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Abstract. We provide a lower bound for the density of rational lines on the hypersurface
defined by an additive cubic equation in at least 57 variables. In the process, we obtain
a result on the paucity of non-trivial solutions to an associated system of Diophantine
equations.

1. Introduction

The existence of linear spaces on algebraic varieties was first investigated by Brauer [4]
and Birch [3] in the middle part of the 20th century, but the analysis of the density of such
spaces has begun only very recently. The author [10] has shown that if c1, . . . , cs are non-zero
integers then the hypersurface defined by the additive equation

c1z
k
1 + · · ·+ csz

k
s = 0

contains the expected density of rational lines, provided that

s ≥ (14
3

+ o(1))k2 log k

and that the obvious local solubility requirements are met. The purpose of the present note
is to obtain an explicit upper bound for the number of variables required in the case k = 3.

Given an affine line ` : xt + y, we define its “height” by h(`) = max(|xi|, |yi|). Further,
when c1, . . . , cs are non-zero integers, write Ls(P ) for the number of distinct rational lines `
having h(`) ≤ P and lying on the hypersurface defined by

c1z
3
1 + · · ·+ csz

3
s = 0.

Our main result is the following.

Theorem 1. Suppose that s ≥ 57. Then one has

Ls(P ) � P 2s−12

for P sufficiently large.

For comparison, we note that Wooley [19] has demonstrated the existence of rational lines
on arbitrary cubic hypersurfaces in at least 37 variables, whereas we require 57 variables
in Theorem 1. In the additive situation we are considering, the existence of lines follows
immediately from the theory of a single additive cubic equation (see R. Baker [2]), provided
that s ≥ 14, and hence the significance of our result lies in the density estimate.

The existence of these “trivial” lines when s ≥ 14 is in fact key to our analysis, for they
give rise to non-singular integer solutions of the system

c1x
3−j
1 yj

1 + · · ·+ csx
3−j
s yj

s = 0 (0 ≤ j ≤ 3) (1.1)
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and hence allow us to avoid imposing explicit local solubility hypotheses in Theorem 1.
Unfortunately, the solutions arising in this way are singular for larger values of k and are
therefore of no use in the analysis of the more general problem considered in [10]. Local
conditions also may present an obstacle to demonstrating the expected density of higher-
dimensional linear spaces on a cubic hypersurface in a reasonable number of variables. While
the results of Schmidt [11], [12] could be applied to the analogues of (1.1), the number of
variables required may in general be quite large.

We prove Theorem 1 by applying the Hardy-Littlewood method to count the number of
solutions of (1.1) lying in a given box. In order to obtain estimates for mean values of the
underlying exponential sums, we will be required to investigate certain auxiliary systems of
equations. For example, let S(P ) denote the number of solutions of the system

x3
1 + x3

2 + x3
3 = x3

4 + x3
5 + x3

6

x2
1y1 + x2

2y2 + x2
3y3 = x2

4y4 + x2
5y5 + x2

6y6

x1y
2
1 + x2y

2
2 + x3y

2
3 = x4y

2
4 + x5y

2
5 + x6y

2
6

y3
1 + y3

2 + y3
3 = y3

4 + y3
5 + y3

6

(1.2)

with xi, yi ∈ [1, P ] ∩ Z. Further, write T (P ) for the number of “trivial” solutions, in which

(x4, x5, x6) = σ(x1, x2, x3) and (y4, y5, y6) = σ(y1, y2, y3)

for some permutation σ ∈ S3. The following “paucity” result shows that almost all solutions
counted by S(P ) are of this diagonal type.

Theorem 2. For every ε > 0, one has

S(P )− T (P ) �ε P
6− 11

192
+ε.

Clearly, one has T (P ) = 6P 6 + O(P 4), and it follows that S(P ) ∼ 6P 6. In Section 3, we
interpret this diagonal behavior as giving a best-possible estimate for the 6th moment of the
exponential sum

F (α) =
∑

1≤x,y≤P

e(α0x
3 + α1x

2y + α2xy
2 + α3y

3)

and then use the iterative method developed in [10] to obtain non-trivial estimates for higher
moments. After deriving some simple Weyl estimates in Section 4, we are able to complete
the proof of Theorem 1 in Section 5 by using the Hardy-Littlewood method as in [10], §10.

Our methods apply equally well to a generalization of Waring’s problem in which we
seek to represent a polynomial of degree k as a sum of kth powers of linear polynomials.
This application was discussed in detail in [10], where the function G∗

1(k) was introduced
to denote the number of kth powers required to represent all polynomials whose coefficients
are sufficiently large and compatible with all local solubility considerations. The bound
G∗

1(3) ≤ 55 is immediate on combining the analysis of [10], §9, with that of the present
paper, so we feel justified in omitting the details.

The author gratefully acknowledges the many helpful suggestions offered by Professor
Trevor Wooley during the writing of the paper. This work would not have been possible
without his keen insight and constant encouragement. The author also thanks the referee
for useful comments.



THE DENSITY OF RATIONAL LINES ON CUBIC HYPERSURFACES 3

2. The Paucity Problem

Our goal in this section is to establish Theorem 2. Before proceeding with the proof, we
record for reference some of the key estimates we will use. The first of these is implicit in
the work of Hooley [7] on sums of four cubes.

Lemma 2.1. Let n be a non-zero integer, and let R(P ) denote the number of integral solu-
tions of the equation

x3
1 + x3

2 + x3
3 + x3

4 = n

with |xi| ≤ P . Then one has R(P ) � P 11/6+ε.

Proof. Clearly, we may focus attention on solutions in which at least two of the xi are
non-zero. For any such solution x counted by R(P ), we can find i and j such that xi and
xj have the same parity and are not both zero. Now if xi + xj = 0 and xk and xl are the
remaining two variables, then since n 6= 0 we must have xk + xl 6= 0, and if xk and xl do
not have the same parity, then one of them has the same parity as xi and xj . Thus, after
relabeling variables, we may assume that x1 ≡ x2 (mod 2) and x1 6= −x2. This allows us to
write x1 = r+s and x2 = r−s, where r and s are integers with r 6= 0, and hence to consider
solutions of the equation

2r(r2 + 3s2) = n− z3 − w3.

