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1. Introduction

The investigation of systems of additive diophantine equations has long
been a favorite application of the Hardy-Littlewood method, and such in-
vestigations have played a large role in motivating various refinements of
the method (see for example [5], [9], [10], [12]–[15], and [27]). For years,
however, virtually all the attention was focused on systems in which the
equations are all of the same degree. This pattern was finally broken in
the early 1990s with the work of Wooley [35]–[37] on systems consisting of
one cubic and one quadratic equation. Owing to this breakthrough and its
subsequent refinements (see Wooley [40], [41]), the technology now exists to
allow further study of simultaneous equations of differing degree. It is non-
trivial, however, to obtain results that are close to optimal in the sense that
they exploit the vast modern machinery of the circle method to its fullest
extent, and this may partially explain why systems of higher degree (and
systems consisting of more than two equations) have not yet been considered
in detail.

The purpose of this paper is to obtain a collection of explicit results
concerning pairs of equations of differing degree and, in doing so, to provide
an array of estimates and a computational model for handling further cases.
To be more specific, let k and n be integers with k ≥ n ≥ 1, and let
c1, . . . , cs and d1, . . . , ds be integers. We consider the problem of determining
conditions under which the system of equations

(1.1)
c1x

k
1 + · · ·+ csx

k
s = 0

d1x
n
1 + · · ·+ dsx

n
s = 0

possesses a non-trivial integral solution. One obvious requirement is that
the system have a non-trivial real solution and a non-trivial p-adic solution
for every prime p. In fact, the success of the Hardy-Littlewood method
depends explicitly upon good information concerning the density of such
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solutions, and hence one must typically demonstrate the existence of non-
singular solutions in each local field. Unfortunately, the local solubility
problem for (1.1) tends to be quite hard. When p > k4n2, Wooley [35] has
shown that there exist non-trivial p-adic solutions to (1.1), provided only
that s > 2(k+n), and this latter bound is further shown to be best possible
for infinitely many primes p whenever n > 1. The number of variables
required for smaller primes in the recent work of Knapp [20], however, is
often significantly larger than what would be required to handle the minor
arcs in an application of the circle method. Moreover, it is generally difficult
to guarantee that the solutions produced by the p-normalization methods
of [20] and [35] are non-singular. When k − n = 1, a non-trivial singular
solution satisfies linear relations that enable one to construct a non-trivial
rational solution (see equation (6.9) of Wooley [37]), but this procedure
would appear to have no obvious analogue when k − n > 1. We therefore
focus our attention on determining how large s must be in order to establish
a local-global principle for (1.1).

Write Γ∗(k, n) for the least integer r such that, whenever s ≥ r, the system
(1.1) has a non-trivial p-adic solution for each prime p. In this notation,
it follows from our earlier remarks that Γ∗(k, n) ≥ 2(k + n) + 1 whenever
n > 1. When considering global solubility, we mostly confine our attention
to systems in which each of the variables x1, . . . , xs appears explicitly in
both equations. When k > n, we call the system (1.1) regular if for each i
one has cidi 6= 0. When k = n, it is instead convenient to call the system
regular if one has cidj 6= cjdi whenever i 6= j. Note that, for a given s,
almost all systems (1.1) are regular, in the sense of natural density in Z2s.
Define G∗(k, n) to be the least integer r such that, whenever s ≥ r, every
regular system (1.1) having a non-singular real solution and a non-singular
p-adic solution for all primes p has a non-trivial integral solution.

As mentioned above, the situation in which k = n has attracted interest
for quite some time, beginning with work of Davenport and Lewis [14] on
pairs of cubics in 18 variables. Cook [12] showed that G∗(2, 2) ≤ 9, while
the bound of Davenport and Lewis for G∗(3, 3) has been steadily reduced
over the years by work of Cook [13], Vaughan [27], Baker and Brüdern [5],
and finally Brüdern [9], who obtained G∗(3, 3) ≤ 14 in a massive display
of technical prowess. An obstruction to local solubility is already apparent
here, as Davenport and Lewis [14] show that there are pairs of cubics in 15
variables possessing no non-trivial 7-adic solution. In attempting to bound
G∗(k, k), one is essentially able to consider Weyl sums over kth powers,
for which good mean value estimates are available from the extensive work
of Vaughan and Wooley [32], [34] on Waring’s problem. As a result, one
typically expects bounds for G∗(k, k) that are about twice the size of the
corresponding bound for G(k) in Waring’s problem, except in cases where
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G(k) is hugely inflated by a local obstruction (for example, when k = 4).
While it is often challenging to establish the bound with exactly twice as
many variables as used in Waring’s problem (see [9] and [24]), the inclusion of
just one additional variable usually reduces the problem to a straightforward
exercise.

In order to handle pairs of equations of differing degree, one requires a
distinctly two-dimensional approach involving exponential sums over poly-
nomials of the shape αxk + βxn, for which sharp mean value estimates are
less readily available. This situation was first tackled by Wooley [37], who
developed a version of Vaughan’s iterative method [29] suitable for generat-
ing such estimates. This work initially produced the bound G∗(3, 2) ≤ 14,
which was later improved to G∗(3, 2) ≤ 13 (see [41]) using the refinements of
[40]. In fact, Wooley [36] was able to show additionally that Γ∗(3, 2) = 11,
so in this case the existence of integral solutions to (1.1) when s ≥ 13 is
subject only to a real solubility hypothesis.

It is a straightforward exercise to generate bounds for other pairs of expo-
nents by using the general method of Wooley [40]. In particular, one should
be able to demonstrate with little difficulty that G∗(k, n) ≤ (2+o(1))k log k,
for large k ≥ n. This would compare essentially as expected with the re-
sults of [10] and [38], although with more work one may be able to obtain
asymptotics that take into account the size of n relative to k. As in the cur-
rent treatment of Waring’s problem (see Vaughan and Wooley [32], [34]),
there are various refinements that may be attempted in order to obtain good
results for smaller exponents. As the amount of available technology associ-
ated with the Hardy-Littlewood method is nowadays quite substantial, one
has many options for carrying out such refinements, and it is a non-trivial
task to determine the optimal strategy in each case. The primary goal of
this paper is to develop and implement a collection of strategies leading to
bounds for G∗(k, n) that are essentially the best attainable within the cur-
rent scope of the circle method. Moreover, the exponential sum estimates
obtained here may be applied to related problems. For example, one can
deal with pairs of diophantine inequalities, in which one seeks to demon-
strate that two forms with real coefficients take arbitrarily small values
simultaneously at integral points. This problem has already been investi-
gated by the author [22], [23] in the case of a cubic and quadratic form, and
we intend to return to this application in a later paper. For now, we are
content to record our bounds for G∗(k, n), together with those previously
known, in the following theorem.

Theorem 1.1. One has G∗(k, n) ≤ F (k, n), where F (k, n) is given by the
entry in row k and column n of the following table.
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1 2 3 4 5 6 7

3 10 13 14
4 17 20 24 24
5 30 31 32 36 34
6 49 50 49 47 50 49
7 66 72 70 65 64 66 67

We remark that the value of G∗(2, 1) is a matter of convention, since the
Hasse principle for quadratic forms applies immediately when the second
equation in (1.1) is substituted into the first. As previously indicated, the
bound for G∗(3, 2) is due to Wooley [41], and the bound for G∗(3, 3) is due
to Brüdern [9]. The conclusion that G∗(5, 5) ≤ 34 was recently established
by Parsell and Wooley [24]. Finally, the bounds quoted for G∗(k, k) in the
cases k = 4, 6, 7 can be obtained by relatively routine arguments based on
the estimates of Vaughan [29] and Vaughan and Wooley [32], [34]; we leave
the details to the reader. It is possible that an application of the p-adic
iteration method of [24] may yield a one-variable reduction in the latter
three bounds but there are non-trivial issues to be addressed in carrying
this out. Since we are primarily concerned here with technology applying
to equations of differing degree, we do not pursue such refinements.

It is worth mentioning that the arguments used to establish Theorem
1.1 yield quantitative information in most cases, namely that the number
of solutions of (1.1) lying in the box [−P, P ]s is of order P s−k−n. In the
cases (k, n) = (3, 3) and (5, 5), the lower bound is reduced somewhat by
the use of prime variables, whereas the ad-hoc methods applied in the cases
(k, n) = (3, 1) and (7, 1) yield at best substantially weaker estimates. We
note, however, that the expected density results can always be recovered by
increasing the number of variables; in the latter two cases, it would suffice
to use 11 and 75 variables, respectively.

The regularity condition on the system (1.1) can be relaxed somewhat
(see for example [10], [24] for the case k = n), although a general result
allowing for zero coefficients (or repeated coefficient ratios when k = n)
can be rather awkward to state. The theorem below, analogous to those
of Wooley [37], [41], gives an indication of the type of result that may be
obtained for forms of differing degree.

Theorem 1.2. Suppose that k = 5 and n = 3. Then the simultaneous
equations (1.1) have infinitely many solutions in rational integers provided
that

(a) the cubic equation has at least 7 variables explicit,
(b) the quintic equation has at least 17 variables explicit,
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(c) the simultaneous equations (1.1) have a non-singular real solution
and a non-singular p-adic solution for every prime p, and

(d) either
(i) s ≥ 32, or
(ii) at least 16 of the di are zero, or
(iii) at least 6 of the ci are zero.

While Theorem 1.2 applies only to the case k = 5 and n = 3, there is in
principle no difficulty in proving similar results for other pairs of degrees,
although the cases where both forms are of odd degree are certainly the
simplest to handle. The particular numbers of zero coefficients allowed
or required in the various conditions depend upon the number of variables
required to ensure the solubility of single additive equations of degrees k and
n. Further, these conditions must be balanced against the total number of
variables required in (d)(i), since zero coefficients introduce common factors
on the major arcs that may hinder the convergence of the singular series
for smaller values of s. On the other hand, the conditions in Theorem
1.2 are somewhat redundant; for example, if condition (d)(i) holds, then
conditions (a) and (b) are superfluous, and hence the regularity condition
can be removed completely in this case. Finally, the hypotheses of the
theorem can be altered to produce quantitative results if desired. In the
situation of Theorem 1.2, for example, one obtains the expected density of
solutions by replacing the numbers 7 and 17 in conditions (a) and (b) by
s−15 and s−5, respectively, and deleting options (ii) and (iii) of condition
(d). We leave it to the reader to formulate similar theorems in other cases
of interest.

We begin by establishing our fundamental efficient differencing procedure
in §2. Some special cases involving linear forms are disposed of in §3, af-
ter which we develop our collection of end-game procedures in §§4-5. The
optimal strategies and resulting mean value estimates are then recorded in
§6, and the proof of Theorem 1.1 is then accessible by an essentially routine
application of the circle method, which we describe in §7. Finally, in §8, we
sketch the modifications required to establish results such as Theorem 1.2,
in which one allows for the presence of zero coefficients.

Throughout, the letters ε and η denote sufficiently small positive numbers.
We take P to be a large real number depending at most on s, k, n, ε, η,
and the coefficients ci and di. The implicit constants in Vinogradov’s and
Landau’s notation depend at most on this same list of parameters, unless
otherwise indicated. As usual, we write e(z) for e2πiz, and we make frequent
use of vector notation, writing for example x = (x1, . . . , xs). We also write
T2 for the unit square [0, 1]2.
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In order to simplify our exposition, we adopt the following convention
concerning the parameters ε and R. Whenever ε or R appears in a state-
ment, either implicitly or explicitly, then we assert that for each ε > 0,
there exists a positive number η0 = η0(ε, s, k, n) such that the statement
holds whenever R = P η with 0 < η ≤ η0. The values of ε and η0 may there-
fore change from statement to statement, and hence also the dependence of
implicit constants on ε and η. Since our iterative methods will involve only
a finite number of statements, there is no danger of losing control of the
implicit constants. Finally, we use the symbol ≈ to indicate that constants
and powers of R and P ε are to be ignored.

The author is extremely grateful to Professor Wooley for many helpful
discussions concerning the methods employed in this paper and, in partic-
ular, for supplying an unpublished manuscript containing estimates of the
type considered in Lemma 5.2.

2. Repeated Efficient Differencing

In this section, we describe the efficient differencing process that will be
used to generate our mean value estimates. The essential analysis here is due
to Wooley [40], so our main task is to write down the estimates of that paper,
specialized to the case of two equations, in a form suitable for describing
our iterative schemes. For convenience, we make use of symmetric difference
polynomials, and this requires a slight modification in the analysis of [40],
along the lines of Vaughan and Wooley [32], [34].

Let j ≤ k be a positive integer, and let K1, . . . , Kj be integers satisfying
n ≤ Ki ≤ k and 1/K1 + · · · + 1/Kj ≤ 1. We write Kj for the vector
(K1, . . . , Kj) and define the efficient differencing operator ∆∗j,K recursively
as follows. For any integer K, let

∆∗1,K(f(x); h; m) = (f(x + hmK)− f(x)),

and then define

∆∗j+1,Kj+1
(f(x); h1, . . . , hj+1; m1, . . . , mj+1)

= ∆∗1,Kj+1
(∆∗j,Kj

(f(x); h1, . . . , hj; m1, . . . , mj); hj+1; mj+1),

with the convention that ∆∗0,K(f(x); h; m) = f(x). Now, when 0 ≤ j ≤ k,
write

ψi,j(z; h1, . . . , hj ; m1, . . . , mj) = ∆∗j,Kj
(f(z), 2h1, . . . , 2hj; m1, . . . , mj),

where f(z) = (z − h1m
K1
1 − · · · − hjm

Kj

j )i. Let φj = φj(s, k, n, K) be real
numbers satisfying 0 ≤ φj ≤ 1/Kj, and write

Pj = 2jP, Mj = P φj , Hj = PjM
−Kj

j , Qj = Pj(M1 · · ·Mj)
−1.
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We adopt the convention that Q0 = P0 = P and further write

H̃j =

j∏
i=1

Hi and M̃j =

j∏
i=1

MiR.

For given non-zero integers m1, . . . , mj , we also introduce the notation

Di,j(m) =

j∏
l=1

mi
l (i = k, n).

