength of our repeated efficient differencing procedure.

5. MEAN VALUE ESTIMATES BASED ON SINGLE DIFFERENCING

In this section, we consider estimates for Ss(P, R) arising from a single efficient difference,
reserving the full power of the preceding analysis for Section 6.
Suppose that 0 < § < 1/2k, write r = rg = [Hl} and put

M=P H=PM* and Q=PM "
Further, let
F(a; P) = Z e(apz” + a2 tw + -+ apu®),

1<z, w<P

k
gp)= >, > e (Z i (z, w; h,g;q,p)) ;

1<h,g<H 1<z,w<P =0

gap(a; P,Q,R)= > e (Z ai(qx)'“i(py)i> ,

ry€AQR)  \i=0
(2y)<P7

and

M (P,Q R = > /Wl @; q,p) ggp(c; P,Q, R)*| da.

M<p,g<MR
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We say that s is a permissible exponent if for every € > 0 there exists n = n(e, s, k)
such that S,(P, R) <. P whenever R < P". Further, we recall that the exponent A,
admissible if Ay = 4s — k(k + 1) + A, is permissible.

Lemma 5.1. Let 0 = 1/2k, and suppose that s > k*/(1 —0). If Ay < k(k+ 1) is an
admissible exponent, then the exponent Ay, = Ag(1 — 60) is admissible.

Proof. By Lemmata 3.1 and 3.3, we have
Ssr(P, P, R;aby) < PP 71S (P, R) + PBtOstarte

- 5.1
+ P6M4S_2+2T(2T_1)T57T(P, P, R, 07 ¢0) ( )

for v sufficiently small, and by the argument of the proof of Lemma 4.3 we have
T, (P, P, R, 0;4,) < PO 025 (Q, R) + M, (P, Q, R). (5.2)

Since 6 = 1/2k, we have H = 1, so by a trivial estimate we obtain
M (P,Q,R) < M?>P>*°5,(Q, R).

Hence on recalling Lemma 2.1 and considering the underlying Diophantine equations, we
obtain from (5.1) and (5.2) that

SS+T(P, R) < P28+27‘+6 + SS,’I‘(P7 P, R, ,¢0) < PgT_ISS(P, R)
+ P(3+9)S+2r+€ + P2T+6M4S+2r(2r_l)SS(Q, R) (53)
Thus, since A\; = 4s — k(k + 1) + A, is permissible, we have
Seir(P, R) < PhFe 4 phate 4 phate,

where

A =4(s+r)—k(k+1)—(r+1)+ A,

Ao=A4A(s+7r)—k(k+1)—s(1—0)—2r+k(k+1),
and
As=A4(s+7r)—k(k+1)+ A1 —0).

Now since r +1 > & and A; < k(k + 1), we have A0 < r + 1 and hence A; < As.
Furthermore, since s(1 — 0) > k? and 2r > k, we have Ay < Az. Therefore, the exponent

Agyr = Ag(1 — ) is admissible, and this completes the proof. O

Proof of Theorem 1. Let s; be as in the statement of the theorem, and suppose that s > s.
Choose an integer ¢t with s = ¢ (mod 7) and s; — 7 <t < s;. Then since A, = k(k + 1) is
trivially admissible, we find by repeated use of Lemma 5.1 that the exponent

1 (s—t)/r 1 (s—s1)/r
— _ < _ =
Ay =k(k+1) (1 %) < k(k+1) (1 %)

is admissible, and this completes the proof.
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6. ESTIMATES ARISING FROM REPEATED DIFFERENCING

In this section, we explore the possibility of obtaining improved mean value estimates
by employing our efficient differencing procedure repeatedly. As we take more differences,
we must reduce the number of variables taken in a complete interval, so that the difference
polynomials 1, will satisfy the hypotheses of Lemma 2.3. This complicates the recursion
for generating admissible exponents and therefore requires some additional notation. Recall
the definition of r; from (4.2), and write

Q= Y (k—l+1)=3k—2r;+1)(k—2r)). (6.1)

2r; <I<k+1
For convenience, we also write r = rq = [%} Throughout this section, we will assume
that k is taken to be sufficiently large.

Lemma 6.1. Suppose that u > k(k+1) and that A, < k(k+1) is an admissible exponent.
For any integer j with 1 < j < Vk and s =u+1r (1 € N), define the numbers Ag, 05, and
o(4, s, J) recursively as follows. Forl > 1, set ¢(j,s,j) = 1/2k and evaluate ¢(j,s,J — 1)
for J=17,...,2 by

1 1 20,4, —A,,

(g, s,J —1) = T (5 + Tﬂ) #(4,5,J) (6.2)

and

o(j,s,J) = min(1/2k, ¢*(j, s, J)).
Finally, put

Ay = Ay (1 —65) 4+ r(2k0; — 1) (6.3)
and

f; = min 8, 1).
1§jgﬁd)(] )

Then Ag is an admissible exponent for s = u+ Ir (I € N).

Proof. We start by noting that 0 < 6, < 1/2k and that 6 is an increasing function of s.
Now let j denote the least integer with ¢(j, s + 7, 1) = 051, and write ¢; = ¢(j,s + 1, J).
As in the proof of [17], Theorem 6.1, we have ¢; < 1/2k whenever J < j. In particular, it

follows that whenever J < j we have 2Q; — Ay < 0 and ¢; = ¢*(j, s+ 1, J). We claim that
¢g < ¢g4q for J < j. By (6.2) and the above remarks, this is equivalent to

1 A, —2Q, 1
e A 4
e (2 + Skr, ) = 4k’ (6-4)

and this is immediate when J = j — 1, since Ay —2Q;_;1 > 0 and ¢; = 1/2k. Assuming the
claim holds for J, then we see from (6.2) that

1 A =29,0\ [1 A, =20y 1 /1 A, =205,
Z4 -5 == 4 =5 7Yy - [Z =5 T
¢s (2 LT ) (2 LT ) = 4k (2 LT ) ’

and it follows on using (6.1) that

é 1+AS—QQJ71 >i ry 27AJ71(4I€+1)+A5—I€(1€+1)
T\ 2 8kry_y )~ 4k \r o (4k+1)+ A, —k(k+1)

J—1
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Since Ay < k(k+ 1) and r; < r,_1, we see that (6.4) holds with J replaced by J — 1, and
our claim follows.
For 1 <1 < j, we write

M;=P%, H;=PM™, and Q;=P(M-- M)~

with the convention that ()9 = P. We prove the lemma by induction on [, the case [ = 0
having been assumed. Suppose that A, is admissible, so that S,(Q, R) < Q**¢, where
As = 4s — k(k+ 1) + A;. We show inductively that

Tor,(P,Qs, R, yi1;1h,) < PO %WH)T‘IJFEHQM;HQJH (6.5)

for J =j—1,...,0. By Lemma 4.3 with j replaced by j —1, r = r;_; and w = r;, we have
that

Ts,rj_l(P, Qj-1, R, 95, 1) < P(3_2k¢j)rj_l+€g2 y '258(ij R)
+ P 2<H2M2 So(@5 R (S0, (P, Qs Ry p))”,
where 3 = r;_1/(2r;). Then on making the trivial estimate
Sor; (P, Qj, Rytp;) < P HIM?S,(Q), R)
and noting that ¢; = 1/2k and hence H; = 1, we obtain
Ts,rj,l(P, Qj-1, R, ¢59,,) < PerflJrsﬁ]{lMg'QSs(Qj:R)
< P2Tj71+6ﬁ']271Mj2Q§\s’

on using the outer induction hypothesis. Thus (6.5) holds in the case J = j — 1.
Now suppose that (6.5) holds for J. Then, for v sufficiently small, we have by Lemmata
3.1 and 3.3 that