The argument is now identical to that of Hooley [7], the condition r 6= 0 being essential to
the consideration of congruences modulo divisors of r. The only change is that the upper
bound of n1/3 for the moduli of r, z, and w is replaced throughout by P , and the sieving
parameter ξ is now chosen to be P 1/6.

We also make use of some recent work of Heath-Brown [6] on sums of two cubes.

Lemma 2.2. Let U(P ) denote the number of integral solutions of the equation

x3
1 + x3

2 = x3
3 + x3

4

with |xi| ≤ P and x1 + x2 6= x3 + x4. Then one has U(P ) � P 4/3+ε.

Proof. This is a special case of Heath-Brown [6], Theorem 1.

We remark that Hooley [8], using the Riemann hypothesis for varieties over finite fields,
obtained a result of the above shape with the exponent 4/3 replaced by 5/3. Wooley [18] later
devised an elementary proof of this result, and his ideas play a key role in Heath-Brown’s
argument.

Finally, we recall a result on binary quadratic forms dating back to Estermann [5].

Lemma 2.3. Let a, b, and c be non-zero integers, and let Q(P ) denote the number of integral
solutions of the equation

ax2 + by2 = c

with 1 ≤ x, y ≤ P . Then one has Q(P ) � |abcP |ε.
Proof. See (for example) Vaughan and Wooley [15], Lemma 3.5.
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We are now ready to embark on the proof of Theorem 2. On writing h = x1 − x4 and
g = y1 − y4 and relabeling variables in (1.2), we see that S(P ) is the number of solutions of
the system of equations

h(3x(x+ h) + h2) = u3
1 + u3

2 − u3
3 − u3

4

(2hx+ h2)y + g(x+ h)2 = u2
1v1 + u2

2v2 − u2
3v3 − u2

4v4

(2gy + g2)x+ h(y + g)2 = u1v
2
1 + u2v

2
2 − u3v

2
3 − u4v

2
4

g(3y(y + g) + g2) = v3
1 + v3

2 − v3
3 − v3

4

(2.1)

with

1 ≤ x, y, ui, vi ≤ P and |h|, |g| < P. (2.2)

We shall estimate N(P ) = S(P )− T (P ) by dividing into several cases.

(i) Let N1 denote the number of solutions counted by N(P ) for which h = g = 0, and
consider a solution x, y,u,v counted by N1. Then one has

(u1, u2, v1, v2) 6= (u3, u4, v3, v4) and (u1, u2, v1, v2) 6= (u4, u3, v4, v3),

since otherwise the solution would be counted by T (P ). If we have (u1, u2) = (u3, u4) and
(v1, v2) = (v4, v3), then the second equation in (2.1) implies that either u1 = u2 or v1 = v2,
whence the number of choices for u and v is O(P 3). Trivially, there are O(P 2) choices
for x and y, so the total number of solutions is O(P 5), and the same analysis applies if
(u1, u2) = (u4, u3) and (v1, v2) = (v3, v4). Otherwise, since ui and vi are positive, it follows
that either u1 + u2 6= u3 + u4 or v1 + v2 6= v3 + v4, so Lemma 2.2 may be applied to estimate
the number of choices for u or v (or possibly both). On combining this with Hua’s Lemma,
one sees that N1 � P 16/3+ε.

(ii) Let N2 denote the number of solutions counted by N(P ) for which exactly one of h
or g is zero. Suppose first that h = 0 and g 6= 0. Then by Hua’s Lemma one has O(P 2+ε)
choices for u, and by a trivial estimate there are O(P 2) choices for g and y. Now for fixed
non-zero g and y, we may apply Lemma 2.1 to deduce that there are O(P 11/6+ε) choices
of v satisfying the fourth equation of (2.1). Finally, since g 6= 0, the second equation is
a non-trivial polynomial in x and hence determines x to O(1). By following a symmetric
argument in the case where g = 0 and h 6= 0, we find that N2 � P 35/6+ε.

(iii) Write d = (h, g), let β be a parameter at our disposal, and let N3 denote the number
of solutions counted by N(P ) for which hg 6= 0 and |hg/d| ≤ P 1+β. In this case, there are
O(P 1+β) choices for the integer hg/d, of which d, h/d and g/d are all divisors. Thus by a
standard estimate for the divisor function, we see that there are O(P 1+β+ε) choices for h
and g. Trivially, there are O(P ) choices for x, and then by Lemma 2.1 we have O(P 11/6+ε)
choices for u. Now by taking a linear combination of the equations (2.1), with respective
weights g3,−3g2h, 3gh2, and −h3, we find that any solution x, y, g, h,u,v satisfies

(gu1 − hv1)
3 + (gu2 − hv2)

3 = (gu3 − hv3)
3 + (gu4 − hv4)

3, (2.3)

and by applying Hua [9], Theorem 4, to the underlying mean value we find that, for fixed h, g,
and u, there are O(P 2+ε) choices for v. Finally, y is determined to O(1) by a polynomial,
whence N3 � P 35/6+β+ε.
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(iv) For i = 1, . . . , 4, write Xi = gui − hvi, and let N4 denote the number of solutions
counted by N(P ) for which X1 + X2 = X3 + X4 and hg 6= 0. The former condition, when
combined with (2.3), implies that either X1 = X3, X2 = X3, or X1 = −X2. We may suppose
that X1 = X3 and X2 = X4, so that

g(u1 − u3) = h(v1 − v3) and g(u2 − u4) = h(v2 − v4), (2.4)

the argument in the remaining two cases being identical. For convenience we write

A = u1 − u3, B = u2 − u4, C = v1 − v3, and D = v2 − v4. (2.5)

Since h and g are non-zero, the first equation in (2.1) implies that either A or B is non-zero,
and the fourth equation implies that either C or D is non-zero. Suppose that C 6= 0 and
D = 0. We first choose u2 = u4 and v2 = v4 in O(P 2) ways, and then by (2.1) we have

(x+ h)3 + u3
3 = x3 + u3

1 and (y + g)3 + v3
3 = y3 + v3

1.