In our applications, it will often be the case that K1 = · · · = Kj = k. In
this situation, the polynomials

(2.1) Ψi,j(z; h; m) =
ψi,j(z; h; m)

Di,j(m)

have integer coefficients for i = k, n and are sometimes more convenient to
work with than the ψi,j . Write α = (αk, αn), and define the exponential
sum

(2.2) Fj(α) =
∑

m1,...,mj

∑
h1,...,hj−1

∣∣∣∣∣∑
hj

Gj(α; h; m)

∣∣∣∣∣
2

,

where

(2.3) Gj(α; h; m) =
∑

z

e(αkΨk,j(z; h; m) + αnΨn,j(z; h; m)),

and where the summations range over

(2.4) Mi < mi ≤MiR, 1 ≤ hi ≤ 2j−1−iHi, and 1 ≤ z ≤ Pj .

Further, let

A(P, R) = {n ∈ [1, P ] ∩ Z : p|n⇒ p ≤ R}
denote the set of R-smooth numbers of size at most P , define

(2.5) f(α) = f(α; P, R) =
∑

x∈A(P,R)

e(αkx
k + αnxn),

and write fj(α) = f(α; Qj, R). We say that λs is a permissible exponent if
one has the estimate

(2.6)

∫
T2

|f(α)|2s dα� P λs+ε,

where the roles of ε and R are as indicated at the end of §1.
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We need to consider some auxiliary exponential sums in order to handle
the more general situation in which the coefficients of Ψi,j are not integral.
First of all, write

f̃j(α; m) =
∑

x∈A(Qj ,R)

e(αkDk,j(m)xk + αnDn,j(m)xn).

Next, write

G̃j(α; h; m) =
∑

z

e(αkψk,j(z; h; m) + αnψn,j(z; h; m)),

and define

(2.7) F̃j(α; m) =


∑

h1,...,hj−1

∣∣∣∣∣∑
hj

G̃j(α; h; m)

∣∣∣∣∣
2

if 1 ≤ j ≤ n,∑
h1,...,hj

G̃j(α; h; m) if n < j ≤ k.

Finally, put

F (s)
j (α) =

∑
m1,...,mj

F̃j(α; m)|f̃j(α; m)|2s.

Here the variables m, h, and z in the summations range over the intervals
(2.4).

For brevity, we write rj = 2 when 0 ≤ j < n and rj = 1 when n ≤ j < k,
and we also set ωj = Kj − n for 1 ≤ j ≤ n and ωj = 0 for n < j ≤
k. The following two estimates, based on the method of Wooley [40], are
fundamental to our efficient differencing process.

Lemma 2.1. Suppose that λs is a permissible exponent. Then one has∫
T2

F0(α)2|f0(α)|2s dα� P εM2s+ω1−1
1

(
P 2M1Q

λs
1 +

∫
T2

F (s)
1 (α) dα

)
.

Proof. This essentially follows from Lemma 5.1 of Wooley [40], except that
here we are using symmetric difference polynomials. The argument of [40],
Lemma 4.1, applies without any changes, so we are able to conclude that∫

T2

F0(α)2|f0(α)|2s dα� P εM2s+ω1−1
1 T (P, Q1, R),

where T (P, Q1, R) is the number of solutions of the system

(2.8) zi
1 + zi

2 − wi
1 − wi

2 = mi
s∑

l=1

(ui
l − vi

l) (i = k, n),

with the variables satisfying

(2.9) ul, vl ∈ A(1
2
Q1, R), M1 < m ≤M1R,
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1 ≤ zl, wl ≤ P and zl ≡ wl (mod mK1).

We may now write
T (P, Q1, R) = U0 + U1,

where U0 denotes the number of solutions of (2.8) with z1 = w1 or z2 =
w2 and U1 denotes the number of solutions with z1 6= w1 and z2 6= w2.
Then by applying the Cauchy-Schwarz inequality to the underlying integral
of exponential sums as in the proof of [40], Lemma 4.2, we find that if
T (P, Q1, R)� U0 then

U0 � P 2+εM1Q
λs
1 .

For a non-diagonal solution counted by U1, we can write

z1 = w1 + h1m
K1 and z2 = w2 + h2m

K1

for some integers h1 and h2 satisfying

1 ≤ |hl| ≤ 1
2
H1 (l = 1, 2).

Now on writing xl = zl + wl for l = 1, 2, we find that

xl + hlm
K1 = 2zl and xl − hlm

K1 = 2wl,

so it follows that U1 is bounded above by the number of solutions of the
system

η1ψi,1(x1; h1; m) + η2ψi,1(x2; h2; m) = mi
s∑

l=1

2i(ui
l − vi

l) (i = k, n)

with η1, η2 ∈ {±1}, 1 ≤ xl ≤ 2P , and 1 ≤ hl ≤ 1
2
H1, and with the remaining

variables as in (2.9). On considering the underlying diophantine equations,
it follows that

U1 �
∑

M1<m≤M1R

∫
T2

F̃1(α; m)|f̃1(α; m)|2s dα,

and this completes the proof of the lemma. �
Lemma 2.2. Suppose that 1 ≤ j < k and 0 < t < 2s and that λt and λ2s−t

are permissible exponents. Then whenever j 6= n, one has∫
T2

F (s)
j (α) dα� P εHr−1

j

(
Qλt

j H̃jM̃jM
4s−2t+ωj+1−1
j+1 Tj+1

)1/2

,

where r denotes the common value of rj−1 and rj, and where

(2.10) Tj+1 = P rH̃jM̃j+1Q
λ2s−t
j+1 +

∫
T2

F (2s−t)
j+1 (α) dα.

Further, if λs is a permissible exponent, then one has∫
T2

F (s)
n (α) dα� P εHnM2s−1

n+1

(
PH̃nM̃n+1Q

λs
n+1 +

∫
T2

F (s)
n+1(α) dα

)
.
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Proof. First suppose that j 6= n, write r = rj−1 = rj , and suppose that
0 < t < 2s. By two applications of the Cauchy-Schwarz inequalities, we
find that∫
T2

F (s)
j (α) dα ≤

M̃jQ
λt+ε
j

∑
m1,...,mj

∫
T2

|F̃j(α; m)2f̃j(α; m)4s−2t| dα

1/2

,

and two more applications of Cauchy’s inequality yield the estimate

|F̃j(α; m)|2 ≤ H2r−2
j H̃j

∑
h1,...,hj

∣∣G̃j(α; h; m)
∣∣2r

,

where the ranges of m and h are given by (2.4). We therefore conclude that

(2.11)

∫
T2

F (s)
j (α) dα� P εHr−1

j

(
M̃jH̃jQ

λt
j S(P, Qj, R)

)1/2

,

where S(P, Qj, R) is the number of solutions of the system

r∑
l=1

(ψi,j(zl; h; m)− ψi,j(wl; h; m)) = Di,j(m)

2s−t∑
l=1

(ui
l − vi

l) (i = k, n),

with h and m satisfying (2.4), and with

(2.12) 1 ≤ zl, wl ≤ Pj and ul, vl ∈ A(Qj, R).

Now the argument of Wooley [40], Lemma 4.1, applies to give

(2.13) S(P, Qj, R)� P εM
4s−2t+ωj+1−1
j+1 T (P, Qj, R),

where T (P, Qj, R) is the number of solutions of the system

r∑
l=1

(ψi,j(zl; h; m)− ψi,j(wl; h; m))

= Di,j(m)qi
2s−t∑
l=1

(ui
l − vi

l) (i = k, n)

(2.14)

with

(2.15) ul, vl ∈ A(1
2
Qj+1, R) and Mj+1 < q ≤Mj+1R,

with h and m as in (2.4), with z and w as in (2.12), and additionally

zl ≡ wl (mod qKj+1) (1 ≤ l ≤ r).

At this point we follow the argument of Wooley [40], Lemma 4.2, as in the
proof of Lemma 2.1 above. We have

T (P, Qj, R) = U0 + U1,
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where U0 denotes the number of solutions of (2.14) with zl = wl for some
l and U1 denotes the number of solutions with zl 6= wl for each l. If U0

dominates, we find as before that

(2.16) U0 � P r+εH̃jM̃j+1Q
λ2s−t
j+1 .

Now for a solution counted by U1, we can write

zl = wl + glq
Kj+1 with 1 ≤ |gl| ≤ PjM

−Kj+1

j+1 = 1
2
Hj+1.

Since the polynomial ψi,j is homogeneous of degree i in the variables z,
h1, . . . , hj, the change of variable xl = zl + wl shows that U1 is bounded
above by the number of solutions of the system

r∑
l=1

ηlψi,j+1(xl; h, gl; m, q) = Di,j(m)qi
2s−t∑
l=1

2i(ui
l − vi

l) (i = k, n)

with m as in (2.4), with

ηl ∈ {±1}, 1 ≤ xl ≤ 2Pj , 1 ≤ hi ≤ 2j−iHi, 1 ≤ gl ≤ 1
2
Hj+1,

and with the remaining variables as in (2.15). One therefore has

U1 �
∑
m,q

∫
T2

F̃j+1(α; m, q)|f̃j+1(α; m, q)|4s−2t dα,

where the ranges of summation are given by (2.4) and (2.15). The first
part of the lemma now follows on recalling (2.11), (2.13), and (2.16) and
considering the underlying diophantine equations.

Finally, we note that an application of Cauchy’s inequality yields∫
T2

F (s)
n (α) dα� HnS(P, Qn, R),

where S(P, Qn, R) is as above (with r = 1 and s = t), and the second part of
the lemma now follows by applying the argument ensuing from (2.13). �

When Kj = k for each j, we are able to divide through by Di,j(m) in the

underlying equations and hence obtain Lemmas 2.1 and 2.2 with F (s)
j (α)

replaced by Fj(α)|fj(α)|2s. Therefore, as in Vaughan and Wooley [32], [34],
we write the inequalities embodied in these lemmas symbolically as

F 2
0 f 2s

0 −→ F1f
2s
1 and Fjf

2s
j −→ Fj+1f

4s−2t
j+1

↓
f 2t

j

even though the sums Fj and fj do not appear explicitly unless K1 = · · · =
Kj = k.



12 SCOTT T. PARSELL

Suppose we take a total of j differences using Lemmas 2.1 and 2.2. The
values of t (and hence of s) on successive applications of Lemma 2.2 need
not be the same, so we write t1, . . . , tj−1 for the successive choices of t and
put si+1 = 2si − ti for i = 1, . . . , j − 1, with the convention that s1 = s.
In our applications, we will take K1 = · · · = Kj−1 = k and allow only
Kj to vary. This simplifies the computations considerably and represents
no serious loss, since one typically expects that examining the underlying
congruences with a reduced modulus would be useful primarily on the final
difference, when we may be close to a diagonal situation.

We optimize the parameters φ1, . . . , φj by first equating the two terms
of the expression for Tj in (2.10). This yields a linear relation involving
φ1, . . . , φj that depends on how we estimate the integral in the second term;
various possibilities for this “end-game” analysis will be discussed in §§4-5.
Suppose now that 1 ≤ i < j and i 6= n, and that one has imposed constraints
ensuring that

Ti+1 � P ri+εH̃iM̃i+1Q
λsi+1

i+1 .

Then by Lemma 2.2, one has∫
T2

F (si)
i (α) dα� P ri/2+εH̃iH

ri−1
i M̃i

(
M

2si+1+ωi+1

i+1 Q
λti
i Q

λsi+1

i+1

)1/2

,

so on equating the terms in the expression for Ti (or the terms in Lemma
2.1 when i = 1) we obtain the relation

P riH̃i−1M̃iQ
λsi
i ≈ P ri/2H̃iH

ri−1
i M̃i

(
M

2si+1+ωi+1

i+1 Q
λti
i Q

λsi+1

i+1

)1/2

,

which simplifies to

P riQ
2λsi
i ≈ H2ri

i M
2si+1+ωi+1

i+1 Q
λti
i Q

λsi+1

i+1 .

When i = n, we take sn = tn = sn+1, and one then finds from Lemma
2.2 that the above relation optimizes parameters in this case as well. On
recalling that Ki = k for 1 ≤ i < j, we thus obtain the system of equations

(2.17) (φ1 + · · ·+ φi−1)Ei = ri + Ei − φi(2rik + Ei) + φi+1κi+1,

where

(2.18) Ei = λti + λsi+1
− 2λsi (1 ≤ i ≤ j − 1)

and

(2.19) κi = 2si + ωi − λsi (2 ≤ i ≤ j).

The j − 1 equations (2.17), together with the equation arising from the
estimation of the integral in (2.10) on the final difference, allow us to solve
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successively for the optimal values of φ1, . . . , φj. Suppose that this final
equation has the form

(2.20) φj = αj(γj − βj(φ1 + · · ·+ φj−1)),

and define successively, for i = j − 1, . . . , 1,

γi = ri + Ei + κi+1αi+1γi+1,

βi = Ei + κi+1αi+1βi+1,

αi = (2rik + βi)
−1.

Then a simple induction argument using (2.17) shows that

(2.21) φ1 = α1γ1 and φi = αi(γi − βi(φ1 + · · ·+ φi−1)) (2 ≤ i ≤ j).

The possible choices for αj, βj , and γj in (2.20) arising from various end-
game strategies are discussed in §§4-5. Perhaps the simplest such strategy
is to choose φj = 1/Kj, which corresponds to taking

(2.22) αj = K−1
j , βj = 0, and γj = 1

in (2.20). In this case, Hj � 1, so one may employ the trivial estimate

F̃j(α; m)� H̃j−1(HjP )rj−1 � H̃j−1P
rj−1

to deduce that

Tj � P rj−1+εH̃j−1M̃jQ
λsj
j ,

whence (2.21) holds with the values (2.22) inserted in (2.20). In certain
situations, especially when n is small relative to k, this turns out to be
the best we can do. In the next section, we describe some elementary
alternatives to the circle method that are effective in some of these cases.

3. Systems with one form linear

When differencing more than n times, there is only one non-trivial congru-
ence implicit in (2.14), and thus one can no longer impose the non-singularity
condition required to difference four variables effectively. As a result, we are
able to difference only two variables at a time, just as in the one-dimensional
analysis of [32] and [34]. It is therefore difficult to generate estimates of the
quality that might be expected for G∗(k, n) when n is small relative to k,
since a large value of k would ordinarily call for more than n differences
at certain stages of the iteration. As a consequence, we sometimes obtain
better bounds for G∗(k, n) when n is close to k than for G∗(k, 1) or G∗(k, 2).
This is contrary to the expectation that systems of lower total degree should
require fewer variables, but it seems to be a fundamental difficulty associated
with the method.