SS,TJ(P7 QJ:R§¢J) < PEF[;]\;[E (PAl + pA2 4 pAB) ’

where
AN =3r;—14+X1 =1 —---—y), (6.6)
AQ:38(1—¢1—"'—¢J)—|—S¢J+1+27°J, (67)
and
Az = (4s+2r;(2r; —1))ps41 + (3= 2kd p1)rs + As(1 — 1 — -+ — dyy1)- (6.8)

Now since J < \/E, we have r; ~ k/2, and it follows easily that A; < A3z and Ay < A3 for
s > k(k+ 1) and k sufficiently large. Hence by Lemma 4.3 we have

Tsm (P,Qy-1, R, b1, ) < PO2RoDrate 2 M; ]
—i—PEHQT" v 2(H2M3QJ )1 7 (P(S 2MU’”)T‘]JFE]\/[AIS 2420y (2rs=1) H2M2+1QJ+1> )
where 3" = r;_1/(2r;). The second term here is
QY P
where

A= QTJ_l(l - 2k¢J) +

rj—1

" (3 =2k 1)y + (4s 4+ 2, (2r; — 1) = X)ds4a].
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By (6.1) and (6.2), we have
(4s+2r;(2r; — 1) — Xg) g1 = (dkry +2Q; — Ag)py1 = 8krypy — 21y,
and hence
A= (2 —koy)ris < (B —=2ko )r1+ria(ks —35) < (3—2kds)r 1,

since ¢y > ¢y and ¢; < 1/2k. Thus (6.5) holds with J replaced by J — 1, so this
completes the inner induction. Now we apply (6.5) with J = 0 to obtain

Tor (P, PR, 615 9pg) < PETHoUrzovidizo s,
whence by Lemmata 2.1, 3.1, and 3.3 we have (for 7 sufficiently small) that
Sesr(P,R) < P*7 4+ S, (P, P, R;gp,) < PMe  phate 4 phate

where Ay, Ay, and Aj are given by (6.6), (6.7), and (6.8) with J = 0. Therefore, the
exponent

Astr =4(s+71) —k(k+ 1)+ As(1 — Osyr) + 7(2k0s 4 — 1)

is permissible, and the desired conclusion holds with s replaced by s + r. This completes
the proof of the lemma. O

Next we investigate the size of the admissible exponents supplied by Lemma 6.1.

Lemma 6.2. Suppose that s > k(k + 1) + r and that Ay, is an admissible exponent
satisfying
(logk)® < A,_, < 2rk.
Write ds_, = As_,/4rk, and define é5 to be the unique positive solution of the equation
3 1

5y 41086, = 6y y 41088y - — 4 ——
+log log 1% E(log k)P

(6.9)

Then the exponent Ay, = 4rkd, is admissible.

Proof. The proof is nearly identical to that of [17], Lemma 6.2. In view of (6.3), we may

assume that 0 < A, < 2rk and hence that 0 < J; % By Lemma 6.1 with

<
- 1 1/4
Jj= §(log k)75 +1, (6.10)
we see that the exponent
Ay =Ag . (1—0)+7(2k0 —1) =4krd,_, —r + 2rk(1 — 205_,.)0, (6.11)
is admissible, where 6 = 6, = ¢(j, s,1). We note that for 1 < J < j one has
Q< 1J(J+1) < (logk)'?,

so on writing ¢, for ¢*(j, s, J) we have

pj-1 < ﬁ + %(1 — 8oy, (6.12)

where
Asfr - (log k>1/2

§ =
4kr

> 0s—r(1— (log k)~%). (6.13)
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An easy induction using (6.12) shows that
1 1—o\""’
< —|[1+4¢ 1<J<g
¢J—2k(1+6’)<+ ( 2 ) ) (1< J<j),

14213y
2k(1+0")

Write L = (log k)~%/2. Since the expression on the right hand side of the above inequality
is a decreasing function of ¢’, we see from (6.10) and (6.13) that

0 < 1+2"96, (1 —1L) < 1+ 0, L4295, < 1+ 20,_,L
T 2k(1+6s—(1—L)) — 2k(1+ 65—r) ~ 2k(1+ 65-r)
for k sufficiently large. It now follows from (6.11) that

B s (4 s W
Ark = 05T 2%k(1+0,_,) )

w = (1 —26,_,)(log k)~*/2
Hence if 05 is defined by (6.9), then since log(1 — z) < —x for 0 < x < 1, we have

A, . A, S _w
4rk 08

and therefore

0=¢ <

where

3

< Oy 1—-——2 — 1 5S_T_2—
ks ( 2k (1 +5H)> Tlog k(1 + 0,,)
3 1

< 55—7‘ 1 55—7‘ A T 1\3/9

= et loE % k(og k)32

= 0, + logd,,
so that 65 > Ag/4rk, since § + logd is an increasing function of 6. It follows that 4rkds is
admissible, and this completes the proof of the lemma. O

We are now fully equipped to prove Theorem 2.

Proof of Theorem 2. We first note that the theorem is trivial when 1 < s < sy5. Now when
s > sq, define &5 to be the unique positive solution of the equation
3(s — so) s — 8o

drk rk(log k)3/2
We show by induction that the exponent A, = 4krd, is admissible whenever sq < s < s7.
First suppose that sy < s < sy + r, and observe that the exponent

Ag=Fk(k+1)<2r(k+1)

is trivially admissible. Then we have
A
4drk

0s +logds =1 — (6.14)

<5+

1
2k’

N —

and hence

AS As 3 3 1 3
4k+log <-+4log-<=<1-—— <6+ logd,
r

drk — 4 4 2 4k




26 SCOTT T. PARSELL

for k > 2. It it follows that the exponent 4rkd, is admissible, since d +log ¢ is an increasing
function of 0. Now suppose that A,_, = 4krd,_, is admissible, where sq +r < s < s;. We
have by (6.14) that ds_, < 1 and

3 _
5oy +logd, , >1— (327;‘)) > 1 — log(4rk) + 2loglog k,
T
from which it follows that
(log k)?
Ogyp > )
4rk

Thus Lemma 6.2 shows that Ay = 4rk~, is admissible, where v, is the unique positive
solution of

3 1

s +1 s — 5571” 1 5571” TA T 1N3/9 "
Ve + 087 +log % F(log k)32

Applying (6.14) with s replaced by s — r now shows that 7, + log vy, = 5 + log ds, whence
~vs = 05, and the induction is complete.

The theorem now follows immediately in the case where 1 < s < sy, since from (6.14)
and the definition of s; we see that

3(s — s0)
logds <2 — ——=
0805 = 4drk

for k sufficiently large.
Now suppose that s > s1, and let U denote the largest integer with s = U (mod r) and
U < sq, so that U > s; — r. Then the exponent

Ay = 4rke>3U=s0/Ark < o4 (]og |)?
is admissible, and the theorem follows on applying Lemma 5.1 repeatedly.