Since solutions with x = u3 and y = v3 are counted by T (P ), we may apply Lemma 2.2, to-
gether with Hua’s Lemma, to deduce that there are O(P 10/3+ε) choices for x, y, h, g, u1, u3, v1,
and v3. The case where C = 0 and D 6= 0 is identical.

It remains to consider solutions for which both C and D (and hence A and B) are non-
zero. We first observe that, after substituting from (2.5) and completing the square, the first
and fourth equations in (2.1) become

h(3x(x+ h) + h2)− 1
4
(A3 +B3) = 3A(u3 + 1

2
A)2 + 3B(u4 + 1

2
B)2 (2.6)

and

g(3y(y + g) + g2)− 1
4
(C3 +D3) = 3C(v3 + 1

2
C)2 + 3D(v4 + 1

2
D)2, (2.7)

respectively. In view of (2.6) and (2.7), we further classify solutions according to whether

h(3x(x+ h) + h2)− 1
4
(A3 +B3) = 0 (2.8)

or

g(3y(y + g) + g2)− 1
4
(C3 +D3) = 0. (2.9)

If both (2.8) and (2.9) hold, then we start by selecting values for A and B from among
O(P 2) possibilities, and (2.8) then determines h and x to O(P ε). Trivially, there are O(P )
choices for g, and (2.4) then determines C and D to O(P ε), whence y is determined to O(1)
by (2.9). Finally, u3 and v3 may be assigned in O(P 2) ways, and this choice determines u
and v to O(1) in light of (2.5), (2.6), and (2.7). Hence there are O(P 5+ε) solutions of this
type.

If (2.8) holds but (2.9) does not, then we assign A, B, and u3 in O(P 3) ways, so that u is
determined to O(1) by (2.6). Then h and x are again determined up to O(P ε), and there are
O(P 2) choices for y and g. This latter choice determines C and D to O(P ε) by (2.4), and we
may apply Lemma 2.3 to (2.7), regarded as a binary quadratic equation in the variables v3

and v4. The case where (2.9) holds but (2.8) does not is exactly symmetric, so we see that
there are O(P 5+ε) solutions of these two types.

Finally, if neither (2.8) nor (2.9) holds, then we fix h, C, and D in O(P 3) ways, from
which g, A, and B are determined to O(P ε) by (2.4). There are O(P 2) possibilities for x
and y, and Lemma 2.3 then shows that u and v are determined up to O(P ε) by (2.6) and
(2.7). Thus we conclude that N4 � P 16/3+ε.
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(v) Now let γ be a parameter at our disposal, write M = P 1+β, and let N5 be the number
of solutions counted by N(P ) in which

hg 6= 0, |hg/d| > M, X1 +X2 6= X3 +X4, (2.10)

and d = (h, g) ≤ P γ. By symmetry, we may assume that |h| ≥ |g|, the argument in the other
case being identical. Write h′ = h/d and g′ = g/d, so that (h′, g′) = 1. For any given d and
|h′| ≥ |g′|, we divide both sides of (2.3) by d3 and apply Lemma 2.2 to deduce that there are
then O((|h′|P )4/3+ε) possible choices for X1, . . . , X4. With Xi now fixed and (h′, g′) = 1, any
two choices for ui must be congruent modulo h′, so one has O(P/|h′|) possibilities for each
of u1, . . . , u4, and this determines v. Since x and y are then determined by polynomials, we
find that

N5 � ∑
d≤P γ

∑
1≤g≤P/d

∑
h≥max(g,M/gd)

(hP )4/3+ε(P/h)4

� P 16/3+ε
∑

d≤P γ


 ∑

g≤(M/d)1/2

∑
h≥M/gd

h−8/3 +
∑

g>(M/d)1/2

∑
h≥g

h−8/3




� P 16/3+ε
∑

d≤P γ


 ∑

g≤(M/d)1/2

(M/gd)−5/3 +
∑

g>(M/d)1/2

g−5/3




� P 16/3+ε
∑

d≤P γ

(
(M/d)−5/3(M/d)4/3 + (M/d)−1/3

)

� P 16/3+εM−1/3
∑

d≤P γ

d1/3 � P
16
3
− 1

3
(1+β)+ 4

3
γ+ε.

(vi) Finally, let N6 be the number of solutions counted by N(P ) with (2.10) and d > P γ.
In this case we use an affine slicing approach almost exactly as in Wooley [18]. As before,
we exploit the symmetry of our system to focus attention on solutions with |h| ≥ |g|. On
recalling (2.3), we have that

X3
1 +X3

2 = X3
3 +X3

4 and X1 +X2 = X3 +X4 +H (2.11)

for some integer H . For convenience, we write X ′
i = Xi/d and H ′ = H/d. For fixed h, g,

and u, one has

H ′ = g′(u1 + u2 − u3 − u4)− h′(v1 + v2 − v3 − v4),

which determines the residue class of H ′ modulo h′. Furthermore, since |h′| ≥ |g′|, one has
|H ′| ≤ 4|h′|P . Now from the equations (2.11), we find that

(X1 +X2 −X3)
3 − (X3

1 +X3
2 −X3

3 ) = (X4 +H)3 −X3
4 ,

which simplifies to

3(X1 −X3)(X2 −X3)(X1 +X2) = H(3X2
4 + 3X4H +H2). (2.12)

By (2.10), we have H 6= 0, so after dividing both sides of (2.12) by d3 we see that at least
one of X ′

1 − X ′
3, X

′
2 − X ′

3, or X ′
1 + X ′

2 has a divisor e � |H ′|1/3 in common with H ′. We
suppose that

e = (H ′, X ′
1 −X ′

3) � |H ′|1/3
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and write X1−X3 = deY , the analysis in the other two cases being identical. Then, for fixed
d and e, there are O(|h′|P/e) choices for Y . Now, on substituting X4 = X1 +X2 −X3 −H
and X3 = X1 − deY in (2.12), we obtain

3deY X2
1 − 3(deY −H)X2

2 − 3(deY )2X1 − 3(deY −H)2X2 = (deY −H)3 − (deY )3,

and after completing the square this becomes

3deY (X1 − 1
2
deY )2 − 3(deY −H)(X2 + 1

2
(deY −H))2 = 1

4
(deY −H)3 − 1

4
(deY )3.