Occasionally the mean value estimates generated by the methods of the
previous section are so weak that certain ad-hoc approaches to solving the
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system (1.1) yield results superior to those obtainable via the circle method.
This phenomenon is especially evident in the case n = 1, and the purpose
of this section is to describe how the bounds for G∗(k, 1) in Theorem 1.1 are
obtained in the cases k = 3 and k = 7. The arguments given in this sec-
tion were suggested to the author by Professor Wooley, who has graciously
allowed them to be recorded here.

First of all, we establish the bound G∗(3, 1) ≤ 10. By solving the linear
equation in (1.1) for x10 and substituting into the cubic, we obtain the
equation

(3.1) d3
10(c1x

3
1 + · · ·+ c9x

3
9)− c10(d1x1 + · · ·+ d9x9)

3 = 0.

Let C(x) denote the cubic form on the left-hand side of (3.1). In view of our
local solubility hypotheses on (1.1), the form C(x) has a non-trivial zero in
Qp for every prime p, so we can make use of Hooley’s work on nonary cubic
forms.

Lemma 3.1. Let f(x) be a non-singular cubic form in 9 variables with
rational integral coefficients. Then the equation f(x) = 0 has a non-trivial
integral solution if f(x) has a non-trivial zero in every p-adic field Qp.

Proof. This is the main result of Hooley [18]. �
In the case where C(x) is non-singular, Lemma 3.1 ensures that the equa-

tion (3.1) has a non-trivial integral solution. Suppose now that C(x) has a
singular point (γ1, . . . , γ9) 6= 0. By rearranging variables, we may assume
that γ1 6= 0, and then by homogeneity we may further assume that γ1 ∈ Q.
The singularity conditions are

d3
10ciγ

2
i = c10(d1γ1 + · · ·+ d9γ9)

2di (1 ≤ i ≤ 9),

and since γ1 ∈ Q, it follows that (d1γ1 + · · · + d9γ9)
2 ∈ Q. It is now

immediate that each of γ2, . . . , γ9 lies in a quadratic extension of Q, and
hence the equation C(x) = 0 has a non-trivial solution in Q(

√
r1, . . . ,

√
r8)

for some r1, . . . , r8 ∈ Q. The following lemma, due essentially to Lewis [21],
allows us to pull this back to a non-trivial solution in Q.

Lemma 3.2. Let K be a field, and suppose that r1, . . . , rt ∈ K. If a cubic
form f(x) with coefficients in K has a non-trivial zero in K(

√
r1, . . . ,

√
rt),

then it has a non-trivial zero in K.

Proof. We first consider the case t = 1. Let r ∈ K, and suppose that
x = a + b

√
r is a non-trivial zero of f in K(

√
r). Then we may assume

that
√

r /∈ K, that b 6= 0, that f(b) 6= 0, and that a and b are linearly
independent over K, since otherwise f clearly has a non-trivial zero in K. By
following the argument of Lewis [21], Lemma D (in which the result is proved
for r = −1), we then find that raf(b)+bf(a) is a non-trivial zero of f in K.
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The general result is now obtained by applying the t = 1 case successively
with K replaced by the various intermediate field extensions. �

By combining Lemmas 3.1 and 3.2, we see that in any case (3.1) has a non-
trivial rational solution and hence a non-trivial integral solution (x1, . . . , x9).
Upon writing yi = d10xi for 1 ≤ i ≤ 9 and y10 = −(d1x1+· · ·+d9x9), we then
find that (y1, . . . , y10) is a non-trivial integral solution of (1.1). We remark
that a density result can be obtained for systems in 11 or more variables by
the methods of §7. Indeed, the circle method just misses establishing the
expected density with 10 variables, as the exponent λ3 = 6 is permissible
and a Weyl-type inequality saves nearly P 1/4 per variable.

We note here that the argument leading to (3.1) also shows that a quadratic-
linear system of the type (1.1) has a non-trivial integral solution whenever
s ≥ 6, subject only to a real solubility hypothesis. This follows from Meyer’s
theorem that any indefinite quadratic form in five or more variables has a
non-trivial integral zero. However, with the additional assumption of p-
adic solubility, a non-trivial integral solution is guaranteed for any s by the
Hasse-Minkowski theorem (see for example [7], §1.7.1). It is therefore a
matter of convention to assign a value to G∗(2, 1), but we note that s = 3
represents the smallest non-vacuous case.

Finally, in order to bound G∗(7, 1), we make use of the following result
on a single additive equation of degree 7.

Lemma 3.3. If s ≥ 33 and c1, . . . , cs are integers, then the equation

c1x
7
1 + · · ·+ csx

7
s = 0

has a non-trivial integral solution.

Proof. The existence of non-trivial p-adic solutions for each prime p follows
from the work of Dodson [16] whenever s ≥ 22. The lemma then follows
by a relatively straightforward adaptation of the methods of Vaughan and
Wooley [31], [32]. �

We now demonstrate how to solve the system (1.1) when k = 7, n = 1,
and s = 66. By Lemma 3.3, one can find integers x1, . . . , x33, not all zero,
and x34, . . . , x66, not all zero, such that

c1x
7
1 + · · ·+ c33x

7
33 = 0 and c34x

7
34 + · · ·+ c66x

7
66 = 0.

Now write

M = d1x1 + · · ·+ d33x33 and N = d34x34 + · · ·+ d66x66.

If M = N = 0, then x = (x1, . . . , x66) is a non-trivial solution to (1.1), and
otherwise

y = (Nx1, . . . , Nx33,−Mx34, . . . ,−Mx66)
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is a non-trivial solution. We therefore conclude that G∗(7, 1) ≤ 66. In fact,
we have demonstrated unconditional solubility when s ≥ 66 as opposed to
merely establishing a local-global principle, but the above argument fails to
produce the expected density of solutions. One can recover the expected
density, however, by using more variables and applying the circle method
as in §7.

4. Estimates for Auxiliary Systems of Equations

We now begin to examine some more sophisticated methods for estimating
the integral arising in the final application of Lemma 2.2. In this section,
we consider estimates based on mean values of exponential sums closely
related to Fj(α) and on direct analysis of the equations underlying the
aforementioned integral. We first consider the exponential sum

G(T )
j (α) =

∑
m

|F̃j(α; m)|T ,

where F̃j(α; m) is as in (2.7) and where the summation ranges over m1, . . . , mj

satisfying (2.4). The following estimates will be particularly useful in our
iterative process.

Lemma 4.1. Suppose that 1 ≤ j ≤ k − 2, and write r = rj−1. Then one
has ∫

T2

G(2)
j (α) dα� P r+εM̃jH̃

r
j H

r−1
j .

Furthermore, if 1 ≤ j ≤ n− 1, then one has∫
T2

G(3)
j (α) dα� P 3+εM̃jH̃

3
j H

3
j .

Proof. First suppose that j ≤ n, so that rj−1 = 2. By applying Cauchy’s
inequality and then Weyl differencing in (2.7), we find that for any fixed m,

(4.1) F̃j(α; m)� Hj

(
PH̃j + |Θj(α; m)|

)
,

where

Θj(α; m) =
∑

h

∑
u

∑
z∈I(u)

e(αkψ̃k,j(z; h; m; u) + αnψ̃n,j(z; h; m; u)).

Here the summations range over h satisfying (2.4) and 1 ≤ |u| < Pj, and
we have written

ψ̃i,j(z; h; m; u) = ψi,j(z + u; h; m)− ψi,j(z; h; m)

and I(u) = [1− u, Pj − u] ∩ [1, Pj]. Let us further write

J =

∫
T2

F̃j(α; m)2 dα.
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We then have by (4.1) that

J � Hj

(
PH̃j

∫
T2

F̃j(α; m) dα+

∫
T2

|Θj(α; m)|F̃j(α; m) dα

)
.

The integral in the first term on the right is bounded above by the number
of solutions of the underlying equation of higher degree,

(4.2) ψk,j(z; h1, . . . , hj−1, hj ; m) = ψk,j(w; h1, . . . , hj−1, gj; m),

with 1 ≤ z, w ≤ Pj , with h1, . . . , hj as in (2.4), and with 1 ≤ gj ≤ 1
2
Hj .

Moreover, the right hand side of (4.2) is non-zero and is divisible by gj .

Hence, after fixing h1, . . . , hj and z in O(PH̃j) possible ways, we find that
gj is determined to O(P ε) by a divisor estimate, and w is then determined
to O(1) as the root of a non-trivial polynomial. We therefore have∫

T2

F̃j(α; m) dα� P 1+εH̃j,

so by applying the Cauchy-Schwarz inequality we deduce that

(4.3) J � P 2+εH̃2
j Hj + HjSj(m)1/2J 1/2,

where Sj(m) is the number of solutions to the equation

(4.4) ψ̃k,j(z; h; m; u) = ψ̃k,j(w; g; m; v)

with z, w, and h as above, with 1 ≤ gi ≤ 2j−1−iHj, and with 1 ≤ u, v ≤ Pj .
We note that the right hand side of (4.4) is a non-zero multiple of (g1 · · · gj)v.
Since j ≤ k − 2, we find as in the above argument that a fixed choice of h,
u, and z determines g, v, and w to O(P ε), whence

Sj(m)� P 2+εH̃j .

The first estimate of the lemma now follows in the case j ≤ n by dividing
into cases according to the dominant term on the right-hand side of (4.3)
and then summing over m. The case j > n is easily established on recalling
(2.7) and applying the argument surrounding (4.2).

The second estimate of the lemma follows by applying Hölder’s inequality
in (2.7) and invoking the main theorem of Parsell and Wooley [25], concern-
ing nearly-diagonal behavior in symmetric systems of t equations in 2t + 2
variables. �

After differencing j times using Lemmas 2.1 and 2.2, we may apply
Hölder’s inequality to estimate the integral∫

T2

F (sj)
j (α) dα
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in terms of the moments of F̃j and f̃j . Lemma 4.1 provides estimates for

the second and third moments of F̃j , and estimates for higher moments can
be established by similar arguments; however, the estimates obtainable for
higher moments are typically too weak to be useful in light of the various
alternative methods we will develop.

The estimate for the second moment of F̃j is particularly useful. By
applying the Cauchy-Schwarz inequalities, one finds that∫

T2

F (s)
j (α) dα ≤

(∫
T2

G(2)
j (α) dα

)1/2(∫
T2

∑
m

|f̃j(α; m)|4s dα

)1/2

,

where the summation is over m in the range given by (2.4). We denote an
estimate of this form symbolically by

Fjf
2s
j =⇒ (F 2

j )1/2(f 4s
j )1/2.

Assuming that we have preliminary permissible exponents λsj and λ2sj at
our disposal (by applying the simple method described at the end of §2, for
example), we deduce from Lemma 4.1 and a consideration of the underlying
diophantine equations that∫

T2

F (sj)
j (α) dα� P εM̃j(P

rH̃r
j H

r−1
j Q

λ2sj

j )1/2,

where we have written r = rj−1. Thus one optimizes parameters in (2.10)
by taking

P rH̃j−1M̃jQ
λsj
j ≈ M̃j(P

rH̃r
j H

r−1
j Q

λ2sj

j )1/2,

which simplifies to

P rH̃2−r
j−1Q

2λsj
j ≈ H2r−1

j Q
λ2sj

j .

On writing δj = λ2sj − 2λsj , we find that

(4.5) φj((2r − 1)Kj + δj) = 1 + δj + j(r − 2)− (δj + k(r − 2))Σj,

where Σj = φ1 + · · ·+ φj−1, so we take

αj = ((2r − 1)Kj + δj)
−1, βj = δj + k(r − 2), γj = 1 + δj + j(r − 2)

in (2.20). Given parameters s1, . . . , sj, t1, . . . , tj−1, and Kj, we write Aj to
denote the iterative process

F 2
0 f 2s1

0 → F1f
2s1
1 → F2f

2s2
2 → · · · → Fjf

2sj
j ⇒ (F 2

j )1/2(f
4sj
j )1/2

↓ ↓
f 2t1

1 f
2tj−1

j−1

This process will typically be most useful for generating new permissible
exponents towards the beginning of the iteration (i.e., when s is relatively
small).
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Occasionally, it is useful (when j ≤ n − 1) to employ both estimates
of Lemma 4.1, in which case one considers a somewhat smaller (but still

even integral) moment of f̃j . If one uses the 2uth moment of f̃j , with
3sj ≤ 2u ≤ 4sj , then Hölder’s inequality can be applied to interpolate
between the two estimates of Lemma 4.1 and hence to obtain an estimate
for the u/(u− sj)th moment of F̃j . By carrying out the above procedure to
optimize parameters, one finds that

αj = (δj − 3sjKj/u)−1, βj = δj , and γj = 1 + δj − 3sj/u,

where we have written δj = λsj − (sj/u)λu. In this case, we denote the
corresponding iterative process by A′j .

Towards the middle of the iteration, it is often more effective to attempt
a direct analysis of the pair of diophantine equations underlying the inte-
gral in (2.10). The remainder of this section is devoted to describing two
methods for doing this. Unlike the process Aj, these methods have no one-
dimensional analogues.

One such strategy is to difference n or more times, so that the left-hand
side of the equation of lower degree becomes zero on the last application
of Lemma 2.2. This enables one to exploit existing results on sums of nth
powers and then to obtain further savings by realizing several variables as
divisors of a fixed integer. Let S(P, R) denote the number of solutions of
the equation

xn
1 + · · ·+ xn

s = yn
1 + · · ·+ yn

s

with xi, yi ∈ A(P, R). We say that µs = µs(n) is a permissible exponent for
nth powers if one has the estimate S(P, R) � P µs+ε. This differs slightly
from the notation of papers in which odd moments are dealt with non-
trivially (see for example [11] and [39]), wherein our µs would be denoted
by µ2s.

Lemma 4.2. Write $ = 1 when k − n = 1 and $ = 0 otherwise, and let
µs denote a permissible exponent for nth powers. Then one has∫

T2

F (s)
n (α) dα� HnM̃n

(
PH̃nQ

λs+ε
n + P $Qµs+ε

n

)
.