We note that in the presence of the refined version of Lemma 4.3 discussed at the end
of Section 4, we could replace the factor of r in the second term of (6.3) by 27 and the
3/4k term in (6.9) by 1/k. Hence we would obtain admissible exponents that decay like
k2e=2/k* in many cases of interest.

7. WEYL ESTIMATES

Here we obtain the estimates for smooth Weyl sums quoted in Theorem 3 by making
simple modifications in the corresponding argument of Wooley [17]. In the end, a standard
application of the large sieve inequality shows that these estimates follow from the mean
value estimates of Theorems 1 and 2. Let

C(Q) ={z € ZN1, Q] : s0(x)[s0(q)},

where so(/N) denotes the square-free kernel of N, write

k

Uz, ya) =Y ad Ty, (7.1)

1=0
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and define the exponential sum

hyww(0; L, LR, R';6,0) = Z Z e(Y(uv,u'v'; @) + Ou + 6'u’).
u€A(L,R) u' e A(L',R")
(u,r)=1 (u,r)=1
Also, when 7 is a prime, we define a set of modified smooth numbers
B(M,m,R)={veN: M <v< Mnr, w|v, and plv = 7 < p < R}.
We have the following analogue of [17], Lemma 7.2.
Lemma 7.1. Suppose that oo € RFT! and r € N. Then, whenever
R<M<Q<P and R<M <Q <P,

we have

Y e((ry;a) < PP omax  sup > | (o T, T w, 7560,0)| + E,

™' <R g0€0,1]

z€A(Q,R) 7,7 prime veB(M,n,R)
yeA(Q,R) v'eB(M'w'\R)
(zy,r)=1 (vv',r)=1

where T =Q/M, T' =Q'/M', and E < Q'M + QM'.

Proof. By Lemma 10.1 of Vaughan [11], we have

Y. elWlrmya) = Y Y el yia) + OQM+ QM)

z€A(Q,R) M<z<Q M'<y<Q’
yeA(QR) z€A(Q,R) ye A(Q',R)
(zy,r)=1 (xr)=1  (yr)=1

= ) U(eQ,Q M, M,Rrm7)+0QM+QM),

7,7’ <R
7,7’ prime
(ryrm)=1

where

U(a; Q? Q/7 M7 Ml? R7 717 7T7 7T/)

= Z Z Z Z e((uv, u'v'; a)).

veEB(M,n,R) uc A(Q/v,m) v'eB(M',7",R) ' € A(Q'/v',7")
(v,r)=1 (u,r)=1 (v,r)=1 (w,r)=1

Now when v, v’ > M we can use orthogonality to write
> e(@(uw,u'; )
u€A(Q/v,m)
W EAQ'/', )

(uu/,r)=1

_ /0 1 /0 o 0.8 [ 3 e | [ S ety | doa

2<Q/v ' <Q!

27



28 SCOTT T. PARSELL

where we have abbreviated h,. ., (a; T, T, w,7';6,6") by hy 4. (6,60). Thus we see that
U(a; Q’ Q/7 M7 Ml’ R7 7/.7 7T’ ﬂ./)

1,1
<[
0o Jo

and the lemma follows on noting that

oo (0,60 min(Q/M, ||0]| ") min(Q'/M’, ||| ") db d8’,

veB(M,n,R)
v eB(M' ", R)
(vv',r)=1

1
/ min(X, [|6]~1)d6 < 1 + log X
0
for X > 1. O

Theorem 3 is an easy consequence of the following lemma.

Lemma 7.2. Suppose that 0 < A < %, and write M = P». Let j be an integer with
0 < j <k and let a € R¥'. Suppose that a € Z and q € N satisfy (a,q) = 1,
lgoy; — a| < 2(MR)™*, ¢ < 2(MR)*, and either |qo; — a| > MP™" or ¢ > MR. Then
whenever s is a natural number with 2s > max(j, k — j) and the exponent A is admissible

we have
fla; P,R)* < P** M~ (P/M)".

Proof. By Lemma 2.4, along with a standard estimate for the divisor function, we see that
card(C,(X)) < X© whenever log ¢ < log X, and it follows that

f(a; P.R) = 3 > elv(ad ye; a))

d,e€Cq(P)NA(P,R) € A(P/d,R)
yeA(P/e,R)
(zy,q)=1

pe . 1+e '
< P omax ) e(V(adiyesa))| + P (PR/M)
z€A(P/d,R)

yEA(P/e,R)

(zy,9)=1
Thus by Lemma 7.1 there exist d,e € C,(M/R), 6,0 € [0,1] and primes 7,7’ < R such
that

fla; P,R) < P***M ' + Pg(a;d, e, 7,7, 0,0, (7.2)
where
glazd,e,m 70,6 = > > hwawe(o; P/M, P/M, 7, 736,6")].
veB(M/d,x,R) v'€B(M/e,n",R)
(v,g)=1 (v'g)=1

Let J(q,v,d, e, h) denote the number of solutions of the congruence (vd)*=(ze)! = h
(mod ¢q) with 1 < 2 < ¢ and (x,q) = 1. When (v,q) = 1, a solution x counted by
J(q,v,d, e, h) satisfies d*Jeixd = h' (mod q), and we then necessarily have (1, q)|d*~el.
In this instance, a simple application of the Chinese Remainder Theorem shows that

J(q,v,d,e,h) < ¢cd" el
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Thus for any fixed v with (v, ¢) = 1, we may divide the integers v' with M/e < v’ < MR/e
and (v,q) = 1 into L < ¢°d*~7e classes Vi, ...,V such that, whenever v}, v} € V, and
(vd)*= (vie)! = (vd)*~I(vhe)? (mod q), we have v} = v} (mod q).

Now put @) = P/M, and write ¢, for the number of solutions of the system

dYoui Y =y (0<j<k)

with
u € AQ,m) and wu;€ AQ,7) (1<i<s)
and
(uirq) = (ujq) =1 (1<i<s).

Further, write g(a) for g(a; d,e,m, 7’',0,60"). Then for some r with 1 < r < L we have by
Holder’s inequality that

(@) < PAISOLR /P Y S bye(w(vd vesay)|
veEB(M/d,m,R) V' EV: | Y
(v,9)=1
where |by| < ¢y. Here we have written ay = (aoyo, - - ., axyx), and the summation is over
y with 1 < 1; < sQ*. Applying Cauchy’s inequality, we obtain
2

lg(a)|? < PEM*~ 2Qk22 Z Z Zb e(aj(vd) I (v'e)ly;)| (7.3)

Yy veB(M/d,m,R)v'EV: | Yj
(v,9)=1
where >_" denotes the sum over y; with i # j.

We now show that the quantities a;(vd)*~7(v'e)? are well-spaced modulo 1 as v runs
through the set V,, and it is here that we use the “minor arc” conditions on a; imposed in
the statement of the lemma. Fix v € B(M/d, 7, R), and note that if v{, v, € V, and v| # v},
(mod ¢) then since |goy; — a] < $(MR)™* we have

k=ipre) — (vd)* (vhe) a vd) T (W e) — (vd)F I (vhe)? 1
| ((vd)* 7 (vie)’ — (vd)" 7 (vhe)?)|| > q((d) (vie)! — (vd)" (vhe)’) %
> L
=

In particular, if ¢ > M R/e, then the elements of V), are distinct modulo g, so the a; (vd) 7 (v'e)?
with v/ € V), are spaced at least %q_l apart. Thus it suffices to consider the case when v}
and v} are distinct elements of V, with vf = v} (mod ¢) and ¢ < MR/e. In this case we
have

a

ottt (ute) - @ap g = (5= 2) e ety - ()

a; = 7| (0d) I (0] — ().