Since H 6= 0, the quantities deY , deY − H , and (deY − H)3 − (deY )3 are all non-zero, so
Lemma 2.3 may be applied. Thus, for fixed d, e, H , and Y , the values of X1 and X2 are
determined up to O(P ε), and this fixes X3 and X4. For fixed g, h, and u, this determines
v, and y is then determined to O(1) by a polynomial. Thus we have

N6 � ∑
d>P γ

∑
1≤h′,g′≤P/d

∑
x,u

∑
H′, e

h′P 1+ε

e
.

For fixed H ′, a divisor estimate shows that there are O(P ε) possible choices for e, and for
fixed h and x Lemma 2.1 shows that there are O(P 11/6+ε) choices for u. Thus on summing
trivially over g′ and x we find that

N6 � P 1+ε
∑

d>P γ

P

d

∑
1≤h′≤P/d

h′P · P 11/6+ε
∑

1≤H′≤4h′P
(H ′)−1/3,

on recalling that e� |H ′|1/3. We now divide the sum over H ′ > h′ into dyadic intervals and
consider the sum overH ′ ≤ h′ separately. Since the choice of h, g, and u fixes the residue class
of H ′ modulo h′, there are O(1+P/2r) choices for H ′ satisfying 4h′P/2r+1 < H ′ ≤ 4h′P/2r.
Thus we have

∑
1≤H′≤4h′P

(H ′)−1/3 � (h′)2/3 +
∞∑

r=0

P

2r

(
h′P
2r+1

)−1/3

� (h′)2/3 + P 2/3(h′)−1/3,

and here the second term is dominant whenever h′ ≤ P 2/3, which certainly holds when
γ ≥ 1/3. Subject to this condition, we finally obtain

N6 � P 11/2+ε
∑

d>P γ

d−1
∑

h′≤P/d

(h′)2/3

� P 43/6+ε
∑

d>P γ

d−8/3 � P 43/6− 5
3
γ+ε.

We now choose an optimal value of γ ≥ 1/3. In order that N5 and N6 have the same order
of magnitude, we set

16

3
− 1

3
(1 + β) +

4

3
γ =

43

6
− 5

3
γ,

which yields γ = 11
18

+ 1
9
(1 + β). In view of our bound for N3, we choose β by setting

35

6
+ β =

43

6
− 5

3

(
11

18
+

1

9
(1 + β)

)
,

which gives β = 7
64

and γ = 47
64

. The result of Theorem 2 now follows immediately on

assembling the bounds for N1, . . . , N6 and noting that 1
6
− 7

64
= 11

192
.
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3. Further Mean Value Estimates

Here we use the result of the previous section to obtain estimates for higher moments,
which will be required in our application of the Hardy-Littlewood method in Section 5. As
usual, the sharpest estimates are obtained by considering solutions in which some of the
variables have no large prime factors. Thus when P and R are positive integers, write

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n, p prime ⇒ p ≤ R}

for the set of R-smooth numbers up to P , and define the exponential sum

f(α;P,R) =
∑

x,y∈A(P,R)

e(α0x
3 + α1x

2y + α2xy
2 + α3y

3).

It will also be useful to have some variables in a complete interval, so we define

F (α;P ) =
∑

1≤x,y≤P

e(α0x
3 + α1x

2y + α2xy
2 + α3y

3).

When there is no danger of confusion, we shall write f(α) = f(α;P,R) and F (α) = F (α;P ).
Further, let

Ss,r(P,R) =
∫
T4
|F (α)|2r|f(α)|2s dα.

We adopt the convention that any statement involving ε and R means that for each ε > 0
there exists η = η(ε) > 0 such that the assertion holds whenever R ≤ P η. In this section,
our implicit constants will depend at most on ε unless otherwise noted. We start with an
estimate for S3,2(P,R).

Lemma 3.1. One has

S3,2(P,R) � P 12+ 1
20

+ε.

Proof. Define the difference operator ∆∗
1 by

∆∗
1(f(x, y); h, g) = f(x+ h, y + g)− f(x, y).

Then by Cauchy’s inequality, one has

S3,2(P,R) =
∫
T4

∣∣∣∣∣∣
∑
x,h

∑
y,g

e

(
3∑

i=0

αi∆
∗
1(x

3−iyi; h, g)

)∣∣∣∣∣∣
2

|f(α)|6 dα

� P 2
∑
h,g

∫
T4

∣∣∣∣∣
∑
x,y

e

(
3∑

i=0

αi∆
∗
1(x

3−iyi; h, g)

)∣∣∣∣∣
2

|f(α)|6 dα,

and hence

S3,2(P,R) � P 2U3,2(P,R), (3.1)
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where Us,2(P,R) denotes the number of solutions of the system

3h(x2
1 − x2

2 + h(x1 − x2)) =
s∑

i=1

(u3
i − u3

s+i)

h(2(x1y1 − x2y2) + h(y1 − y2)) + g(x2
1 − x2

2 + 2h(x1 − x2)) =
s∑

i=1

(u2
i vi − u2

s+ivs+i)

g(2(x1y1 − x2y2) + g(x1 − x2)) + h(y2
1 − y2

2 + 2g(y1 − y2)) =
s∑

i=1

(uiv
2
i − us+iv

2
s+i)

3g(y2
1 − y2

2 + g(y1 − y2)) =
s∑

i=1

(v3
i − v3

s+i)

with

1 ≤ xi, yi ≤ P, ui, vi ∈ A(P,R), and |h|, |g| < P. (3.2)

The argument is now very similar to the proof of Theorem 2 given in the previous section.