Proof. On recalling (2.1), we have by Cauchy’s inequality that∫
T2

F (s)
n (α) dα� HnV (P, R,φ),
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where V (P, R,φ) denotes the number of solutions of the system

(4.6)

Ψk,n(z1; h; m)−Ψk,n(z2; h; m) =

s∑
i=1

(uk
i − vk

i )

0 =
s∑

i=1

(un
i − vn

i ),

with h, m as in (2.4), 1 ≤ z1, z2 ≤ Pn, and ui, vi ∈ A(Qn, R). We can write

V (P, R,φ) = V0 + V1,

where V0 denotes the number of solutions with z1 = z2 and V1 denotes the
number of solutions with z1 6= z2. Then one clearly has

(4.7) V0 � PH̃nM̃nQλs+ε
n .

To count the non-diagonal solutions, we first observe that

ψk,n(z1; h; m)− ψk,n(z2; h; m) = h1 · · ·hn(z1 − z2)Ξ(z; h; m),

where Ξ is a polynomial of degree k−n− 1 in the variables z1 and z2. Note
also that Ξ is non-zero for all values of z, h, and m under consideration. Our
strategy is to fix u and v first using the second equation in (4.6), and then
fix m arbitrarily. The first equation in (4.6) then determines h, z1−z2, and
Ξ to O(P ε), by a divisor estimate. Finally, when k− n > 1, the polynomial
Ξ depends explicitly on z1 and z2, and it follows that z1 and z2 are now
determined to O(1). If k − n = 1, then we have an extra factor of P in our
estimate, since the value of Ξ provides no information about z1 and z2. We
thus have

V1 � P $+εM̃nQµs
n ,

and the lemma follows on recalling (4.7). �
We now apply Lemma 4.2 with s replaced by sn. When the diagonal

solutions dominate in (4.6), we optimize parameters in (2.10) by taking

P 2H̃n−1M̃nQλsn
n ≈ PHnH̃nM̃nQλsn

n ,

which reduces to P ≈ H2
n, or φn = (2Kn)−1. Thus we take

αn = (2Kn)−1, βn = 0, and γn = 1

in (2.20), and we denote the resulting iterative process by Bn. When the
non-diagonal solutions dominate, we instead take

P 2H̃n−1Q
λsn
n ≈ HnP $Qµsn

n ,

so on writing δn = µsn − λsn, we find after a short computation that the
appropriate parameters are

αn = (Kn + δn)−1, βn = δn − k, and γn = δn − n + $.
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In this situation, we denote the process by B′n to distinguish it from the
diagonal case. On comparing the two terms in Lemma 4.2, we find that the
diagonal solutions dominate precisely when

n + 1− δn −$ + φn(δn −Kn) ≥ (k − δn)(φ1 + · · ·+ φn−1).

When n is small relative to k, it may be useful to apply the above method
with more than n differences. In this case, if n < j < k, a simplified version
of the proof of Lemma 4.2 yields the estimate∫

T2

F (s)
j (α) dα� P εM̃jQ

µs
j .

Note that since rj−1 = 1, there are no diagonal solutions in the analogue of
(4.6), so we refer to the process as B′j . We again let δj = µsj − λsj , and in
(2.20) we take

αj = δ−1
j , βj = δj − k, and γj = δj − j.

When k − n = 1, it is sometimes more effective to difference fewer than
n times and then to employ the approach used by Wooley [41] in bounding
G∗(3, 2). Here one is able to take a linear combination of the two equations
and then exploit a version of Hua’s inequality for exponential sums over
arbitrary polynomials. We define the Hua exponents νs by taking νs = 2s−`
when 1 ≤ ` ≤ k and s = 2`−1, νs = 2s − k when s > 2k−1, and for all
remaining s > 2 by linear interpolation.

Lemma 4.3. Suppose that j ≤ n − 1, and write ej = 2 if both k − j and
n − j are even and j ≤ n − 2, and write ej = 1 otherwise. If νs denotes a
Hua exponent, then one has∫

T2

F (s)
j (α) dα� HjM̃j

(
PH̃jQ

λs+ε
j + P k+n−2j−2ejQνs+ε

j

)
.

Proof. In analyzing the system

ψi,j(z1; h; m)− ψi,j(z2; h; m) = Di,j(m)

s∑
l=1

(ui
l − vi

l) (i = k, n),

we estimate the number of solutions with z1 = z2 exactly as in the proof of
Lemma 4.2. To deal with the non-diagonal solutions, we first observe that

ψi,j(z1; h; m)− ψi,j(z2; h; m) = mK1
1 · · ·m

Kj

j h1 · · ·hj(z
ej
1 − z

ej
2 )Ξi(z; h; m),

where Ξi is a polynomial satisfying

0 < |Ξi(z; h; m)| � P i−j−ej+ε (i = k, n)

for all values of z, h, and m under consideration. Here we have used the
fact that the ψi,j(z; h; m) were constructed using symmetric differences, so
that all powers of z occurring have the same parity. We start by fixing the
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values of Ξk and Ξn in O(P k+n−2j−2ej+ε) ways, and we also fix m. Then
on taking a linear combination of the two equations and applying Hölder’s
inequality and Theorem 4 of Hua [19] as in Wooley [41], we find that the
number of choices for u and v is O(Qνs+ε

j ). The values of h1, . . . , hj, z1, and
z2 are now determined to O(P ε), and this completes the proof. �

We now apply Lemma 4.3 with s replaced by sj , following the last ap-
plication of Lemma 2.2. When the underlying diagonal solutions dominate,
we again take

αj = (2Kj)
−1, βj = 0, and γj = 1

in (2.20), and we denote the resulting process by Cj. When the non-diagonal
solutions dominate, we now optimize by taking

P 2H̃j−1Q
λsj
j ≈ HjP

k+n−2j−2ejQ
νsj
j ,

and on writing δj = νsj − λsj , a brief computation shows that this corre-
sponds to the choice

αj = (Kj + δj)
−1, βj = δj − k, and γj = δj + k + n− 3j − 2ej.

In this case, we denote the iterative process by C ′j. An examination of the
terms in Lemma 4.3 reveals that the diagonal solutions dominate whenever

3j + 2ej + 1− k − n− δj + φj(δj −Kj) ≥ (k − δj)(φ1 + · · ·+ φj−1).

It is in some ways natural to view the ad-hoc analysis described in Lemmas
4.2 and 4.3 as a type of Hardy-Littlewood dissection, with the non-diagonal
and diagonal solutions corresponding respectively to the major and minor
arcs (see for example [33]). An actual Hardy-Littlewood dissection is de-
scribed in the next section.

5. Major and Minor Arc Estimates

In the final stages of the iteration, it is often useful to estimate the in-
tegral in (2.10) by means of a Hardy-Littlewood dissection. Throughout
this section, we assume that Kj = k, so we may work with the polynomials
polynomials Ψk,j and Ψn,j. From Vaughan and Wooley [32], we have

(5.1) Ψi,j(z; h; m) =
∑
u,v

i! 2j h̃m̃k−izu(h1m
k
1)

2v1 · · · (hjm
k
j )

2vj

u!(2v1 + 1)! · · · (2vj + 1)!
,

where the summation is over non-negative integers u, v1, . . . , vj satisfying

u + 2v1 + · · ·+ 2vj = i− j,
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and where we have written h̃ = h1 · · ·hj and m̃ = m1 · · ·mj . We shall find
it convenient to introduce the notation

τj = 21+j−k and J = 2n−j−1.

The processes described in this section will be applicable only when the
conditions

(5.2) 1 ≤ j ≤ n− 2,

(5.3) 2τj(k − j) ≤ 1,

(5.4) (k − j)(k − n)τj ≤ (k − n + 1)(1− Jτj),

(5.5) (k − n− 1)(φ1 + · · ·+ φj) ≤ 1− τj(J + k − j),

(5.6) (k − n− 1)(φ1 + · · ·+ φj) ≤ 1− Jτj(k − n + 1)

are all satisfied. We start by showing that, under these conditions, an
unusually large value of the exponential sum Fj(α) defined by (2.2) implies
that α lies within a standard set of major arcs.

Lemma 5.1. Suppose that Fj(α) ≥ M̃jHjH̃jP
2−2τj+ε for some ε > 0 and

that conditions (5.2)–(5.6) are satisfied. Then there exists a positive number
δ and integers q, ak, and an with (q, ak, an) = 1 such that

1 ≤ q ≤ P, |qαk − ak| ≤ P 1−δQ−k
j , and |qαn − an| ≤ P 1−δQ−n

j ,

whenever P is sufficiently large.

Proof. First of all, we have by Cauchy’s inequality that

(5.7) Fj(α) ≤ Hj

∑
m1,...,mj

∑
h1,...,hj

|Gj(α; h; m)|2,

where Gj is as in (2.3) and where the summations range over m and h in

the intervals (2.4). Therefore, if Fj(α) ≥ M̃jHjH̃jP
2−2τj+ε, then there exist

U and A such that

(5.8)
∑

(h,m)∈A

|Gj(α; h; m)|2 � M̃jH̃jP
2−2τj+ε(log P )−2,

where we have written

A = {(h, m) : U < h1 · · ·hj ≤ 2U and A ≤ |Gj(α; h; m)| ≤ 2A}.
It follows easily from (5.8) that

(5.9) A� P 1−τj+ε and card(A)� M̃jH̃jP
2−2τj+εA−2,

where the value of ε occurring in these two bounds may be smaller than
that in (5.8); see the discussion at the end of §1. In the remainder of the
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proof, it is to be understood that each new ε that appears is to be taken
sufficiently small in terms of any previous ε.

Choose any (h, m) ∈ A. Since |Gj(α; h; m)| ≥ A, we may apply Theorem
5.1 of Baker [2] (see also [1], [4]) to obtain integers w and b with

(5.10) 1 ≤ w ≤ P k−j+εAj−k and |Ckαkw − b| < P εAj−k,

where we have written

(5.11) Ci =
i! 2j

(i− j)!
h1 · · ·hj(m1 · · ·mj)

k−i

for the coefficient of zi−j in the polynomial Ψi,j. Clearly, we may further
assume that (w, b) = 1. We now let

x = w(h1 · · ·hj) and θ =
k!

(k − j)!
2jαk,

and write z = z(x) for the nearest integer to xθ. Then by (5.10) one has
1 ≤ x ≤ X, where X � UP k−j+εAj−k and |xθ−z| < ζ , where ζ � P εAj−k.
Moreover, as (h, m) runs over the set A, one sees from (5.9) and a divisor
estimate that x assumes N distinct values, where

(5.12) N � H̃jP
2−2τj+εA−2.

In view of condition (5.2), we have N > 24Xζ for P sufficiently large, and
we may therefore apply Lemma 14 of Birch and Davenport [6] (see also
Lemma 5.2 of Baker [2]) to obtain fixed coprime integers u and v with the
property that u/v = z/x for all x under consideration. It follows that v|x
for each x, and hence N � UP k−j+εAj−kv−1. We therefore obtain from
(5.12) that

v � UH̃−1
j P k−j−2+2τj+εA2+j−k,

and, since x� U , it follows that

|vθ − u| = vx−1|xθ − z| � H̃−1
j P k−j−2+2τj+εA2(1+j−k).

On setting r = 2jk(k − 1) · · · (k − j + 1)v, we then see that

(5.13) r � P k−j−2+2τj+εA2+j−k � P (k−j)τj−ε

and

(5.14) |rαk − u| � H̃−1
j P k−j−2+2τj+εA2(1+j−k) � H̃−1

j P (k−j)(2τj−1)−ε,

on noting that the ε occurring in (5.10) can be chosen sufficiently small in
terms of the one occurring in (5.9). We may further assume that (r, u) = 1,
since (5.13) and (5.14) are preserved when dividing out common factors.
We note here that r and u depend on the set A, but not on any particular
choice of h or m.
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Our strategy now is to difference the sum Gj until αn occurs only in the
linear term, at which point a rational approximation can be obtained from
(5.14) via Baker’s final coefficient lemma. Define the ordinary differencing
operator ∆l by

∆l(z; g) = ∆∗l,1(z; g; 1),

where ∆∗l,K is as in §2, and write

Ψ̃i,j(z; h; m; g) = ∆n−j−1(Ψi,j(z; h; m); g).

By applying Hölder’s inequality in (5.8), we obtain

M̃jH̃jP
J(1−τj)+ε �

∑
(h,m)∈A

|Gj(α; h; m)|J .

Then by Weyl differencing (see for example [2], Lemma 3.8), we find that

(5.15) M̃jH̃jP
J(1−τj)+ε � P J−n+j

∑
(h,m)∈A

∑
g

|S(h, m, g)|,

where the second summation is over gj+1, . . . , gn−1 ∈ [1, Pj], and where

S(h, m, g) =
∑

z∈I(g)

e(αkΨ̃k,j(z; h; m; g) + αnΨ̃n,j(z; h; m; g))

for some interval I(g) ⊆ [1, Pj]. By (5.15), there exist V , B, and D such
that

(5.16) M̃jH̃jP
n−j−Jτj+ε �

∑
(h,m,g)∈B

|S(h, m, g)|,

where B denotes the set of all (h, m, g) for which

(h, m) ∈ A, V < gj+1 · · · gn−1 ≤ 2V,

B < |S(h, m, g)| ≤ 2B, and (r, h1 · · ·hjgj+1 · · · gn−1) = D.

Note that by (5.16) we have

(5.17) B � P n−j−Jτj+εV −1 � P 1−Jτj+ε

and

(5.18) card(B)� M̃jH̃jP
n−j−Jτj+εB−1.

We now choose (h, m, g) ∈ B, and write

h̃ = h1 · · ·hj, m̃ = m1 · · ·mj , g̃ = gj+1 · · · gn−1.

Further, write hmk for the vector (h1m
k
1, . . . , hjm

k
j ), and define pi(h, m, g)

by

αkΨ̃k,j(z; h; m; g) + αnΨ̃n,j(z; h; m; g) =

k−n+1∑
i=0

pi(h, m, g)zi.
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It suffices for our purposes to note that

pi(h, m, g) = h̃g̃ Φi(hmk, g)αk (2 ≤ i ≤ k − n + 1)

and

p1(h, m, g) = h̃g̃
(
Φ1(hmk, g)αk + 2jn!m̃k−nαn

)
,

where Φi(x, y) is a homogeneous polynomial of degree k−n− i+1 in n− 1
variables, with integer coefficients. Since

Φi(hmk, g)� P k−n−i+1+ε,

we have by (5.14) that

(5.19) |h̃g̃ Φi(hmk, g)(rαk − u)| � P 2τj(k−j)−i−ε.