30 SCOTT T. PARSELL
Now since |ga; — a] > MP~% and v] — v} is a nonzero multiple of ¢, we get
o ((vd)* 7 (vie)’ — (vd)* 7 (vhe)’)|| = MP~*(vd)* el (vy)'~" = (P/M)™"
and thus on applying the large sieve inequality to (7.3) we obtain
glazd e, 7, 0,0)* < PAMU>(P/M)* (q+ (P/M)") Y Y [byl”

veB(M/d,m,R) ¥
But > [by[* < So(P/M, R) and ¢ < 2(MR)* < (P/M)* so on recalling (7.2) we have
f(a; P, R)Qs & Plstep2s 4 P5M4sfl(p/M)k2(p/M)k(p/M)4sfk(k+1)+A5
< P4S+5M_1(P/M)AS,
as required. O

Proof of Theorem 3. Suppose that a@ € my41) and write M = P?. By Dirichlet’s Theorem
there exist b; € Z and ¢; € N with (b;, ¢;) = 1 such that

1
lgici — b;] < 5(]\41?)*]‘C and ¢ < Q(MR)k (0<i<k).

If for some j we have either
la; —bj/q;| > qj’lMP’k or ¢q; > MR,

then the desired conclusion follows from Lemma 7.2. Otherwise, write ¢ = [qo, - . ., qx] and
a; = b;q/q;. Then (ay,...,ar,q) =1, and for each ¢ we have

¢ < g(MR)F < (MR)F+1 = pMk+D phe1
and
o — ai/q| < ¢ "(MR)*MP™" = g7 ' PXFHD=FRE,
This contradicts the assumption that a € my;11) and hence completes the proof.

Proof of Corollary 3.1. We apply Theorem 3 with A = By (1.5), we have

2(k:+1)

- 1 2k + DA,
o) = 2ooki1 ds(k+1)

Then on taking
7 7.2
s = 510g4rk+210glogk+8 rk —i—lmgk log k,
we have by Theorem 2 that the exponent
1
As _ 4 log k 2 —(s—s1)/2rk <
¢ (logk)e = E(log k)13

is admissible. It follows that

o(A) >

~ Zk3(logk + O(loglog k)

1+ O((logk)™%) (28
3

—1
“—k*log k) )



MULTIPLE EXPONENTIAL SUMS OVER SMOOTH NUMBERS 31

We remark that the proof of Lemma 7.2, with trivial modifications, may be applied to
more general exponential sums of the form

flesPQR) > Y elapr’ +oana" ly 4+ agyh),
z€A(P,R) ye A(Q,R)

provided that P =< (), and hence Theorem 3 and Corollary 3.1 hold in this case as well.
This observation will be useful in the analysis of Section 10.

8. GENERATING FUNCTION ASYMPTOTICS

In this section, we derive the asymptotic formulas for our generating functions, which will
be required to handle the major arcs in our subsequent applications of the circle method.

As is now familiar in the applications of smooth numbers to additive number theory, one
can only obtain asymptotics for the exponential sum f(a; P, R) on a very thin set of major
arcs, so it is necessary to introduce sums over a complete interval in order to facilitate a
pruning procedure. Thus we write

Fla) = Z e(apr® + "ty + -+ apy®),
1<z,y<P
and we also define

k k—1 k
aGpx” + a " Y + - agy
saa) = Y ef )

1<z,y<q q

= /P /P e(Boy™ 4+ By w4 - 4 BuF) dy d, (8.1)
and C
V(a) = V(esg,a) = ¢S(g, a)v(ex — a/q).
Lemma 8.1. When o; = a;/q+ ; for 0 <i <k, one has
Flo) = V(a) < ¢*+gP (|fo] + -+ [Bi]).
Proof. On sorting the terms into arithmetic progressions modulo ¢, we have

-3y (W) S S vl

r=1 s=1 0<i< Pt 0<j< o

where ¥(z,y; ) is as in (7.1). Thus on making the change of variables v = ¢z + r and
v =qw+ s in (8.1), we obtain
i+1j+1

Flo) - V(@) = 3 e(aor +- +ak8) Z//szdzdw-l-O() ,

1<r,s<q

where

H(z,w) = H(z,wir, s34, j; B) = e(¥(iq + 1, jq + s; 8)) — e(¥(qz + 1, qu + 5; 8)).
Using the mean value theorem, we find that

H(z,w) < q¢P* (18| + -+ +18k])
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when (z,w) € [i,i + 1] x [4,j + 1], and hence
Fo) = Vi(e) < @*(L+q PG| + -+ + [8])),
from which the lemma follows. O

We now begin to analyze the sum f(a; P, R). First we record a partial summation lemma
analogous to Lemma 2.6 of Vaughan [12].

Lemma 8.2. Let ¢y, be arbitrary complex numbers, and suppose that F(x,y) has contin-
uous partial derivatives on [0, X| x [0,Y]. Then

> emnF(mn) =Y cpa(F(X,n) + F(m,Y) — F(X,Y))

m<X m<X
n<Y n<Y
X Y 62
+/0 /0 WF(% V) ZCW” dv dry.
m<ry
n<v

Proof. Write F,(v) = %F(’y, v). Then we have

and

Thus we can write

F(m,n) = F(X,n) — / F(Y)dy+ / ) / i aj;yF(’y, V) dv dv,

m m

X

and the lemma follows on summing over m and n and interchanging the order of integration
and summation in the last term. O

Using the well-known asymptotics for card(A(X, R)) in terms of Dickman’s p function,
we can record the following lemma.

Lemma 8.3. Let 7 be a fired number, and suppose that R < m,n < R". Then

logm logn mn
1= O .
Z p(logR)p(logR) mn (logR)

x€A(m,R)
X
log X

yeA(n,R)
whenever R < X < R", and the result follows immediately. O

Proof. By Lemma 5.3 of Vaughan [11], we have

log X
1= X
> 1=s(ag) ¥ o

z€A(X,R)
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Now let W be a parameter at our disposal, and write
N(g,a) = {a € T"™ : |a; —a;/q K WP (0<i<k)} (8.2)
whenever ¢ < W and (q, ao, ..., ax) = 1. Further, let R = P"  and write

// (nggZ%) (;sggzyz)6(507k+"'+5kvk)dvdu (8.3)

Lemma 8.4. Suppose that o € N(q,a) with ¢ < R, and write 3; = o; — a;/q. Then we
have

2P2w2
o P ) =g s(a.aw(8) + 0 (G005

Proof. By arguing as in the proof of Vaughan [11], Lemma 5.4, we obtain

Y =g Y o)

zeA(m,R) ye A(n,R) e A(m,R)
z=r(q) y=s(q) yeA(n,R)

whenever R < m,n < P, and hence by Lemma 8.3 we have

k k 2 p2
aox” + -+ agy 9 q P
3 )e( SR s Y 105

zeA(m,R z€A(m,R)
yeA(n,R) yeA(n,R)