(i) Let U1 denote the number of solutions counted by U3,2(P,R) for which

h(x1 − x2)(x1 + x2 + h) = g(y1 − y2)(y1 + y2 + g) = 0. (3.3)

In this case, there are O(P 4) choices for h, g, x, and y, and one sees that the number of
choices for u and v is then ∫

T4
|f(α)|6 dα � P 6,

on recalling Theorem 2 and considering the underlying Diophantine equations. Thus we
have U1 � P 10.

(ii) Let U2 denote the number of solutions counted by U3,2(P,R) for which exactly one
of h or g is zero and (3.3) does not hold. First suppose that h = 0 and g 6= 0. Then
by Vaughan [13], Theorem 4.4, one has O(P 13/4+ε) choices for u, and by a trivial estimate
there are O(P 3) choices for g and y. Now for fixed g and y, [13] again shows that there are
O(P 13/4+ε) choices for v. Finally, since g(y1 − y2) 6= 0, x1 and x2 are determined to O(P ε)
by the second and third equations above. The situation when g = 0 and h 6= 0 is identical.
Thus we see that U2 � P 19/2+ε.

(iii) Let U3 denote the number of solutions counted by U3,2(P,R) for which hg 6= 0,

(x1 − x2)(y1 − y2)(x1 + x2 + h)(y1 + y2 + g) = 0,

and (3.3) does not hold. If x1 = x2, then there are O(P 3) choices for h, g, and x and
O(P 13/4+ε) choices for u. Now, as in the previous section, we find that

(gu1 − hv1)
3 + (gu2 − hv2)

3 + (gu3 − hv3)
3

= (gu4 − hv4)
3 + (gu5 − hv5)

3 + (gu6 − hv6)
3

(3.4)

so by Hua [9], Theorem 4, there are O(P 7/2+ε) choices for v, and then y is determined to
O(P ε) by a divisor estimate. The other cases are handled similarly, and thus U3 � P 39/4+ε.
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(iv) Write d = (h, g), let β be a parameter at our disposal, and let U4 denote the number
of solutions counted by U3,2(P,R) for which

0 < |hg/d| ≤ P 5/4+β and (x1 − x2)(y1 − y2)(x1 + x2 + h)(y1 + y2 + g) 6= 0.

In this case, there are O(P 5/4+β) choices for the integer hg/d, whence by a divisor estimate
there are O(P 5/4+β+ε) choices for h and g. Trivially, there are O(P 2) choices for x, and then
we have O(P 13/4+ε) choices for u. Thus by applying Hua [9] to (3.4), we see that there are
O(P 7/2+ε) choices for v, and then y is determined to O(P ε). Hence U4 � P 10+β+ε.

(v) Now let γ be a parameter at our disposal, write M = P 5/4+β, and let U5 be the number
of solutions counted by U3,2(P,R) in which

|hg/d| > M, (x1 − x2)(y1 − y2)(x1 + x2 + h)(y1 + y2 + g) 6= 0, (3.5)

and d = (h, g) ≤ P γ. As before, we assume that |h| ≥ |g| and write h′ = h/d and g′ = g/d, so
that (h′, g′) = 1. For any given d and |h′| ≥ |g′|, we divide both sides of (3.4) by d3; then by
Hua’s Lemma there are O((|h′|P )7/2+ε) possible choices for X1, . . . , X6, where Xi = gui−hvi.
With Xi now fixed and (h′, g′) = 1, any two choices for ui must be congruent modulo h′, so
one has O(P/|h′|) possibilities for each of u1, . . . , u6, and this determines v. Since x and y
are then determined to O(P ε), we find that

U5 � ∑
d≤P γ

∑
1≤g≤P/d

∑
h≥max(g,M/gd)

(hP )7/2+ε(P/h)6

� P 19/2+ε
∑

d≤P γ


 ∑

g≤(M/d)1/2

∑
h≥M/gd

h−5/2 +
∑

g>(M/d)1/2

∑
h≥g

h−5/2




� P 19/2+ε
∑

d≤P γ


 ∑

g≤(M/d)1/2

(M/gd)−3/2 +
∑

g>(M/d)1/2

g−3/2




� P 19/2+ε
∑

d≤P γ

(
(M/d)−3/2(M/d)5/4 + (M/d)−1/4

)

� P 19/2+εM−1/4
∑

d≤P γ

d1/4 � P
19
2
− 1

4
( 5
4
+β)+ 5

4
γ+ε.

(vi) Finally, let U6 be the number of solutions counted by U3,2(P,R) with (3.5) and d > P γ.
For fixed d, there are at most (P/d)2 choices for h and g and P 2 choices for x. Now, for
given h and x, Theorem 4.4 of Vaughan [13] shows that there are O(P 13/4+ε) choices for u,
and then on recalling (3.4) and Hua [9], Theorem 4, we see that there are O(P 7/2+ε) choices
for v, from which y is determined to O(P ε). Thus we have

U6 � P 43/4+ε
∑

d>P γ

d−2 � P 43/4−γ+ε.

To optimize the results of (v) and (vi), we set

9 +
3

16
− 1

4
β +

5

4
γ = 10 +

3

4
− γ,
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which gives γ = 25
36

+ 1
9
β. Now on recalling (iv), we choose β so that

10 + β =
43

4
− 25

36
− 1

9
β,

which gives β = 1
20

. Hence U3,2(P,R) � P 10+ 1
20 , and the lemma follows on recalling (3.1).