Moreover, |S(h, m, g)| ≥ B, so on recalling (5.3) and (5.4), it follows with
a little computation from (5.13), (5.17), and (5.19) that we may apply [2],
Lemma 4.6, to obtain a rational approximation to p1(h, m, g). On writing

d = (r, uh̃g̃ Φ2(hmk, g), . . . , uh̃g̃ Φk−n+1(hmk, g)),

we find that there exists a natural number t ≤ 2(k − n + 1)2 such that

trd−1 ≤ P k−n+1+εBn−k−1,

(5.20) t|h̃g̃ Φi(hmk, g)(rαk − u)|d−1 ≤ P k−n+1−i+εBn−k−1

whenever 2 ≤ i ≤ k − n + 1, and

(5.21) ||trd−1p1(h, m, g)|| ≤ P k−n+εBn−k−1.

It is clear that D|d, and since (r, u) = 1 and Φk−n+1 � 1, we also have
d� D.

Now write x′ = th̃g̃m̃k−nD−1 and θ′ = 2jn!rαn, and let z′ be the nearest
integer to x′θ′. Then one sees easily by applying the triangle inequality and
using (5.20) and (5.21) that

(5.22) |x′θ′ − z′| � P k−n+εBn−k−1,

and we also note that x′ � X ′ = UV M̃k−n
j D−1. As (h, m, g) runs through

B, we see from (5.18) that there are

N ′ � M̃jH̃jP
n−j−Jτj+εB−1

distinct values of x′, whence it follows from (5.6), after some computation,
that we may once again apply [6], Lemma 14. Thus we obtain coprime
integers u′ and v′ such that u′/v′ = z′/x′ for all x′. It follows that v′|x′,
whence N ′ � X ′/v′ and

(5.23) v′ � M̃k−n−1
j H̃−1

j P Jτj−n+jUV BD−1.
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Since x′ � UV M̃k−n
j D−1, we have from (5.22) that

(5.24) |v′θ′ − u′| = v′

x′
|x′θ′ − z′| � (M̃jH̃j)

−1P k−2n+j+Jτj+εBn−k.

We now put

q = 2jn!v′r, an = u′, and ak = 2jn!v′u.

In view of (5.5), we can deduce from (5.13) and (5.23) that q ≤ P 1−δ for
some δ > 0. On recalling (5.6) and (5.17), some mild computation reveals
that the bound |qαn − an| ≤ P 1−δQ−n

j follows from (5.24) and that the

inequality |qαk − ak| ≤ P 1−δQ−k
j is a consequence of (5.20) and (5.23).

Finally, one may divide out common factors in the above inequalities to
ensure that (q, ak, an) = 1, and this completes the proof. �

We now define a set of major arcs Mj to be the union of the rectangles

(5.25) Mj(q, a) = {α ∈ T2 : |qαi − ai| ≤ PRk(j−k)Q−i
j (i = k, n)}

with 0 ≤ ak, an ≤ q ≤ P and (q, ak, an) = 1. Further, write mj = T2 \Mj

for the minor arcs. Then Lemma 5.1 tells us that

(5.26) sup
α∈mj

|Fj(α)| � M̃jHjH̃jP
2−2τj+ε.

Our next task is to obtain suitable estimates for Fj(α) on the major arcs.
The j = 1 case of the following lemma appears in an unpublished manuscript
of Wooley (c. 1990), and the general case follows the same pattern of proof
(see also Vaughan and Wooley [32], Lemma 4.7).

Lemma 5.2. Suppose that k > n ≥ 3 and j ≤ k − 2, and write

$j = max
(
0, 2(k − n)(k − j)−1 − 1

)
.

Then whenever α ∈Mj(q, a) ⊆Mj, one has

Fj(α)� P 2+εq$jM̃jHjH̃j(q + |qαn − an|Qn
j + |qαk − ak|Qk

j )
−2/(k−j).

Proof. Suppose that α ∈ Mj(q, a) ⊆ Mj , and write βi = αi − ai/q for
i = k, n. We first observe that, for any given h and m, one has

(5.27) Gj(α; h; m) = q−1
∑

−q/2<b≤q/2

σ(q, a, b, h, m)T (β, b, h, m),

where

σ(q, a, b, h, m) =

q∑
r=1

e
(
(anΨn,j(r; h; m) + akΨk,j(r; h; m) + br)/q

)
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and

T (β, b, h, m) =
∑

1≤z≤Pj

e(βnΨn,j(z; h; m) + βkΨk,j(z; h; m)− bz/q).

For a fixed h and m, define the integers p0, . . . , pk−j by

anΨn,j(r; h; m) + akΨk,j(r; h; m) =

k−j∑
i=0

pir
i.

Then by (5.1), one has in particular that

pk−j = Ckak, pn−j = Cnan + Dk,nak, and p1 = Dn,j+1an + Dk,j+1ak,

where Ci is as in (5.11) and where

(5.28) Di,l =
Ci(i− j)!

(l − j)!

∑
v1,...,vj≥0

2v1+···+2vj=i−l

(h1m
k
1)

2v1 · · · (hjm
k
j )

2vj

(2v1 + 1)! · · · (2vj + 1)!

is the coefficient of zl−j in Ψi,j(z; h; m). It follows that

(q, pk−j, . . . , p2, p1 + b)� (q, h̃ak, h̃m̃k−nan, b)� d(q, h̃, b),

where we have written

h̃ = h1 · · ·hj , m̃ = m1 · · ·mj , and d = (q, ak, m̃
k−nan),

and we therefore deduce from Lemma 4.2 of Baker [2] (see also Theorem 7.1
of Vaughan [30]) that

(5.29) σ(q, a, b, h, m)� q(k−j−1)/(k−j)+ε[d(q, h̃, b)]1/(k−j).

Now for a fixed b, write

Φ(γ) = βnΨn,j(γ; h; m) + βkΨk,j(γ; h; m)− bγ/q.

Then, as in the proof of Vaughan and Wooley [32], Lemma 4.7, one easily
verifies that

b

q
+ Φ′(γ) =

n!

(n− j − 1)!
βnm̃

−nJn +
k!

(k − j − 1)!
βkm̃

−kJk,

where

Ji =

∫ γ+h1mk
1

γ−h1mk
1

∫ y1+h2mk
2

y1−h2mk
2

· · ·
∫ yj−1+hjmk

j

yj−1−hjmk
j

yi−j−1
j dyj · · · dy1.

Thus when |γ| ≤ Pj and α ∈Mj(q, a), one finds on recalling (5.25) that∣∣∣∣ bq + Φ′(γ)

∣∣∣∣� h̃m̃k−n(PRk)n−j−1|βn|+ h̃(PRk)k−j−1|βk| � (qR)−1.
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Since R is a positive power of P , we may conclude that

(5.30)

∣∣∣∣ bq + Φ′(γ)

∣∣∣∣ ≤ 1

4q

when P is sufficiently large, and hence when |b| ≤ q/2 one has

(5.31) |Φ′(γ)| ≤ 1

4q
+
|b|
q
≤ 3

4
.

We may therefore apply Vaughan [30], Lemma 4.2, to conclude that

(5.32) T (β, b, h, m) =

1∑
u=−1

I(β, b, h, m, u) + O(1),

where

I(β, b, h, m, u) =

∫ Pj

0

e(Φ(γ)− γu) dγ.

In light of (5.31), we may integrate by parts to obtain

I(β, b, h, m,±1)� 1,

and so it follows from (5.32) that

(5.33) T (β, b, h, m) = I(β, b, h, m, 0) + O(1).

When b 6= 0, we find using (5.30) that |Φ′(γ)| ≥ |b|/2q, so another integra-
tion by parts gives

I(β, b, h, m, 0)� q

|b| ,

and hence by (5.33) we obtain

T (β, b, h, m)� q

|b| .

Thus we deduce from (5.27), (5.29), and (5.33) that

(5.34) Gj(α; h; m) = q−1σ(q, a, 0, h, m)I(β, 0, h, m, 0) + E,

where

E � d1/(k−j)q(k−j−1)/(k−j)+ε
∑

1≤b≤q/2

b−1(q, b)1/(k−j).

On using a standard estimate for the divisor function, one finds that∑
1≤b≤q/2

b−1(q, b)1/(k−j) �
∑
r|q

r1/(k−j)
∑

1≤t≤q/2r

(tr)−1 � qε,

and it now follows from (5.29) and (5.34) that

(5.35) Gj(α; h; m)� d1/(k−j)qε−1/(k−j)
(
(q, h̃)1/(k−j)|I0(β, h, m)|+ q

)
,
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where we have written I0(β, h, m) for I(β, 0, h, m, 0). By Theorem 7.3 of
Vaughan [30], we have

(5.36) I0(β, h, m)� P (1 + |η1|P + · · ·+ |ηk−j|P k−j)−1/(k−j),

where the real numbers ηi are defined by

βnΨn,j(γ; h; m) + βkΨk,j(γ; h; m) =

k−j∑
i=0

ηiγ
i.

One has in particular that

ηk−j = Ckβk and ηn−j = Cnβn + Dk,nβk,

where Ci and Di,l are as in (5.11) and (5.28). It follows after some compu-
tation that

P n−j|ηn−j|+ P k−j|ηk−j| � h̃m̃k−nP n−jRjk(n−k)|βn|+ h̃P k−j|βk|,
and we therefore deduce from (5.36) that

(5.37) I0(β, h, m)� PRjk(1 + h̃m̃k−nP n−j|βn|+ h̃P k−j|βk|)−1/(k−j).

We are now ready to sum over h and m lying in the ranges (2.4). By (5.35),
we have∑

h

|Gj(α; h; m)|2 � qε(d/q)2/(k−j)

(∑
h

(q, h̃)2/(k−j)|I0(β, h, m)|2 + H̃jq
2

)
.

Now let ` = k or n be the index for which the quantity h̃m̃k−`P `−j|β`| is
minimal. Then one sees from (5.37) that∑

h

(q, h̃)2/(k−j)|I0(β, h, m)|2

� P 2+ε
∑
e|q

e2/(k−j)
∑

g≤H̃j/e

min
{

1,
(
egm̃k−`P `−j|β`|

)−2/(k−j)
}

� P 2+εH̃j min

{
1,
(
P `−jH̃jM̃

k−`
j |β`|

)−2/(k−j)
}

.

A short calculation reveals that

P `−jH̃jM̃
k−`
j ≈ Q`

j ,

and it follows that

(5.38)
∑

h

|Gj(α; h; m)|2 � d2/(k−j)H̃j

(
P 2+ε∆(α) + q2−2/(k−j)+ε

)
,

where we write

(5.39) ∆(α) = (q + |qβn|Qn
j + |qβk|Qk

j )
−2/(k−j)



PAIRS OF ADDITIVE EQUATIONS OF SMALL DEGREE 31

whenever α ∈ Mj(q, a). Moreover, it is easy to see from (5.25) that the
first term in (5.38) is always larger than the second. Therefore, we have by
Cauchy’s inequality that

Fj(α) ≤ Hj

∑
m

∑
h

|Gj(α; h, m)|2

� HjH̃jP
2+ε∆(α)

∑
m

(q, ak, m̃
k−nan)2/(k−j).(5.40)

But since (q, ak, an) = 1, one has

(q, ak, m̃
k−nan) ≤ (q, ak, an)(q, m̃

k−n) = (q, m̃k−n) ≤ (q, m̃)k−n,

and hence∑
m

(q, ak, m̃
k−nan)2/(k−j) � M̃jP

ε
∑
e|q

e2(k−n)/(k−j)−1 � P εM̃jq
$j .

The lemma now follows immediately from (5.39) and (5.40). �
Before proceeding, we observe that one has $j = 0 whenever j ≤ 2n− k,

and this will often be the case in our applications, in light of conditions
(5.2)–(5.6). We next obtain a mean value estimate that will be used to
bound the major arc contribution to the integral in (2.10). The technique
of the proof is similar to that of Brüdern [8], Lemma 2.

Lemma 5.3. Suppose that φ1 + · · ·+ φj ≤ 1/2. Then one has∫
Mj

Fj(α)k−j|fj(α)|4dα� P $j(k−j)+εFj(0)k−jQ4−k−n
j ,

where $j is as in the statement of Lemma 5.2.

Proof. Write J for the integral in the statement of the lemma. When α ∈
Mj(q, a) ⊆Mj, we have from Lemma 5.2 that

Fj(α)� P 2+εq$jM̃jHjH̃j(q + Qk
j |qβk|)−1/(k−j)(q + Qn

j |qβn|)−1/(k−j),

where we have written βi = αi − ai/q for i = k, n, and it follows that

J � Fj(0)k−j+ε
∑

1≤q≤P
a∈[0,q]2

q$j(k−j)−2

∫
Mj(q,a)

|fj(α)|4 dα

(1 + Qk
j |βk|)(1 + Qn

j |βn|)
.

On making a change of variables and expanding the fourth power of |fj(α)|,
we find that

J � Fj(0)k−j+ε
∑

1≤q≤P
a∈[1,q]2

q$j(k−j)−2

∫
Bk(q)×Bn(q)

S(q, a,β) dβ

(1 + Qk
j |βk|)(1 + Qn

j |βn|)
,
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where we have written

S(q, a,β) =
∑

x∈A(Qj ,R)4

e

((
ak

q
+ βk

)
Sk(x)

)
e

((
an

q
+ βn

)
Sn(x)

)
,

Si(x) = xi
1 + xi

2 − xi
3 − xi

4,

and

Bi(q) = [−q−1PRk(j−k)Q−i
j , q−1PRk(j−k)Q−i

j ].

After bringing the summation over x and the factors of e(aiSi(x)/q) outside
the integral and noting that |e(βiSi(x))| = 1, we obtain the estimate

(5.41)

∫
Mj

Fj(α)k−j|fj(α)|4dα� Fj(0)k−j+εS(P )I(P ),

where

(5.42) S(P ) =
∑

1≤q≤P

q$j(k−j)−2
∑

x∈A(Qj ,R)4

∣∣∣∣∣∣
∑

a∈[1,q]2

e

(
akSk(x) + anSn(x)

q

)∣∣∣∣∣∣
and

(5.43) I(P ) =

∫ PQ−kj

−PQ−kj

∫ PQ−nj

−PQ−nj

(1 + Qk
j |βk|)−1(1 + Qn

j |βn|)−1dβn dβk.