_ logm logn
2
¢ 5(4,a) (logR) (logR) m b

where F; < ¢?P?/log P. Now let B = A(P, R) x A(P, R), and write 15 for the character-
istic function of B. Then by taking

aox® + -+ apyF
C%y:e( 0 . ky)lg(x,y) and F(x,y):e(ﬁoxk+-~-+ﬂkyk)

in Lemma 8.2 we find that

fla;P,R)= Y cpyF(z,y) =S — S+ 5, (8:4)
1<z,y<P
where
apx® + - + apy®

z,yeEA(P,R)

k?_|_..._|_ k
S — Z e(aox q aky>€(ﬁopk+m+ﬁkpk)7

z,y€A(P,R)

o2 . (aoxk—i----—l—akyk)
+ -+ dv dry.
/ / o (0" Gat)) 2 e q v

z€A(7,R)
yEA(V,R)
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From our observations above, we see immediately that

2 P2
S = S a1/l P a0 (L) s

0 (lfgpp), (8.6)

k k—1 k
apT” + a1y + - agy
S(g.ay) = > 6( )

1<z<q q

We next observe that, by equation (8.13) of Wooley [13], one has

apr® + - + apy” logm
> e( - ky)=q‘15(q,a;y)mp( 5 )+
q log R

z€A(m,R)

where

If we write Sy = S5 + Sy, then by (8.6) we have

apr® 4+ -+ apy”
S= D ( g ky)e<ﬂoP’“+~-~+ﬂky’“>

= ¢ 'p(I/mP > S(gay)e(BPF+ -+ By*) + O ( aP” ) :

yEA(P,R) lOg i

and then by partial summation

Ss=q 'Pp(1/n) T(P)e(BoP* + --- + B P

Pt [ T P a0 (A
q pLL/m - o 0 k log P )’
where
Tw= 3 Sa).
yeA(v,R)
But on using the obvious analogue of (8.6) we find that
_ log v q*P
T — 1
(v) =q  S(g.a)vp (logR) +0 (1ng) :
and since a € 9(q,a) we have
0
Y (e(BoP* + -+ + Bu*)) < W/P.
Therefore we obtain
P*W
5= Qo1 PP + -+ ) - Q1) + 0 (1L,

(8.7)

where Q = q~25(q,a)p(1/n)P and

P ] 0
0= [ o0 (55) & s
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Integration by parts yields

I(7) = p(1/n)Pe(Boy* + -+ -+ Bp P*)

P 0 1
_ /R (B + - + Burt) — - (w (1252)) dv + O(R),
but

g , log v B log v n 1, (logvy log v L0 1
av \"? log R — 7 log R 1ong log R —7 log R logP )’
since p/(x) < 1. Thus we have
I(y) = p(1/m)P e(Boy" + -+ - + B P¥)

r log v (8.8)
— L k d E
[ ettt b o (B ) o+ ),
where Ey(y) < P/log P, so it follows from (8.7) that
log v kL k qP?*W
P . ) .
Sy = Q/ (logR) (Bo o+ By )dl/+0(logp (8.9)
Moreover, an identical argument shows that
lo P*W
S4—Q/ ( gv) (Bor* +- +ﬁkP’“)dv+O(qlogP). (8.10)

We now deal with S,. A simple calculation shows that
92
0yov

when |3;] < WP~* and it follows easily from the calculation at the beginning of the proof
that

P o2
0 _ log vy log v
S = ") q %S dyd
y = / / 9100 (e(Boy" + -+ Bi*)) ¢S (g, @) p (logR)p (logR v dy dv
2 p21y/2
o (LT
log P
After interchanging the order of differentiation and integration, we can write

P log 7y QQPQVV2
Sy =q 28 I'(v)dvy + O
b =q (q,a)/R vp(logR) (7) dvy + ( oz P )

and on integrating by parts we get

5= 2(,a) (Poti/n 17 - [ 1) (127) ) +o (o).

Then from (8.8) we finally obtain
Sy = ¢ 2S(q,a)w(B) + B,

(e(B0r" + - + Bu’)) < W2/ P
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where

By = q *S(q,a)p(1/n)*P*e(BoP* + - - + B P*)
B Q/ (logy)e(ﬂopk++ﬂka)dV

_ log vy k k ¢’ PW?
Q/ (lo R) e(Boy" + -+ B PY)dy+ O TogP )

and the lemma follows on recalling (8.4), (8.5), (8.9), and (8.10). O

9. A MULTIDIMENSIONAL ANALOGUE OF WARING’S PROBLEM

Here we establish Theorem 4 by a fairly straightforward application of the Hardy-
Littlewood method. Let P be a large positive number, and put R = P", where n < no(e, k).
Let F(a) be as in the previous section, and write f(a) = f(a; P, R). Further, put
s =t+ 2u+ v, and let

Ry(n) = /11‘1€+1 F(a)' f(a)*te(—a - n)da.

Then we have Wi(n, P) > Rg(n), so it suffices to obtain a lower bound for R¢(n). We
dissect T**! into major and minor arcs as follows. Recalling the notation of Theorem 3,
define

m = m1/2 and M = Tk+1 \m

We take
t=(k+1)?2 u= szIng+§k210glogk+6k2 and v = i +1
) 3 3 ) O'l(k) 9

where A, is as in Theorem 2 and o4 (k) is as in Corollary 3.1. A simple calculation shows
that v < k2%, and hence

14 1
5= ng log k + Eolf loglog k + O(k?).

On applying the aforementioned theorem and corollary, we find that

[ IP@ls@Pda < P lfe)l” [ 17(e)da

oacm

< stfk(kJrl)f(S (91)

for some § > 0, since A, < voy(k). Thus it remains to deal with the major arcs.
When (g, ag, .. .,a;) = 1, define

M(q,a) = {a € T : |ga; — a;| < PV*FRF (0 <i < )}, (9.2)
so that
M= U M(q,a).
1<ag,...,ap <g< PY/2REHL

(¢,00,--.,a)=1
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It is a simple exercise to show that the 9M(q,a) are pairwise disjoint. On recalling the
notation of the previous section, we can record the following major arc approximation for

F(a).
Lemma 9.1. Suppose that o € M(q, a), and write B; = o; — a;/q. Then one has
F(a) — q*S(q, a)v(B) < PY**=.
Proof. This follows immediately from Lemma 8.1, together with (9.2). O

The following estimates for S(q,a), v(8), and w(B) are essentially immediate from the
work of Arkhipov, Karatsuba, and Chubarikov [2].

Lemma 9.2. Whenever (q, aq, . ..,a;) =1, we have
S(g,a) < ¢* 1/

Proof. This follows easily from [2], Lemma II.8, on recalling standard divisor function
estimates. m

Lemma 9.3. One has
v(B) < P*(14 P*(|6o| + -+ 8])) "
and

w(B) < P*(1+ P*(|Bo] +---+ |ﬁk|))_1/k.

Proof. The first estimate follows from [2], Lemma I1.2, on making a change of variable, and
the second follows in a similar manner (see the comment in the proof of [13], Lemma 8.6)
on noting that p(log~y/log R) < 1 and is decreasing for R <y < P. O]

We now use the information contained in the above lemmata to prune back to a very
thin set of major arcs on which f(a) can be suitably approximated. Specifically, let W be
a parameter at our disposal, and recall the definition of 91(¢q,a) given in (8.2). Further, let

N = U N(q, a). (9.3)

We have the following result, which is closely analogous to [13], Lemma 9.2.

Lemma 9.4. If t is an integer with t > (k + 1)2, then one has
/ |F(a)|t do < P2t—kz(kz+1)
m
and

/ |F(a)|t da < W—JPQt—k:(k:-i—l)
M\N

for some o > 0.