Before proceeding, we record an easy consequence of Lemma 3.1.

Lemma 3.2. One has

S2,2(P,R) � P 9+ 1
40

+ε.

Proof. By Theorem 2, we have ∫
T4
|F (α)|6dα � P 6.

Thus by applying the Cauchy-Schwarz inequality and Lemma 3.1 we obtain

S2,2(P,R) �
(∫

T4
|F (α)|6dα

)1/2 (∫
T4
|F (α)|2|f(α)|8dα

)1/2

� P 9+ 1
40

+ε

on considering the underlying Diophantine equations.

We now proceed to estimate some higher moments.

Lemma 3.3. One has

S4,2(P,R) � P 15+ 1
3
+ε.

Proof. By Cauchy’s inequality, we have S4,2(P,R) � P 2U4,2(P,R), and the estimation of
U4,2(P,R) proceeds almost exactly as in the proof of Lemma 3.1. The only modifications are
that we use Lemma 3.2 in place of Theorem 2 in the analysis of case (i) and we replace the
6th moment estimates of P 13/4+ε and P 7/2+ε by Hua’s 8th moment estimate of P 5+ε. Taking
M = P 4/3 and γ = 2/3 produces identical bounds for the final three cases and hence gives
an optimal result.

We remark that the argument of the preceding proof in fact shows that one may replace
S4,2(P,R) by S2,4(P,R) in the statement of Lemma 3.3. Further, we note that tiny improve-
ments in the exponents of Lemmata 3.1 and 3.2 may be achieved by using the results of
Wooley [17], [20] in place of Vaughan [13], but such improvements do not have significant
consequences in the present application.

For higher moments, we apply the (single) efficient differencing procedure of [10]. Although
our methods always allow us to take a few variables ranging over a complete interval, we
will often simplify by stating results for mean values in which all the variables are smooth.
Thus we adopt the notation of writing Ss(P,R) for Ss,0(P,R). Further, we say that ∆s is
an admissible exponent if one has Ss(P,R) � P λs+ε, where λs = 4s− 12 + ∆s, and in this
situation we call λs a permissible exponent. To this point we have obtained the admissible
exponents

∆3 = 6, ∆4 = 5 1
40
, ∆5 = 4 1

20
, and ∆6 = 31

3
. (3.6)
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The above method of generating admissible exponents becomes noticeably less effective
when s > 6, since the maximum savings of P 3 in estimating the number of solutions of

u3
1 + · · ·+ u3

t = u3
t+1 + · · ·+ u3

2t

is already achieved when t = 4. Since the results of [10] are directly applicable only for
s ≥ 11, we will need the following lemma to work out admissible exponents when s lies in
the intermediate range.

Lemma 3.4. One has

Ss+2(P,R) � P 5Ss(P,R) + P 19/6+εSs−1,2(P,R) + P
2
3
s+6+εSs(P

5/6, R).

Proof. This follows on using [10], Lemma 3.2, in the initial stages of the argument of [10],
Lemma 5.1.

We now apply Lemma 3.4 repeatedly to obtain admissible exponents ∆s for 7 ≤ s ≤ 12.
First of all, by using Lemma 3.3 and making a trivial estimate, we see that

S5,2(P,R) � P 19+ 1
3
+ε,

and using this together with Lemma 3.3 in Lemma 3.4 gives

S8(P,R) � P 22+ 7
9
+ε. (3.7)

Now using the Cauchy-Schwarz inequality to interpolate between S4,2 and S8, we obtain

S7(P,R) � (S4,2(P,R))1/2(S8(P,R))1/2 � P 19+ 1
18

+ε. (3.8)

Putting (3.7) and (3.8) into Lemma 3.4 now yields

S9(P,R) � P 26+ 59
108

+ε and S10(P,R) � P 30+ 17
54

+ε,

on recalling Lemma 3.3 and noting the trivial inequality

St,2(P,R) ≤ P 8St(P,R).

Continuing the iteration, we find that

S11(P,R) � P 34+ 79
648

+ε and S12(P,R) � P 37+ 301
324

+ε,

and thus we have the admissible exponents

∆7 = 3 1
18
, ∆8 = 27

9
, ∆9 = 2 59

108
,

∆10 = 217
54
, ∆11 = 2 79

648
, ∆12 = 625

324
.

(3.9)

Further admissible exponents can now be read off from Lemma 5.1 of [10]. Namely, if s ≥ 11
and ∆s is admissible then the exponent

∆s+2t = ∆s(5/6)t (3.10)

is also admissible.
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4. Weyl Differencing

Here we obtain estimates for the modulus of the exponential sum F (α) when at least one
of the αj is badly approximated by rationals. In [10], estimates of this type were obtained
for f(α) by using the large sieve to relate the modulus of the sum to known mean values.
This treatment allowed us to obtain bounds of the form P 2−σ(k)+ε, where σ(k)−1 � k3 log k,
and for large k this is substantially better than the exponential decay that results from
Weyl differencing. For k = 3, however, we are much better off applying a two-fold Weyl
differencing procedure. For purposes of application, it is useful to consider the slightly more
general exponential sum

F (α;P,Q) =
∑

1≤x≤P

∑
1≤y≤Q

e(α0x
3 + α1x

2y + α2xy
2 + α3y

3).

Lemma 4.1. Suppose that Q � P and that for some j we have qj ∈ N and aj ∈ Z with

(qj, aj) = 1 and |qjαj − aj | ≤ q−1
j . (4.1)

Then one has

|F (α;P,Q)| � P 2+ε(q−1
j + P−1 + qjP

−3)1/4.