The summation over a in (5.42) is q2 if

xk
1 + xk

2 − xk
3 − xk

4 ≡ xn
1 + xn

2 − xn
3 − xn

4 ≡ 0 (mod q)

and zero otherwise. By Hua’s Lemma (for example), the number of q and
x for which

xk
1 + xk

2 − xk
3 − xk

4 = xn
1 + xn

2 − xn
3 − xn

4 = 0

is at most PQ2+ε
j , while a divisor estimate shows that there are at most

P εQ4
j remaining q and x that give a non-zero contribution to (5.42). One

therefore has

S(P )� P $j(k−j)
(
PQ2+ε

j + P εQ4
j

)
� P $j(k−j)+εQ4

j ,

on noting that the hypothesis in the statement of the lemma implies that
P ≤ Q2

j . Finally, on making a change of variables in (5.43), one finds that

I(P )� Q−k−n
j

∫ P

−P

(1 + |βk|)−1dβk

∫ P

−P

(1 + |βn|)−1dβn � Q−k−n
j (log P )2,

and the lemma now follows from (5.41). �
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In certain situations, it may be advantageous to prove a similar lemma
with the fourth power of fj replaced by some higher power, so that the as-
sumption on φ1 + · · ·+ φj may be weakened. However, because of the other
restrictions (5.2)–(5.6) on the applicability of our Hardy-Littlewood dissec-
tion, the condition in Lemma 5.3 will be satisfied in all cases of interest, so
considering higher moments would provide no advantage within the current
scope of our method.

We now describe the choice of parameters for an iterative process that
concludes with a Hardy-Littlewood dissection. In view of (5.26), one has

(5.44)

∫
mj

Fj(α)|fj(α)|2sj dα� M̃jHjH̃jP
2−2τj+εQ

λsj
j ,

so when the minor arc contribution to the integral in (2.10) dominates, one
computes the optimal values of φ1, . . . , φj by first taking

M̃jH̃j−1P
2Q

λsj
j ≈ M̃jHjH̃jP

2−2τjQ
λsj
j ,

which reduces to H2
j = P 2τj , or kφj = 1− τj . Thus in (2.20) we take

αj = k−1, βj = 0, and γj = 1− τj,

and we denote the resulting iterative process by Dj . Now suppose instead
that the major arcs dominate. Then by Hölder’s inequality one has

∫
Mj

Fj(α)|fj(α)|2sjdα� J
1

k−j

( ∫
T2

|fj(α)|2ujdα

)k−j−1
k−j

,

where J is the integral in the statement of Lemma 5.3, and where we have
written

uj =
sj(k − j)− 2

k − j − 1
.

It therefore follows from Lemma 5.3 that

(5.45)

∫
Mj

Fj(α)|fj(α)|2sj dα� M̃jHjH̃jP
2+$j+εQ

Λj
j ,

where

Λj =
4− k − n + λuj(k − j − 1)

k − j
.

A short computation shows that parameters are optimized in (2.10) when

H2
j P $j ≈ Q

δj
j , where δj = λsj − Λj. One therefore takes

αj = (δj − 2k)−1, βj = δj , and γj = δj −$j − 2
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in (2.20), and in this case we denote the process by D′j. One sees from (5.44)
and (5.45) that the minor arcs dominate whenever

δj(1− φ1 − · · · − φj) ≥ $j + 2τj .

It should be emphasized that processes Dj and D′j are only applicable
when conditions (5.2)–(5.6) are satisfied. To overcome these rather seri-
ous restrictions, it may occasionally be useful to consider a one-dimensional
Hardy-Littlewood dissection, in which the major and minor arcs are verti-
cal strips defined only in terms of the rational approximations to αk. This
strategy has the advantage of being applicable in a large range of circum-
stances under which one of (5.2)–(5.6) fails to hold, but it turns out that
the estimates produced are weaker than those stemming from the methods
of §4 in all cases under consideration here.

6. Iterative Schemes and Permissible Exponents

Here we describe how the methods of the previous sections are combined
to generate permissible exponents. Our major tools are the processes Aj , Bj ,
Cj, and Dj (and primed versions thereof) discussed in §§4-5. Occasionally,
it transpires that the elementary process encoded in (2.22), wherein one
takes φj = 1/Kj, is the most effective applicable option, and we denote
this process by Ej . Finally, it is often useful near the end of the iteration
to observe that if the exponent λs is permissible and 2s ≥ 3k, then the
exponent

λs+1 = max{2s + 2− k − n, λs + 2(1− 21−k)}
is also permissible. This follows by dissecting into major and minor arcs and
imitating the argument of the proof of Lemma 7.3 below, so we suppress
the details here. We denote this process by D0.

Our calculations often make use of the available permissible exponents
for kth powers, which we denoted in §§4-5 by µs = µs(k). We collect for
reference in Table 6.1 the best such exponents currently available in the
literature (see [42] for cubes, [11] for fourth powers, [32] for fifth and sixth
powers, and [34] for seventh powers).

We further note that the exponent µ2 = 2 is always permissible for k ≥ 2
and that the exponent µs = 2s − k is permissible for s ≥ s0(k), where one
has

s0(3) = 4, s0(4) = 6, s0(5) = 9, s0(6) = 12, and s0(7) = 17.

Our iterative processes for determining λs often depend on estimates for
certain λu with u > s, and we must therefore establish preliminary permis-
sible exponents before proceeding with such processes. For this purpose, we
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Table 6.1. Permissible exponents for kth powers

k s µs k s µs k s µs

3 3 3.249414 6 4 4.333334 7 6 7.014382
4 3 3.183428 6 5 5.724697 7 7 8.541090
4 4 4.594193 6 6 7.231564 7 8 10.152633
4 5 6.213431 6 7 8.850572 7 9 11.846949
5 3 3.136258 6 8 10.560413 7 10 13.605568
5 4 4.438657 6 9 12.353671 7 11 15.424298
5 5 5.925080 6 10 14.203006 7 12 17.293221
5 6 7.541755 6 11 16.086042 7 13 19.192538
5 7 9.272729 7 3 3.063920 7 14 21.113930
5 8 11.077363 7 4 4.264118 7 15 23.052885
6 3 3.090910 7 5 5.589117 7 16 25.010539

note that the exponent

(6.1) λs = min{2s− 3, µs(k)}
is permissible for all k > n ≥ 1 and s ≥ 3, since one may either apply
Theorem 3 of Wooley [37] or simply ignore the equation of degree n. The
exponents λ2 = 2 and λ3 = 3 are easily seen to be best possible by consider-
ing diagonal solutions to the underlying system. For larger s, one may use
(6.1) in conjunction with the process D0 or Ej to obtain somewhat better
preliminary bounds. After then estimating all moments of interest using the
methods of §§2, 4, and 5, we may repeat the whole iteration, seeded with
improved preliminary exponents. As this process is repeated, the resulting
permissible values for λs form a bounded, decreasing (and hence convergent)
sequence.

For example, a typical method for estimating λ4 is to apply process A1

with K1 = n. If λ4 is known to be permissible, then (4.5) shows that we can
take φ1 = (1+ δ)/(3n+ δ), where δ = λ4− 4. Since λ2 = 2 is permissible, it
then follows from Lemma 2.1 that the exponent λ′4 = 4+2φ1 is permissible,
and we thus find that the converged exponent λ∗4 is the positive root of the
equation

(6.2) λ2 + (3n− 10)λ− (12n− 22) = 0.

A typical scheme for obtaining λ5 and λ6 would be to employ the processes

(6.3) F 2
0 f 6

0 −→ F1f
6
1 =⇒ (F 2

1 )1/2(f 12
1 )1/2

and

(6.4)
F 2

0 f 8
0 −→ F1f

8
1 −→ F2f

6
2 =⇒ (F 2

2 )1/2(f 12
2 )1/2

↓
f 10

1
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Table 6.2. Permissible exponents for k = 4 and n = 1

s Process λs φ1 φ2 φ3

5 B′1 6.000000 0.166667
7 B′3: 01 9.369295 0.195614 0.1413 0.0022
8 D0 11.119295

Table 6.3. Permissible exponents for k = 4 and n = 2

s Process λs φ1 φ2

5 B2: 0 5.820313 0.164063 0.1250
6 B2: 1 7.327240 0.164063 0.1250
7 B2: 0 8.891122 0.173279 0.1250
8 B2: 1 10.503055 0.176212 0.1250
9 B′2: 1 12.205039 0.184828 0.1376
10 D0 14.000000

in tandem. Whenever one obtains a new permissible λ6 from (6.4), this
value can be used in (6.3) to obtain an improved λ5, and this in turn yields
an improved λ6 when substituted into (6.4). For intermediate moments,
we typically use similar schemes involving the processes Bj and Cj, and for
higher moments we are sometimes able to apply process Dj . In this latter
case, the conditions (5.2)–(5.6) must be checked.

We now present our results for the values of k and n considered in Theorem
1.1. All values of λs and φ1, . . . , φj given in the tables below are upper
bounds, the converged values having been computed electronically using
double-precision arithmetic. The processes listed are those used towards
the end of the iteration. The sequence of numbers appearing after the
process name in the second column is of the form v1 · · · vj−1(Kj)u, where
vi = ti − si = si − si+1 denotes the splitting parameter arising from the
application of the Cauchy-Schwarz inequality in Lemma 2.2, and where 2u
is the moment of Fj used in the process A′j . Note that we always have vn = 0
and that there are no parameters vi to record when j = 1. When Kj = k,
as is often the case, the (Kj) entry is omitted. When Kj 6= k, the value of
φj should of course be compared with 1/Kj rather than 1/k. To conserve
space, we have omitted from the tables any values of s for which the best
exponents λs are obtained simply by applying (6.1) or by using convexity
(i.e., Hölder’s inequality) to interpolate between other available moments.
We also often omit a series of rows in which a trivial process such as Ej or
D0 is applied repeatedly. It is a simple task for the reader to generate the
missing rows if desired.

Our results for k = 4 are summarized in Tables 6.2–6.4. For the case
n = 1, an application of process B′1 with φ1 = 1/6 yields the permissible



PAIRS OF ADDITIVE EQUATIONS OF SMALL DEGREE 37

Table 6.4. Permissible exponents for k = 4 and n = 3

s Process λs φ1 φ2 φ3

4 A1: (3) 4.274918 0.137459
5 A′1: (3)5 5.605552 0.201851
6 C2: 1 7.027047 0.159179 0.1251
7 C2: 1 8.504521 0.166648 0.1251
8 C2: 1 10.042735 0.170048 0.1251
9 C′2: 2 11.699788 0.184016 0.1303
10 B3: 11 13.445197 0.201583 0.1741 0.1251
11 D0 15.195197

Table 6.5. Permissible exponents for k = 5 and n = 1

s Process λs φ1 φ2 φ3 φ4

6 A3: 01 7.531036 0.144469 0.1249 0.0713
7 B′3: 01 9.242834 0.163191 0.1551 0.1318
8 B′4: 000 10.956428 0.168308 0.1529 0.1183 0.0409
9 B′4: 010 12.758315 0.173057 0.1536 0.1197 0.0439
10 B′4: 011 14.614641 0.183359 0.1653 0.1252 0.0561
11 D0 16.489641

Table 6.6. Permissible exponents for k = 5 and n = 2

s Process λs φ1 φ2 φ3 φ4

5 B2: 0 5.780000 0.130000 0.1000
6 B2: 1 7.249300 0.130000 0.1000
7 B2: 0 8.762642 0.136100 0.1000
8 B2: 1 10.318883 0.137999 0.1000
9 B2: 2 11.958978 0.145233 0.1000
10 B2: 3 13.753135 0.165216 0.1000
11 B′4: 101 15.555313 0.176566 0.1618 0.1088 0.0079
12 B′4: 201(3) 17.418641 0.179666 0.1627 0.1103 0.0109
13 D0 19.293641

exponent λ5 = 6, and an application of process B′3 is then sufficient to
establish our claimed bound for G∗(4, 1) in the next section. In the cases
n = 2 and n = 3, we again rely heavily on the methods of §4. In the latter
case, we see from (6.2) that λ4 = 1

2
(1 +

√
57) is permissible, while in the

former case one does better by simply averaging λ3 and λ5.
Tables 6.5–6.8 contain our results for k = 5. When n = 1, we obtain

permissible exponents λ4 and λ5 simply by ignoring the underlying linear
equation and referring to Table 6.1. We are then able to apply the methods
of §4 when 6 ≤ s ≤ 10, but the trivial dissection D0 must be applied for
s ≥ 11. For the case n = 2, we use the process B2 for 5 ≤ s ≤ 10, the
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Table 6.7. Permissible exponents for k = 5 and n = 3

s Process λs φ1 φ2 φ3

4 A1: (3) 4.274918 0.137459
5 A1: (3) 5.605549 0.201850
6 A2: 1(3) 7.023173 0.130698 0.1886
7 B3: 11 8.501453 0.140107 0.1271 0.1000
8 B3: 11 10.032891 0.144725 0.1318 0.1000
9 B3: 11 11.619167 0.149058 0.1342 0.1000
10 B3: 11 13.256636 0.153600 0.1368 0.1000
11 B3: 11 14.940780 0.157695 0.1395 0.1000
12 B3: 11 16.666958 0.161302 0.1417 0.1000
13 B′3: 11 18.440244 0.165518 0.1459 0.1056
14 B′3: 12 20.257290 0.170399 0.1512 0.1076
15 D1 22.113201 0.175000

Table 6.8. Permissible exponents for k = 5 and n = 4

s Process λs φ1 φ2 φ3 φ4

4 A1: (4) 4.196153 0.098077
5 A1: (4) 5.417173 0.139058
6 A2: 1(4) 6.776697 0.120850 0.1318
7 A2: 2(4) 8.165029 0.133957 0.1310
8 C3: 10 9.628974 0.136950 0.1280 0.1000
9 C3: 11 11.144940 0.143368 0.1290 0.1000
10 C3: 11 12.719540 0.147954 0.1339 0.1000
11 C′3: 12 14.355945 0.154169 0.1403 0.1024
12 B4: 111 16.063314 0.162283 0.1520 0.1357 0.1000
13 B4: 111 17.805813 0.167731 0.1565 0.1385 0.1000
14 B4: 112 19.594823 0.171374 0.1618 0.1435 0.1000
15 D1 21.414796 0.175000
16 D1 23.240729 0.175000
17 D1 25.092207 0.175000