Proof. When ac € M(q, a), we have by Lemma 9.1 that
F(C\t)t . V(a)t < (P(3/2+€))t + P3/2+5|V(a)|t—1

—~
©
IS

N—
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and the proof now follows the argument of Wooley [13], Lemma 9.2, employing our Lemma
9.2 together with the estimate

k
U(ﬂ) < P2H(1+Pk’5i‘)fl/k(k+l)’

=0

which is immediate from Lemma 9.3. O

On making a trivial estimate for f(a), it follows directly from Lemma 9.4 that
| F@ @) da s e pre ©5)
IM\N

for some o > 0, so it suffices to deal with the pruned major arcs 9. When a € 91(q, a), we
have by Lemma 8.4 that

2 p2yj/2 2utv 2 p2y/2
q ) + q ’W(a)‘Qquvfl’

2utv 2u+v
f(e) W(e) < ( log P log P

where
W(a) =W(a;q,a) = ¢ 2S(g,a)w(B) and B = — a;/q.
On combining this with (9.4) and recalling the definition of 91, we find that

[ﬁF(Oé)tf(Oé)Qquv do = /mV(a)tW(a)Q“J”’ do + O(stfk(kJrl)(log P)ﬂﬁ)

for some 0 > 0, provided that W is chosen to be a suitably small power of log P.
Now let

S)= X riS(aye (TS,

q

1<ag,...,ar<q
(g,a0,--.,ar)=1

S(n, P) =Y S(g),

q<wW

and
Sm) =Y S(g).

Notice that by Lemma 9.2 we have S(q) < ¢"*+'=*/¥+¢ whence
Gn) <1 and &(n)—&(n,P) < P°
for some d > 0, provided that s > (k + 1)%. Further, let
I, = [ v(@u(ap (- n)as,
B(P)

where

B(P) = [-WP™* WPk
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and put

I = [ v(B (@) e-pw) ds.
Rk+1
Then when s > (k + 1)2, it follows easily from Lemmata 9.2 and 9.3 that
J(n) < PQka(kJrl)
and

> [S(@llJ(n) = J(n, P)| < P>+ (log P)~°

1<q<P1/2+e

for some 9 > 0. Combining these observations, we find that
/ Fla) f(a)*e(—a-n)da = &(n)J(n) + O(P* *k+t)(Jog P)~0) (9.6)
n

for some § > 0, again provided that W is a sufficiently small power of log P. The singular
integral J(n) and the singular series &(n) require further analysis.

Lemma 9.5. Suppose that s > (k + 1)%, and fix real numbers pq, . . ., pix with the property
that the system (1.7) has a non-singular real solution with 0 < n;,&; < 1. Then there exists
a positive number 0" = 0'(s, k, ) such that, whenever

[nj — Prul <&'PF (0<j<k)
and P s sufficiently large, one has
J(n) > PQS—k‘(k‘-i-l)'

Proof. After a change of variables, we have

k
J(n) = p2-k(e+D) /RH1 /BT('V, v)e (Z Bi(oi(y,v) — pj + (5j)> dv dv dg3,
=0

where

B =[0,1]* x [R/P,1]"*?,

> log P~; log Pv;
T(»y,m:Hp(lOgR)p(logR), 9.7

i=t+4+1

¢j(77 V) :P)/fijl/j + o +’7‘Is€7jl/ga

and where |§;| < ¢’ for each j. Notice that (n,£) is contained in B for P sufficiently large.
Now let

S(to,....te) ={(v,v) €B: ¢j(v,v) —p;+6; =t; (0<j < k)},
so that

.....
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where C C R*"!. Since (1, &) € B, we see that C contains a neighborhood of (d, ..., d)
and hence contains the origin when ¢’ is sufficiently small. Thus after k + 1 applications of
Fourier’s Integral Theorem (see for example Davenport [5]) we obtain

J(n) = P2S_k(k+1)/ T(v,v)dS(0).
5(0)

Now, for ¢’ sufficiently small, the implicit function theorem shows that S(0) is a space of
dimension 2s — k — 1 with positive (2s — k — 1)-dimensional measure, and the lemma follows
on noting that T'(y,v) > 1 for R/P < ~,v < 1. O

It remains to deal with p-adic solubility considerations and hence to obtain a lower bound
for the singular series &(n).

Lemma 9.6. The function S(q) is multiplicative.

Proof. By [2], Lemma I1.4, one has S(qr,a) = S(g,r*"*a)S(r, ¢""1a) whenever (q,7) = 1,
and the result now follows by a standard argument. O

For each prime p, write
= _S0"
h=0
Whenever s > (k + 1)? one finds using Lemmata 9.2 and 9.6 that

-1 (9.8)

and that there exists a constant C'(k) such that

< II ow <

p>C(k)

(9.9)

N | —
DO W

Hence it remains to deal with small primes. Let My(q) denote the number of solutions of
the system of congruences

Iyl 4 2y =0y (mod q) (0< 5 <k).
Lemma 9.7. One has

ZS k:+1 2sM()

dlq

Proof. By the orthogonality of the additive characters modulo ¢, one has

M k+1 Z Z (=(r-m)/q).

7‘01 Tkl

Now on writing d = ¢/(q, o, .. .,7) and a; = r;d/q we obtain

My ( k+12 Y. (g/d)* (S(d.a)) e(~(a-n)/d),

and the result follows. O
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We therefore have
o(p) = lim p"* 172901, (p), (9.10)

so to show that &(n) > 1 it suffices to obtain a suitable lower bound for M,(p"). In
order to deduce this from the existence of non-singular p-adic solutions to (1.6), we need a
version of Hensel’s Lemma. In what follows, we write | - |, for the usual p-adic valuation,
normalized so that |p|, = p~'.

Lemma 9.8. Let 1, ...,19, be polynomials in Z,[x1,...,z,] with Jacobian A(4;x), and
suppose that a € Z;, satisfies

W@l < [Alpsa)f, (1<) <r).
Then there exists a unique b € Z;, such that
bi(b) =0 (1<j<r) and |b—al, <p~'|A(;a)l, (1<i<r).
Proof. This is Proposition 5.20 of Greenberg [6] with R = Z,,. O

Lemma 9.9. Suppose that the system (1.6) has a non-singular p-adic solution. Then there
exists an integer u = u(p) such that whenever h > u one has

Mn(ph) > p(hfu)(stkfl)'
Proof. We relabel the variables by writing

(217"'7228) = (5131,---7%791,'-'793)7

and let a = (ay, ..., ass) be a non-singular p-adic solution of (1.6). Then there exist indices
ig, - - ., 1% such that A(e; ay,, ..., a; ) # 0, so we can find an integer u such that

[A(; aig, - aq ), =p " > 0.