Proof. First suppose that (4.1) holds with j = 0. Then by Weyl’s inequality (see for instance
Lemma 2.4 of Vaughan [14]) one has

|F (α;P,Q)| ≤ ∑
y≤Q

∣∣∣∣∣∣
∑
x≤P

e(α0x
3 + α1x

2y + α2xy
2)

∣∣∣∣∣∣
� QP 1+ε(q−1

0 + P−1 + q0P
−3)1/4,

and the result follows. Note that if instead (4.1) holds with j = 3, then we obtain the same
conclusion simply by interchanging the roles of x and y in the above argument.

Now suppose that (4.1) holds with j = 1. Then by Cauchy’s inequality we have

|F (α)|2 ≤ Q
∑
y≤Q

∣∣∣∣∣∣
∑
x≤P

e(α0x
3 + α1x

2y + α2xy
2)

∣∣∣∣∣∣
2

� P
∑
y≤Q


P +

∑
x,h

e(α0(3x
2h+ 3xh2 + h3) + α1y(2xh+ h2) + α2y

2h)




� P 3 + P
∑
y≤Q

∑
x,h

e(α0(3x
2h+ 3xh2 + h3) + α1y(2xh+ h2) + α2y

2h),

where the second sum is over x and h 6= 0 with 1 ≤ x ≤ P and 1 − x ≤ h ≤ P − x, and
where we have abbreviated F (α;P,Q) by F (α). Then on using Cauchy’s inequality again
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we obtain

|F (α)|4 � P 6 + P 4
∑
x,h

∣∣∣∣∣∣
∑
y≤Q

e(α0(3x
2h+ 3xh2 + h3) + α1y(2xh+ h2) + α2y

2h)

∣∣∣∣∣∣
2

� P 6 + P 4
∑
x,h

(
P +

∑
y,g

e(α1g(2xh+ h2) + α2h(2yg + g2))

)

� P 7 + P 4
∑

x,h,y,g

e(α1g(2xh+ h2) + α2h(2yg + g2))

� P 7 + P 4
∑

1≤|h|,|g|≤P

∑
y∈I(Q,g)

∣∣∣∣∣∣
∑

x∈I(P,h)

e(2α1ghx)

∣∣∣∣∣∣ ,
where I(P, h) = [1, P ]∩ [1−h, P −h]. Thus on summing the geometric progression, recalling
a standard divisor function estimate, and using Lemma 2.2 of [14], we find that

|F (α;P,Q)|4 � P 7 +QP 4
∑

1≤|h|,|g|≤P

min(P, ||2α1gh||−1)

� P 7 +QP 4+ε
∑

n≤2P 2

min(P, ||α1n||−1)

� P 7 +QP 7+ε(q−1
1 + P−1 + q1P

−3),

whence

|F (α;P,Q)| � P 2+ε(q−1
1 + P−1 + q1P

−3)1/4.

Again, the same conclusion follows when (4.1) holds with j = 2 by repeating the argument
with the roles of x and y reversed.

Next we record a consequence of the above lemma, which will be useful in our application
of the circle method.

Lemma 4.2. Let α0, . . . , α3 be real numbers with the property that whenever there exist
q ∈ N and a0, . . . , a3 ∈ Z with (q, a0, . . . , a3) = 1 and |qαj − aj| ≤ P δ−3 one has q > P δ.
Then whenever Q � P one has

|F (α;P,Q)| � P 2−δ/16+ε.

Proof. Let α0, . . . , α3 be as in the statement of the lemma, and write ν = δ/4. For each
j, Dirichlet’s Theorem allows us to find qj ∈ N and bj ∈ Z with (qj , bj) = 1 such that
|qjαj − bj | ≤ P ν−3 and qj ≤ P 3−ν . If qj > P ν for some j, then the conclusion follows from
Lemma 4.1. Otherwise, put q = [q0, . . . , q3] and aj = bjq/qj. Then we have (q, a0, . . . , a3) = 1
and q ≤ qjP

3ν ≤ P δ for each j and hence

|αj − aj/q| ≤ q−1
j P ν−3 ≤ q−1P δ−3 (0 ≤ j ≤ 3),

contradicting the hypothesis of the lemma.

5. The Circle Method

Now we are in a position to prove Theorem 1 by applying the circle method along the
lines of [10], §10. The following lemma provides us with non-singular local solutions to (1.1).
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Lemma 5.1. If s ≥ 14 and c1, . . . , cs are non-zero integers, then the system (1.1) has a
non-singular real solution and a non-singular p-adic solution for all primes p.

Proof. After setting

y1 = · · · = y7 = 0, x8 = · · · = x14 = 0, and xi = yi = 0 (i > 14),

the system (1.1) reduces to

c1x
3
1 + · · ·+ c7x

3
7 = 0 and c8y

3
8 + · · ·+ c14y

3
14 = 0.

By a well-known result of Baker [2], each of these equations has a non-trivial integral solution;
suppose that x and y are solutions with xI and yJ non-zero. Then on writing

ψj(x,y) = c1x
3−j
1 yj

1 + · · ·+ csx
3−j
s yj

s (0 ≤ j ≤ 3),

we have

det

(
∂ψj

∂xI
,
∂ψj

∂yI
,
∂ψj

∂xJ
,
∂ψj

∂yJ

)
0≤j≤3

= (3cIcJ)2x4
Iy

4
J 6= 0.

Thus (x,y) is a non-singular integer solution of (1.1), so it is non-singular in each local field
as well.

By Lemma 5.1 and [10], Lemma 10.2, we may assume that the system (1.1) has a non-
singular real solution (η, ξ) with 0 < |ηi|, |ξi| < 1

2
for i = 1, . . . , s. For each i, we write

η+
i = ηi + 1

2
|ηi| and η−i = ηi − 1

2
|ηi|

and

ξ+
i = ξi + 1

2
|ξi| and ξ−i = ξi − 1

2
|ξi|.