Table 6.9. Permissible exponents for k = 6 and n = 1

s Process λs φ1 φ2 φ3 φ4 φ5

8 A4: 011 10.540066 0.133953 0.1274 0.1043 0.0486
9 B′5: 0000 12.286025 0.141432 0.1354 0.1214 0.0886 0.0121
10 B′4: 013 14.068557 0.146129 0.1381 0.1196 0.0047
11 B′5: 0110 15.908198 0.151408 0.1430 0.1264 0.0939 0.0245
12 B′5: 0111 17.783831 0.156912 0.1489 0.1307 0.1003 0.0344
13 B′5: 0112 19.698256 0.161386 0.1538 0.1384 0.1100 0.0464
14 B′5: 0123 21.626593 0.164296 0.1563 0.1394 0.1019 0.0059
15 D0 23.564093
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Table 6.10. Permissible exponents for k = 6 and n = 2

s Process λs φ1 φ2 φ3 φ4 φ5

6 B2: 1 7.175067 0.109792 0.0834
7 B2: 1 8.652662 0.112137 0.0834
8 B′2: 1 10.175911 0.113411 0.0844
9 B′2: 2 11.784059 0.121040 0.0878
11 B′4: 102(5) 15.252389 0.143730 0.1366 0.1097 0.0224
12 B′4: 202(5) 17.059819 0.147074 0.1385 0.1135 0.0325
13 B′5: 0012 18.917400 0.154920 0.1599 0.1361 0.0915 0.0011
14 B′5: 1012 20.775271 0.156803 0.1602 0.1366 0.0924 0.0032
15 B′5: 2012(4) 22.671208 0.158249 0.1604 0.1370 0.0931 0.0047
16 E2: 0 24.585627 0.161283 0.1667
17 E2: 1 26.505659 0.161929 0.1667
18 E2: 1 28.437055 0.162202 0.1667
19 D0 30.374555

Table 6.11. Permissible exponents for k = 6 and n = 3

s Process λs φ1 φ2 φ3 φ4 φ5

4 A1: (3) 4.274918 0.137459
5 A1: (3) 5.601860 0.200620
6 A2: 1(3) 7.007755 0.108971 0.1897
7 B3: 11 8.459328 0.115904 0.1059 0.0834
8 B3: 10 9.955773 0.118618 0.1091 0.0834
9 B3: 11 11.499301 0.121768 0.1105 0.0834
10 B3: 11 13.087094 0.125088 0.1126 0.0834
11 B3: 11 14.716154 0.128081 0.1145 0.0834
12 B′3: 11 16.387686 0.131202 0.1172 0.0861
13 B′3: 12 18.107582 0.135303 0.1222 0.0891
14 B′3: 22 19.885634 0.141152 0.1229 0.0912
15 B′3: 23 21.713856 0.147468 0.1319 0.0962
16 B′5: 1102 23.586419 0.152999 0.1497 0.1461 0.0989 0.0141
17 B′5: 2201(3) 25.471260 0.155701 0.1478 0.1358 0.0864 0.0024
18 B′5: 2301(3) 27.404022 0.159250 0.1551 0.1397 0.0929 0.0137
19 E3: 00 29.336863 0.161822 0.1634 0.1667
20 D0 31.274363

process B′4 for s = 11, 12, and then the trivial dissection D0 for s ≥ 13.
Note that the condition (5.2) precludes an application of the process Dj

when j ≥ 1. For the cases n = 3 and n = 4, we use process Aj in schemes
resembling (6.3) and (6.4) to deal with small values of s. The methods
Bj and Cj are applied in the intermediate ranges, and our first instance of
a non-trivial Hardy-Littlewood dissection (process D1) occurs towards the
end. Note that by (6.2) we have λ4 = 3

√
3− 1 in the case n = 4.
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Table 6.12. Permissible exponents for k = 6 and n = 4

s Process λs φ1 φ2 φ3 φ4

4 A1: (4) 4.196153 0.098077
5 A1: (4) 5.418269 0.139423
6 A2: 1(4) 6.782118 0.100962 0.1333
7 A2: 2(4) 8.152910 0.111619 0.1326
8 A3: 12(4) 9.601812 0.113565 0.1094 0.1258
9 B4: 110 11.095219 0.120084 0.1127 0.1062 0.0834
10 B4: 111 12.638762 0.123474 0.1178 0.1064 0.0834
11 B4: 111 14.230087 0.127445 0.1209 0.1105 0.0834
12 B4: 111 15.865735 0.131070 0.1240 0.1118 0.0834
13 B4: 111 17.543932 0.134479 0.1271 0.1138 0.0834
14 B4: 111 19.260946 0.137673 0.1298 0.1155 0.0834
15 B4: 111 21.013655 0.140562 0.1323 0.1170 0.0834
16 B4: 111 22.798679 0.143191 0.1345 0.1184 0.0834
17 B4: 112 24.616144 0.145862 0.1372 0.1212 0.0834
18 B′4: 112 26.462938 0.148578 0.1401 0.1246 0.0894
19 B′4: 122 28.336199 0.151096 0.1430 0.1250 0.0904
20 B′4: 123 30.234207 0.153529 0.1461 0.1295 0.0923
22 D1 34.072612 0.156251
23 D1 36.004439 0.156251

Table 6.13. Permissible exponents for k = 6 and n = 5

s Process λs φ1 φ2 φ3 φ4 φ5

4 A1: (5) 4.152068 0.076034
5 A1: (5) 5.310099 0.103367
7 A2: 2(5) 7.917810 0.106806 0.0992
8 A3: 12(5) 9.305039 0.108218 0.1050 0.0950
9 C4: 110(5) 10.732764 0.115071 0.1078 0.1029 0.1000
10 C4: 111(5) 12.215179 0.118278 0.1134 0.1029 0.1000
11 C4: 111 13.746822 0.122660 0.1165 0.1078 0.0834
12 C4: 111 15.326126 0.126463 0.1201 0.1091 0.0834
13 C4: 112 16.953368 0.130393 0.1239 0.1132 0.0834
14 C′4: 122 18.628073 0.134584 0.1285 0.1139 0.0858
15 B5: 1111 20.347630 0.138780 0.1334 0.1260 0.1131 0.0834
16 B5: 1111 22.102397 0.142146 0.1367 0.1288 0.1148 0.0834
17 B5: 1111 23.891706 0.144952 0.1397 0.1315 0.1164 0.0834
18 B5: 1112 25.712609 0.147759 0.1424 0.1343 0.1191 0.0834
19 B5: 1122 27.561260 0.150298 0.1451 0.1367 0.1190 0.0834
20 D2: 1 29.426174 0.151813 0.1459
21 D2: 1 31.305602 0.152495 0.1459
22 D2: 1 33.201039 0.153352 0.1459
23 D2: 1 35.109165 0.154225 0.1459
24 D2: 2 37.041143 0.155955 0.1459
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Table 6.14. Permissible exponents for k = 7 and n = 2

s Process λs φ1 φ2 φ3 φ4 φ5 φ6

7 B2: 1 8.501481 0.096948 0.0715
8 B2: 2 10.037517 0.102461 0.0715
9 A4: 102 11.655991 0.109969 0.1038 0.0907 0.0212
10 A5: 1011 13.306492 0.115757 0.1113 0.1015 0.0778 0.0118
11 A5: 1012 15.004376 0.118864 0.1186 0.1108 0.0903 0.0290
12 A5: 1022 16.748268 0.123298 0.1244 0.1169 0.0932 0.0392
13 B′5: 2002(4) 18.505071 0.125104 0.1208 0.1089 0.0826 0.0084
14 B′5: 2012(4) 20.320411 0.128321 0.1266 0.1153 0.0919 0.0332
15 B′6: 10110 22.168352 0.133117 0.1369 0.1263 0.1087 0.0745 0.0064
16 B′6: 10111 24.043725 0.135913 0.1423 0.1323 0.1128 0.0818 0.0190
17 E2: 0 25.924955 0.136897 0.1429
18 E2: 1 27.819728 0.137077 0.1429
28 E2: 1 47.245560 0.141193 0.1429
29 D0 49.214310

Table 6.15. Permissible exponents for k = 7 and n = 3

s Process λs φ1 φ2 φ3 φ4 φ5 φ6

6 A2: 1(3) 6.989288 0.093742 0.1899
7 B3: 11 8.421812 0.099003 0.0911 0.0715
8 B3: 10 9.893690 0.100370 0.0929 0.0715
9 B3: 11 11.407212 0.102880 0.0939 0.0715
10 B3: 11 12.959305 0.105441 0.0956 0.0715
11 B3: 11 14.547900 0.107686 0.0971 0.0715
12 B3: 12 16.179415 0.110511 0.1003 0.0715
13 B3: 13 17.859992 0.114573 0.1060 0.0715
14 B3: 23 19.587208 0.119097 0.1060 0.0715
15 B3: 24 21.374285 0.124736 0.1149 0.0715
16 B′6: 11000 23.204048 0.130256 0.1314 0.1392 0.1212 0.0891 0.0316
18 B′5: 2204(4) 26.884426 0.131322 0.1307 0.1273 0.1000 0.0035
19 E3: 11 28.775567 0.133635 0.1362 0.1429
20 E3: 00 30.671175 0.136232 0.1384 0.1429
21 E3: 10 32.578968 0.136369 0.1384 0.1429
22 E3: 11 34.499877 0.137200 0.1385 0.1429
28 E3: 11 46.206618 0.140557 0.1412 0.1429
29 D0 48.175368

Our results for k = 6 are given in Tables 6.9–6.13. When n = 1, we use
the exponents provided by Table 6.1 for 4 ≤ s ≤ 7 before the processes of §4
apply. In the case n = 2, the method E2 is applied for 16 ≤ s ≤ 18, as the
other processes suffer from the difficulties associated with the presence of
an equation of small degree (see the discussion at the start of §3). Even for
sextic-cubic systems, there is an application of E3, and the trivial dissection
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Table 6.16. Permissible exponents for k = 7 and n = 4

s Process λs φ1 φ2 φ3 φ4 φ5 φ6

4 A1: (4) 4.196153 0.098077
5 A1: (4) 5.417964 0.139322
7 A2: 2(4) 8.143222 0.095655 0.1335
8 A3: 12(4) 9.576881 0.096879 0.0940 0.1277
9 B4: 110 11.045640 0.101891 0.0961 0.0908 0.0715
10 B4: 111 12.558885 0.104213 0.1001 0.0908 0.0715
11 B4: 110 14.113026 0.107229 0.1022 0.0941 0.0715
12 B4: 111 15.706561 0.109919 0.1047 0.0949 0.0715
13 B4: 111 17.338223 0.112538 0.1069 0.0966 0.0715
14 B4: 111 19.005452 0.115013 0.1090 0.0979 0.0715
15 B4: 111 20.706276 0.117311 0.1110 0.0991 0.0715
16 B4: 112 22.441402 0.119717 0.1135 0.1017 0.0715
17 B4: 122 24.209289 0.122259 0.1162 0.1017 0.0715
18 B4: 123 26.007751 0.124724 0.1191 0.1056 0.0715
19 B4: 124 27.837123 0.127267 0.1224 0.1108 0.0715
20 B′4: 134 29.698634 0.130146 0.1265 0.1108 0.0717
21 B′4: 234 31.588805 0.133078 0.1266 0.1111 0.0729
22 B′6: 12301 33.502919 0.135647 0.1348 0.1315 0.1260 0.0849 0.0203
23 E4: 111 35.430918 0.137357 0.1373 0.1384 0.1429
24 E4: 111 37.365975 0.138035 0.1382 0.1392 0.1429
25 D1 39.308782 0.138393
26 D1 41.252827 0.138393
27 D1 43.203549 0.138393
28 D1 45.155338 0.138393
29 D1 47.112879 0.138393
30 D1 49.071340 0.138393
31 D1 51.034758 0.138393
32 D′1 53.000000 0.138465

D0 must be applied for s ≥ 20. Tables 6.12 and 6.13 illustrate a somewhat
more robust set of processes working reasonably well for n = 4 and n = 5.
In the former case, however, none of our methods perform any better than
linear interpolation in the estimation of λ21. At this stage, it would be
natural to try to apply process D2, but unfortunately the conditions (5.5)–
(5.6) would mandate that φ1 + φ2 ≤ 1/4, which is too restrictive to be
useful.

Finally, we discuss the results for k = 7 presented in Tables 6.14–6.18.
When n ≤ 3, the usual difficulties associated with n being small relative to
k appear again. In particular, our iterative methods allow us to conclude
only that G∗(7, 1) ≤ 75. Since this is inferior to the bound established in §3,
we omit the corresponding table of exponents. When n = 2, we are forced
to use the trivial method E2 for 17 ≤ s ≤ 28 and the process D0 for s ≥ 29.
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Table 6.17. Permissible exponents for k = 7 and n = 5

s Process λs φ1 φ2 φ3 φ4 φ5

4 A1: (5) 4.152068 0.076034
5 A1: (5) 5.310916 0.103639
7 A2: 2(5) 7.926446 0.092021 0.1000
8 A3: 12(5) 9.305738 0.093081 0.0907 0.0964
9 C4: 111(5) 10.719005 0.098168 0.0927 0.0891 0.1000
10 A4: 112(5) 12.181054 0.100678 0.0977 0.0918 0.1070
11 B5: 1111(5) 13.685200 0.104105 0.1003 0.0965 0.0882 0.1000
12 B5: 1111 15.232318 0.107065 0.1035 0.0988 0.0918 0.0715
13 B5: 1111 16.820282 0.110044 0.1063 0.1015 0.0928 0.0715
14 B5: 1111 18.447836 0.112886 0.1091 0.1039 0.0947 0.0715
15 B5: 1111 20.112796 0.115613 0.1117 0.1062 0.0960 0.0715
16 B5: 1111 21.813081 0.118181 0.1142 0.1083 0.0974 0.0715
17 B5: 1111 23.546275 0.120591 0.1165 0.1103 0.0986 0.0715
18 B5: 1111 25.309919 0.122824 0.1187 0.1121 0.0997 0.0715
19 B5: 1111 27.101472 0.124879 0.1207 0.1138 0.1007 0.0715
20 B5: 1111 28.918411 0.126752 0.1225 0.1153 0.1016 0.0715
21 B5: 1112 30.759389 0.128536 0.1243 0.1172 0.1034 0.0715
22 B5: 1122 32.621829 0.130215 0.1260 0.1190 0.1034 0.0715
23 B5: 1123 34.504025 0.131765 0.1278 0.1209 0.1060 0.0715
24 B5: 1223 36.403928 0.133210 0.1294 0.1208 0.1059 0.0715
25 B5: 1224 38.319537 0.134523 0.1310 0.1229 0.1090 0.0715
26 B5: 1234 40.249299 0.135729 0.1324 0.1251 0.1089 0.0715
27 B′5: 1234 42.192454 0.136905 0.1340 0.1274 0.1133 0.0815
28 B′5: 1244 44.147468 0.138042 0.1355 0.1299 0.1136 0.0824
29 D1 46.103320 0.138393
30 D1 48.064559 0.138393
31 D1 50.026521 0.138393