Now suppose that h > u. For i ¢ {ig,..., i}, choose integers w; with w; = a; (mod p*),
and write v; = a; for i = 1g, ..., 7 and v; = w; otherwise. Then on writing

vi(z) = vi(x,y) =2y Tyl + a2k iyl -y
for 0 < j <k, we see that
Yi(v) =1;(@) =0 (mod p*),

and hence

(V) < 7 < 1AW v, - v

Now if A > u then there are p("~*(2s=k=1) possible choices for the w; modulo p”. Moreover,

for any fixed choice we may regard 1); as a polynomial in the k£ + 1 variables z;,,..., 2,
after substituting z; = w; on the remaining indices. Thus for each admissible choice of w
we may apply Lemma 9.8 to obtain integers b;,, ..., b; such that ¢;(b;w) = 0 (mod p")
for each 7, whence the lemma follows. O

Now by (9.10) and Lemma 9.9 we have o(p) > p“+1=29) for all primes p, so on combining
this with (9.8) and (9.9) we see that G(n) > 1. Hence the proof of Theorem 4 is complete
upon recalling Lemma 9.5, together with (9.1), (9.5), and (9.6).
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10. LINES ON ADDITIVE EQUATIONS

We now establish Theorems 5 and 6 by proceeding much as in the previous section. Before
embarking on the circle method, however, we need to make some preliminary observations.

Lemma 10.1. Suppose that (x,y) € R* is a solution of (1.12), and let a,b,c, and d be
arbitrary real numbers. Then (ax + by, cx + dy) is also a solution.

Proof. For 0 < 5 < k, write

S

Aj(x,y) = Z ci(aw; + by,)* 7 (cx; + dy;)’.

i=1

Then by the binomial theorem we have for each j that

s k . .
Aj(xyy) = ZCi( _‘7) az;)" 7" byzj:(‘;) cx;)? 5 (dy;)®

i=1 r=0
k—j b
5 Qs Foene
r=0 s= =1
and the lemma follows. O

Lemma 10.2. Suppose that the system of equations (1.12) has a non-singular real solution
(n,€). Then we can find a non-singular real solution (', &) such that n} and ! are nonzero
for each 1.

Proof. For 0 < j <k, let

Vi(x,y) = 0151?1 yl R e P14 y57

and write (2o, ...,205-1) = (1,...,Zs,Y1,...,Ys). Then by rearranging variables, we may
write the given real solution as (n,&) = (Yo, .- ., Y2s—1), Where

b
det (azj( ))ogi,jgkz 70

Hence by using the Implicit Function Theorem as in the proof of [13], Lemma 6.2, we see
that there exists a (2s — k — 1)-dimensional neighborhood Ty of (Vg+1,-.-,72s—1) and a
function ¢ : Ty — RF*L such that v = (¢(w), w) is a solution of (1.12) whenever w € Tj.
Thus by choosing w with |w; — ;| sufficiently small for £+ 1 < i < 2s — 1, we may assume
that + is a non-singular solution whose last 2s — k — 1 coordinates are nonzero. Moreover,
a simple calculation shows that at most two of the remaining 7; and at most two of the
remaining &; are zero and that either n; or &; is nonzero for every <. In particular, when
s > 5, there is some ¢ for which 7;§; # 0. Now let

b=min{|n;/&[ : n:& # 0} and ¢ = min{[;/mi| : m:&i # 0},

and take O < %b and ¢ < %c. Then by Lemma 10.1 we see that (n/,€&’) is a solution
of (1.12), where ' = n + V¢ and & = g + &, and it is easy to check that 7, and &
are nonzero for each i. The non-singularity follows by continuity on choosing b and ¢

sufficiently small. O
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By Lemma 10.2 we may henceforth suppose that the system (1.12) has a non-singular
real solution (n, &) with n; and &; nonzero for all i, and by homogeneity we can re-scale to
ensure that 0 < |n;],]&] < 3. For each 4, write

nS =mni+3lml and ;7 =mn — ini
and

& =6+3l6l and & =& -5l
Now let P be a large positive number, put R = P with n < no(e, k), and let ¢q,...,¢s be
nonzero integers. Throughout this section, the implicit constants arising in our analysis
may depend on ¢y, ..., cs and on the real solution (n,&). We define the exponential sums

Fi(a) = Z Z e(ci(aor” + anz*y + - + )

n P<a<niP & P<y<¢iP
and
file) = > > eleilanr® + oy 4 4 aryh)).

n; P<ax<nfP & P<y<&ipP
lz|€ A(P,R) |y|€A(P,R)

Further, write s =t 4+ 2u 4+ v and define

Fle) = Filw) and G(a) = I] file).

i=t+1
Finally, let
R(P) = Fla)G(a) dex.
Tk+1

Then we have Ny(P) > Rs(P), so to prove Theorem 5 it suffices to obtain a lower bound
for R,(P). We dissect T**! into major and minor arcs as follows. Write ¢ = max |¢;| and
X = cPY?RF!and define

m = U M),

1<ag,...,ax<g<X
(g,a0,---,ax)=1

where
M(q,a) = {a € T" : |goy — a;| < PY*FRF (0 <i < k)},
and put m = T*1\ M. As before, it is easily seen that the 9(q,a) are disjoint

Lemma 10.3. Whenever o € m, one has ¢;a € my . Moreover,
sup | fi(a)| <« P2o1tk)+e,
oem

where o1(k) is as in Corollary 3.1.

Proof. Suppose that o € m and that |c;a;q — a;] < PY*7FRF for 0 < j < k, where g € N,
a; € Z, and (q, ag, - .., a;) = 1. Then one has
pL/2—k Rk
|cilq

Y
J
Ciq

«
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so on writing

_ o |cila; o |cilq
d_(ci7@07"'7&k)7 a; = Cid, and q = d
we see that
a P1/2—kRk
a5 — — (0 S] < k):
q qd

so we must have cqg > ¢’ > ¢PY2R*! and hence ¢ > PY2RF*!. Thus c;a € my/p. The
second assertion now follows on recalling the remark at the end of Section 7 and noting
that we may replace o; by —a; as needed so that our sums are over positive integers. [

As in the previous section, we take

A
t=((k+1>2 u= [gkﬂogk+gk210glogk+6k2] , and v = {01(2)} +1,

where A, is as in Theorem 2 and oy (k) is as in Corollary 3.1. Then by Holder’s inequality
[ 1F@G@da < preees I
m

and a change of variables we obtain
1/2u
([, 1rlepda)
i=t+1 N/ THH

& PQS—k(k+1)_5 (101)

for some ¢ > 0, since A, < voy(k). Thus it remains to deal with the major arcs.
Recalling the notation of the previous section, we define S;(¢q,a) = S(q, ¢;a),

t+2u

nfP &P
w(B) = / / (e (B + Byt v+ -+ BR)) dy
n & P

P

and Vi(a) = ¢ 25;(¢q, a)v;(ax — a/q) for o € M
arcs I as in the previous section using (8.2) a
log P. Finally, write

w(ﬁ)—/ﬁp/w 087 [ (1OBY Y LGy 4 ey -+ B dy
7 - m_—P gi—P P 10gR p 10gR 7 OP)/ 17 k ’7

(q,a). Further, we define the pruned major
nd (9.3), again with W a suitable power of

and W;(a) = ¢725;(q, a)w;(a — a/q) for a € N(q,a). The next several lemmas are simple
adaptations of the corresponding results in the previous section.

Lemma 10.4. When a € M(q,a), one has
FZ(Oé) . Vz(a) < P3/2+5,
and when o € N(q, a), one has
q2p2w2
logP

Proof. These estimates follow by making trivial modifications in the arguments of Lemmata
8.1 and 8.4, respectively. O

fila) = Wila) <€
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Lemma 10.5. Whenever (q, aq, . ..,a;) = 1, we have
Si(q,a) < >~V +e.
Proof. Put d; = (q,¢;). Then by Lemma 9.2 we have
Si(q,a) = d?S(q/d;, c;a/d;) < Olil/kq%l/l‘ﬁrs < VR
as required.
Lemma 10.6. One has
vi(B) < P*(1+PH(|Bol + -+ [B:)) ™"
and
wi(B) < P*(1+ PH(|6o] + -+ |8:]) 7.
Proof. The argument is identical to the proof of Lemma 9.3.