Now let P be a large positive number, put R = P η with η ≤ η0(ε), and let c1, . . . , cs be
non-zero integers. Throughout this section, the implicit constants arising in our analysis
may depend on c1, . . . , cs and on the real solution (η, ξ). We define the exponential sums

Fi(α) =
∑

η−i P<x≤η+
i P

∑
ξ−i P<y≤ξ+

i P

e(ci(α0x
3 + α1x

2y + α2xy
2 + α3y

3))

and

fi(α) =
∑

η−i P<x≤η+
i P

|x|∈A(P,R)

∑
ξ−i P<y≤ξ+

i P
|y|∈A(P,R)

e(ci(α0x
3 + α1x

2y + α2xy
2 + α3y

3)).

Further, write s = t+ 2u+ v and define

F(α) =
t∏

i=1

Fi(α) and G(α) =
s∏

i=t+1

fi(α).

Finally, let

Rs(P ) =
∫
T4
F(α)G(α) dα,

and observe that Rs(P ) is a lower bound for the number of integral solutions of (1.1) lying
in the box [−P, P ]2s.
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We dissect T
4 into major and minor arcs as follows. Write c = max |ci|, let δ ∈ (0, 1) be a

parameter at our disposal, define

M =
⋃

1≤a0,...,a3≤q≤cP δ

(q,a0,...,a3)=1

M(q, a),

where

M(q, a) = {α ∈ T
4 : |qαi − ai| ≤ P δ−3 (0 ≤ i ≤ 3)},

and put m = T
4 \M. It is easily seen that the M(q, a) are disjoint whenever P is sufficiently

large and δ < 1.
We further define the pruned major arcs by

N =
⋃

1≤a0,...,a3≤q≤W
(q,a0,...,a3)=1

N(q, a),

where W < cP δ is a parameter at our disposal and

N(q, a) = {α ∈ T
4 : |αi − ai/q| ≤WP−3 (0 ≤ i ≤ 3)}.

The following pruning lemma is reminiscent of [16], Lemma 9.2.

Lemma 5.2. If t ≥ 16 and ∆u < (1− δ)t is an admissible exponent, then one has∫
M\N

|Fi(α)|t|fj(α)|2udα �W−σP 2t+4u−12

for some σ > 0.

Proof. When α ∈ M(q, a), we have by a simple modification of [10], Lemma 8.1, that

Fi(α) = Vi(α) +O(P 1+δ),

where

Vi(α) = q−2Si(q, a)vi(α− a/q),

Si(q, a) =
∑

1≤x,y≤q

e

(
ci(a0x

3 + a1x
2y + a2xy

2 + a3y
3)

q

)
,

and

vi(β) =
∫ η+

i P

η−i P

∫ ξ+
i P

ξ−i P
e(ci(β0γ

3 + β1γ
2ν + β2γν

2 + β3ν
3)) dγ dν.

Then whenever M⊂ M, we have∫
M
|Fi(α)|t|fj(α)|2udα � P 4u

∫
M
|Vi(α)|tdα + P t(1+δ)

∫
T4
|fj(α)|2udα.

On using the estimates

Si(q, a) � q2−1/3+ε

and

vi(β) � P 2
3∏

i=0

(1 + P 3|βi|)−1/12,
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(see for example [1]), we find that whenever t ≥ 16 one has∫
M\N

|Vi(α)|tdα � P 2t−12W−1/3.

Moreover, it is clear by considering the underlying Diophantine equations that all the mean
value estimates from Section 3 hold with f(α) replaced by fj(α), so we have∫

T4
|fj(α)|2udα � P 4u−12+∆u+ε � P 4u−12+t(1−δ)−γ

for some γ > 0, and the lemma follows.

We are now ready to derive the lower bound for Rs(P ). If α ∈ m, then by the argument
of [10], Lemma 10.3, one sees that the hypotheses of Lemma 4.2 hold with α replaced by
ciα and hence

sup
�∈m

|Fi(α)| � P 2−δ/16+ε.

Thus by Hölder’s inequality we have∫
m

|F(α)G(α)| dα � P 2t+2v− tδ
16

+ε
t+2u∏
i=t+1

(∫
T4
|fi(α)|2udα

)1/2u

� P 2s−12+∆u− tδ
16

+ε � P 2s−12−τ

for some τ > 0, provided that

tδ > 16∆u. (5.1)

In view of the condition in Lemma 5.2, the optimal choice for δ satisfies 1 − δ = δ
16

, so we
take δ = 16/17. Now on recalling (3.9) and (3.10) we see that the exponent

∆16 =
625

324

(
5

6

)2
<

23

17

is admissible, and it transpires that choosing t = 23 and u = 16 minimizes the quantity
t+ 2u subject to (5.1). Thus on taking v ≥ 2, we have a total of s ≥ 57 variables.

It now suffices to deal with the major arcs. By applying Lemma 5.2 and making a trivial
estimate, we have for some i and j that∫

M\N
|F(α)G(α)| dα � P 2v

∫
M\N

|Fi(α)|23|fj(α)|32dα � P 2s−12W−σ,

and so it suffices to deal with the pruned major arc N. But it follows immediately from the
analysis of [10], §10 that ∫

N

F(α)G(α) dα � P 2s−12,

provided that W is taken to be a suitably small power of logP .
Finally, we need to relate Rs(P ) to Ls(P ) by accounting for the possibility that distinct

solutions of (1.1) correspond to different parameterizations of the same line. By the argument
of [10], Lemma 10.12, we have

Rs(P, d) � P 2v

dv

∫
T4
|F(α)|

(
55∏

i=24

|fi(α)|
)
dα � P 2s−12

d2
,
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where Rs(P, d) denotes the number of solutions counted by Rs(P ) for which (x1, . . . , xs) = d.
Thus on following through the corresponding argument in [10], we find that Ls(P ) � P 2s−12,
and this completes the proof of Theorem 1.

As mentioned in the introduction, essentially the same analysis may be applied to establish
a result on the two-dimensional version of Waring’s problem discussed in [10]. In that
argument, we may clearly take v = 0, and it follows immediately that G∗

1(3) ≤ 55.
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