Lemma 10.7. Ift is an integer with t > (k + 1), then one has
/ ]E(a)\tda < thfk(kJrl)
m
and

/ ‘E(a)‘t do < W*UPQtfk(kJrl)
MM

for some o > 0.

45

(10.2)

(10.3)

Proof. The result follows as in Lemma 9.4 on using Lemmata 10.4, 10.5, and 10.6 in place

of the corresponding results in the previous section.

O

Once again, Lemma 10.7, together with (10.1), allows us to focus attention on the pruned

major arcs . Let

S= Y, a* H Si(g a),

1<ao,...,ax<q
(g,00,---,ax)=1

&(P)=) S(g), and &= S(g).

q<X

Again we have S(q) < ¢"*17*/*+¢ and hence & < 1 and & — &(P) < P~ for some § > 0,

provided that s > (k + 1)%. Further, let

Py = [ TLeto) I] wis)ds.

B(P) i=1 i=t+1

where B(P) = [-WP~% WP~ and put

J = / T8 T] wi8)ds.

k+1
ot i=t4+1
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Then when s > (k + 1)2, we have by Lemmata 10.5 and 10.6 that J < P?*~*k+1) and
> 8@l = J(P)| < PR (log P)7.

1<q<cPl/2+e

for some 0 > 0. Thus, by employing standard arguments based on Lemmata 10.4, 10.5,
and 10.6, we obtain

/ Fla)G(a)da = &.J + O(P* ¢+ (log P)~°) (10.4)
N

for some § > 0.
Lemma 10.8. Whenever s > (k + 1) and P is sufficiently large, one has
J > P237k(k+1)'

Proof. By a change of variables, we find that

k
J = P2571€(k+1) /R}CJrl /BT(’Y’ y) e (Z Bj¢j(77 I/)) d’}’ dv dﬂ,
=0

where
B = [Ufﬂ?fr] X X [775_77]:] X [gl_vff_] X X [55_7£:—]7
0i(v.v) = e v e T,
and where T'(,v) is as in (9.7). Now let

S(tOw“atk):{(FYvV)EB:¢j(77V):tj (OS]Sk)},
so that

-----

where C C R**1. Since (n,€) € B, we see that C contains a neighborhood of the origin,
whence after k + 1 applications of Fourier’s Integral Theorem we obtain

T =P [ 7y ) as(0),
S(0)

and the result follows as in the proof of Lemma 9.5. O

Lemma 10.9. The function S(q) is multiplicative.

Proof. This is identical to the proof of Lemma 9.6. O
Whenever s > (k4 1)? one finds using Lemma 10.9 that

S = Ha(p), where o(p) = ZS(ph),

and that there exists a constant C'(k) such that

< II ow <

p>C(k)

N —
DO W



MULTIPLE EXPONENTIAL SUMS OVER SMOOTH NUMBERS 47

Let M(q) denote the number of solutions of the system of congruences

awy Tyl et Tyl =0 (mod q)  (0< < k),

Lemma 10.10. One has

Proof. This is identical to the proof of Lemma 9.7. O
It follows that
o(p) = lim p"EH2IM ("),

so again to show that & >> 1 it suffices to show that M (p") > ph=w@s=k=1) for p < C(k),
and this follows exactly as in the argument of Lemma 9.9. Hence the proof of Theorem 5
is complete on assembling (10.1), (10.3), and (10.4) and recalling Lemma 10.8.

In order to deduce Theorem 6, we need some additional observations.

Lemma 10.11. Let (x,y), (X,y’) € Z* be such that (z1,...,z5) = 1. Then xt +y and
x't +y' parameterize the same line if and only if

X' =qgx and y =y+rx
for some integers q and r with q # 0.

Proof. First suppose that x’ = ¢gx and y’ = y + rx for some integers ¢ and r with g # 0.
Then one has

t_
xt+y =X (Tr) +y and Xt+y' =x(¢t+7)+y,

so the two lines are identical. Conversely, suppose that the two lines are the same. By
taking ¢ = 0 on the line x't + y’, we see that there exists ¢; such that y’ = xt; +y, and
then by taking ¢ = 1 we find that there exists ¢t such that x’ +y’ = xt, +y and hence
x' = (ty — t1)x. Moreover, the condition (z1,...,xs) = 1 implies that ¢; and ¢, are distinct
integers, and this completes the proof. O

Now let Rs(P,d) denote the number of solutions of (1.12) counted by Rs(P) for which
(x1,...,25) = d. Further, let N/(P) denote the number of solutions counted by N,(P) for
which (z1,...,25) =1 and 1 <y; < |z1]. The following estimate will be useful when d is
large.

Lemma 10.12. One has
25—k(k-+1)
2
Proof. Consider a solution (x,y) counted by R,(P,d). Since x5_; and x, each have d as a

divisor, the number of possible choices for z;_1,ys 1, T, and y, is at most P*(P/d)?. Given
such a choice, the number of possibilities for the remaining variables is

1=t+1

R, (P,d) <
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- k=g, k—j,.d
where m; = cs_12,_1y;_; + csxg yl, and thus

ro<t [ H|F ) T 1@ de

i=t+1
The lemma now follows by dissecting T**! into major and minor arcs and using (10.1) and
(10.2). O

We can now complete the proof of Theorem 6.

Proof of Theorem 6. Define an equivalence relation on the set of solutions to (1.12) by
writing (x,y) ~ (x/,y') whenever xt +y and x't + y’ define the same line. Thus we need
a lower bound for the number of equivalence classes.

Let Ny(P, @, d) be the number of solutions of (1.12) with

x € BP, yeCQ, and (xi,...,z5) =d,
where

B=[n,m]x---xn7,nf] and C=I[&,& ] x---x[£7,&7].

Then the solutions counted by Rs(P,d) and N(P/d, P,1) are in bijective correspondence,
and Lemma 10.11 shows that two solutions (x,y) and (x’,y’) counted by Ns(P/d, P, 1) are
equivalent if and only if x = x” and y — y’ = rx for some integer r. Then since

P
71| > p and |y —yi| < P,

where 7 = 2/|n|, we see that each equivalence class contains at most 7d members counted
by Ns(P/d,P,1). Moreover, Lemma 10.1 allows us to map each equivalence class to a
solution counted by N!(P), and Lemma 10.11 shows that this map is injective. Thus we
see that

R,(P,d) = N,(P/d, P,1) < rd N'(P). (10.5)

Now let D be a parameter at our disposal. Since any two solutions counted by N.(P)
represent distinct equivalence classes, we have by (10.5) that

> R.(P,d) < 7D>N/(P) = 7D*Ly(P).
d<D
Thus by Lemma 10.12 there exist positive constants v; and 7, such that

p2—kk+l) < p (p 2 72p2s k(k+1)
" < Ry(P) < 7D’Ly(P)+ >

d>D
for P sufficiently large, and hence we have
Ly(P) >
(P) = TD?
The theorem now follows on taking D = 2v/71.

Pp2s—k(k+1) ( - E)
— o M D)
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