For the n = 3 case, we must use process E3 for 19 ≤ s ≤ 28 and then D0 for
s ≥ 29. In both of these cases, we include only the relative highlights in our
tables. The remaining cases (n = 4, 5, 6) again illustrate the more robust
nature of our methods when the sizes of k and n are somewhat comparable.
As expected (compare with the tables in Vaughan and Wooley [32], [34]),
mean value estimates are applied for small values of s, a Hardy-Littlewood
dissection is admissible for larger s, and the number of differences peaks in
the intermediate range. One could certainly express some disappointment,
however, that the dissections Dj are not applicable in a wider range of
circumstances. In the case n = 5, for example, one might hope to apply the
process D2 towards the end of the iteration, but the condition φ1 + φ2 ≤
1/4 arising from (5.6) renders this strategy ineffective, just as in the case
(k, n) = (6, 4). On the other hand, the process B5 provides a reasonable
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Table 6.18. Permissible exponents for k = 7 and n = 6

s Process λs φ1 φ2 φ3 φ4 φ5 φ6

5 A1: (6) 5.242618 0.080873
6 A′1: (6)7 6.495799 0.096551
7 A2: 2(6) 7.752343 0.088535 0.0785
8 A3: 12(6) 9.078034 0.089517 0.0875 0.0762
9 A4: 112(6) 10.436531 0.094402 0.0893 0.0863 0.0737
10 A4: 112(6) 11.845021 0.096818 0.0940 0.0886 0.0851
11 A′4: 112(6)9 13.295588 0.100317 0.0965 0.0930 0.1006
12 C5: 1111(6) 14.790815 0.103310 0.0999 0.0954 0.0894 0.0834
13 C5: 1111 16.328402 0.106428 0.1027 0.0984 0.0907 0.0715
14 C5: 1111 17.907592 0.109390 0.1057 0.1009 0.0927 0.0715
15 C5: 1112 19.527069 0.112324 0.1086 0.1037 0.0954 0.0715
16 C5: 1122 21.185264 0.115185 0.1115 0.1067 0.0953 0.0715
17 C5: 1123(6) 22.880676 0.117983 0.1145 0.1100 0.0999 0.0834
18 B6: 11111 24.611260 0.120697 0.1174 0.1134 0.1076 0.0969 0.0715
19 B6: 11111 26.372606 0.123104 0.1199 0.1158 0.1096 0.0982 0.0715
20 B6: 11111 28.163038 0.125258 0.1222 0.1180 0.1115 0.0993 0.0715
21 B′6: 11111 29.979860 0.127284 0.1242 0.1200 0.1133 0.1004 0.0716
22 B6: 11122 31.821013 0.129157 0.1262 0.1221 0.1153 0.1010 0.0715
23 B6: 11222 33.683656 0.130859 0.1280 0.1239 0.1153 0.1009 0.0715
24 D3: 11 35.564014 0.132257 0.1294 0.1251
25 D3: 11 37.457678 0.133222 0.1302 0.1251
26 D3: 11 39.364604 0.134013 0.1308 0.1251
27 D3: 11 41.283287 0.134808 0.1313 0.1251
28 D3: 11 43.212429 0.135517 0.1318 0.1251
29 D3: 11 45.150491 0.136127 0.1322 0.1251
30 D3: 12 47.099166 0.136844 0.1330 0.1251
31 D2: 1 49.057618 0.137704 0.1340
32 D1 51.022942 0.138393

alternative to the Hardy-Littlewood dissection, both from a practical and a
philosophical standpoint (see the remark at the end of §4).

In the next section, we indicate how to use the mean value estimates
recorded in the above tables to establish the bounds quoted in Theorem
1.1.

7. The Circle Method

On recalling the definition of G∗(k, n), we may suppose in establishing
Theorem 1.1 that the system (1.1) possesses a non-singular real solution
and a non-singular p-adic solution for every prime p and that for each i
one has cidi 6= 0. Moreover, after possibly replacing some of the variables
xi by −xi and then changing the signs of the corresponding coefficients in
forms of odd degree, we may suppose that (1.1) has a non-singular real
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solution η = (η1, . . . , ηs) such that ηi ≥ 0 for all i. It therefore suffices to
consider the solubility of the system (1.1) in positive integers, so we define
the exponential sums

F (α) =
∑

1≤x≤P

e(αkx
k + αnxn) and f(α) =

∑
x∈A(P,R)

e(αkx
k + αnxn).

Observe that f(α) is exactly as in (2.5), and that, in the notation of (2.2),
|F (α)|2 = F0(α). In this section and the next, we deviate from the notation
of §2 by writing Fi(α) = f(ciα) and fi(α) = f(ciα), where ciα denotes
the vector (ciαk, diαn). Now let t be a parameter at our disposal, write
s = 2u + t, and define

F(α) =
t∏

i=1

Fi(α)
s∏

i=t+1

fi(α).

Then one sees by orthogonality that

(7.1) N(P ) =

∫
T2

F(α) dα

is the number of solutions of the system (1.1) with the variables satisfying

1 ≤ xi ≤ P (i = 1, . . . , t) and xi ∈ A(P, R) (i = t + 1, . . . , s).

We now describe our Hardy-Littlewood dissection. Write

Ck = max
1≤i≤s

|ci|, Cn = max
1≤i≤s

|di|, and Xi = 2k2CiP
i−1 (i = k, n).

When n > 1, we define the major arcs M to be the union of the rectangles

(7.2) M(q, a) = {α ∈ T2 : |qαi − ai| < X−1
i (i = k, n)}

with 0 ≤ ak, an ≤ q ≤ P and (q, ak, an) = 1, and write m = T2 \M for
the minor arcs. When n = 1, we use the same definition, except that M

is further restricted to those M(q, a) for which (q, ak) ≤ P ε. Note that the
M(q, a) may not be disjoint when n = 1.

We say that ∆s is an admissible exponent if the exponent λs = 2s− (k +
n) + ∆s is permissible. The following lemma tells us that the minor arc
contribution to the integral (7.1) is small whenever t is sufficiently large in
terms of ∆u.

Lemma 7.1. Suppose that ∆u is an admissible exponent and that t >
2k−1∆u, and further write s = 2u + t. Then for some δ > 0, one has∫

m

F(α) dα� P s−k−n−δ.



46 SCOTT T. PARSELL

Proof. By applying Hölder’s inequality and considering the underlying dio-
phantine equations, one finds that∫

m

F(α) dα� sup
α∈m
|Fi(α)|t

∫
T2

|f(α)|2u dα

for some i with 1 ≤ i ≤ t. Now by applying Baker [2], Theorem 5.1, and
arguing as in the proof of Wooley [37], Lemma 7.4, we see that

sup
α∈m
|Fi(α)| � P 1−21−k+ε,

and the lemma follows immediately. �
We choose u and t according to the Table 7.1, so as to minimize the value

of s = 2u + t for which Lemma 7.1 applies. Note that bounds for G∗(k, n)
in cases appearing in Theorem 1.1 but omitted from the table have been
established in §3 or have been quoted from other sources.

Table 7.1. Choices for (u, t) in the decomposition s = 2u+ t

1 2 3 4 5 6
4 (7, 3) (9, 2) (9, 6)
5 (10, 10) (11, 9) (15, 2) (16, 4)
6 (13, 23) (18, 14) (19, 11) (22, 3) (23, 4)
7 (27, 18) (27, 16) (30, 5) (31, 2) (31, 4)

One can verify from the tables in §6 that the hypothesis of Lemma 7.1 is
satisfied for each pair (u, t) in Table 7.1. It now suffices to show that

(7.3)

∫
M

F(α) dα� P s−k−n,

and this follows by a relatively straightforward extension of the argument
of Wooley [37]. The basic strategy is to use the t variables ranging over a
complete interval to prune back to a thinner set of major arcs, on which
we can obtain asymptotics for fi(α) that allow us to make use of local
information. Let us introduce the notation

Si(q, a) =

q∑
x=1

e((ciakx
k + dianxn)/q),

vi(β) =

∫ P

0

e(ciβkγ
k + diβnγn) dγ,

and

wi(β) =

∫ P

R

ρ

(
log γ

log R

)
e(ciβkγ

k + diβnγn) dγ,
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where ρ denotes Dickman’s function (see for example Vaughan [30], §12.1).
We first recall some standard estimates for these functions. It follows easily
from Theorem 7.1 of Vaughan [30] that

(7.4) Si(q, a)� (q, ciak, dian)1/kq1−1/k+ε.

Moreover, by applying the argument of Vaughan [30], Theorem 7.3, as in
the proof of Wooley [37], Lemma 8.6, one finds that

(7.5) vi(β)� P (1 + P n|βn|+ P k|βk|)−1/k

and

(7.6) wi(β)� P (1 + P n|βn|+ P k|βk|)−1/k,

since we have assumed that cidi 6= 0 for each i. Now let W ≤ R be a
parameter at our disposal. We define the pruned major arcs N to be the
union of the rectangles

(7.7) N(q, a) = {α ∈ T2 : |αi − ai/q| < WP−i (i = k, n)}
with 0 ≤ ak, an ≤ q ≤ W and (q, ak, an) = 1. Note here that the condition
(q, ak) ≤ P ε is automatically satisfied, since q ≤ R. Furthermore, the
N(q, a) are pairwise disjoint, even when n = 1. We need the following easy
extension of Wooley [37], Lemma 9.2, in order to carry out our pruning
argument.

Lemma 7.2. If cidi 6= 0 and T is a real number with T > 3k, then one has∫
M

|Fi(α)|T dα� P T−k−n

and, for some σ > 0,∫
M\N
|Fi(α)|T dα� P T−k−nW−σ.

Proof. Suppose that T > 3k. When α ∈M(q, a), we write βi = αi−ai/q for
i = k, n and define the function Vi(α) = q−1Si(q, a)vi(β). In order to make
this well-defined when n = 1, we can associate α to the M(q, a) having
minimal q, since the arcs corresponding to a fixed q are pairwise disjoint.
Then when α ∈M(q, a) ⊆M, we have by Lemma 4.4 of Baker [2] that

|Fi(α)|T � |Vi(α)|T + P ε(q1−1/k)T .

Write W for either M or M\N. Then one sees easily from (7.2) that∫
W

P ε(q1−1/k)T dα� P 2−k−n+ε
∑
q≤P

qT (1−1/k) � P T−k−n−δ
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for some δ > 0, since T > 3k. Now by (7.4), one has

(7.8)

∫
W

|Vi(α)|T dα�
∑
q≤P

∑
a∈[0,q]2

q−T/k+ε

∫
W(q,a)

|vi(β)|T dα,

where have written W(q, a) = M(q, a) when W = M and W(q, a) =
M(q, a) \N(q, a) when W = M \N. Now set Y = 1 if W = M or if
q > W , and put Y = W otherwise. Then by applying (7.5) and making a
change of variable, one finds that∫

W(q,a)

|vi(β)|T dα� P T

∫
W(q,a)

(1 + P n|βn|)−T/2k(1 + P k|βk|)−T/2k dα

� P T−k−nY 1−T/2k.

Thus on writing Z = 1 if W = M and Z = W if W = M\N, we obtain
from (7.8) that∫

W

|Vi(α)|T dα� P T−k−n

( ∑
q≤W

Z1−T/2kq2−T/k+ε +
∑
q>W

q2−T/k+ε

)
� P T−k−n

(
Z1−T/2k + W 3−T/k+ε

)
,

and the lemma follows. �
When t is as in Table 7.1, write r = t if t is even and r = t + 1 if t is

odd. The argument given in the following lemma underlies the process D0

discussed in §6 and will be important in our pruning argument.

Lemma 7.3. If t > 2k−1∆u and 2u + r > 3k, then one has∫
T2

|f(α)|2u+r dα� P 2u+r−k−n.

Proof. Write I for the integral in question. Since r is even, one sees by
considering the underlying diophantine equations that

I ≤
∫
T2

|F (α)|r|f(α)|2u dα,

and we now dissect into major and minor arcs as in (7.2). Since r ≥ t, we
have as in the proof of Lemma 7.1 that∫

m

|F (α)|r|f(α)|2u dα� P 2u+r−k−n−δ

for some δ > 0. We may therefore suppose that the contribution from the
major arcs dominates, in which case we have by Hölder’s inequality that

I �
∫
M

|F (α)|r|f(α)|2u dα�
(∫
M

|F (α)|2u+r dα

) r
2u+r

I
2u

2u+r ,
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and the result now follows from Lemma 7.2. �

We are now able to achieve our pruning of the major arcs. By applying
the trivial inequality |z1 · · · zm| ≤ |z1|m + · · ·+ |zm|m, we find that∫

M\N
F(α) dα�

∫
M\N
|Fi(α)tfj(α)2u| dα

for some i and j with 1 ≤ i ≤ t and t + 1 ≤ j ≤ s. Then by applying
Hölder’s inequality and considering the underlying diophantine equations,
we obtain∫

M\N
F(α) dα�

(∫
M\N
|Fi(α)|T dα

) r
2u+r

(∫
T2

|f(α)|2u+r dα

) 2u
2u+r

,

where T = (2u+r)tr−1, and where r is as in the paragraph preceding Lemma
7.3. In all cases under consideration, we see from Table 7.1 that t ≥ 2 and
2u + r > 4k, and hence T ≥ 3

4
(2u + r) > 3k. On recalling that s = 2u + t,

we therefore deduce from Lemmas 7.2 and 7.3 that

(7.9)

∫
M\N
F(α) dα� P s−k−nW−σ

for some σ > 0. To establish (7.3), it now suffices to show that

(7.10)

∫
N

F(α) dα� P s−k−n,

and for this we may follow the argument of Wooley [37], §10, fairly closely.
We obtain some simplifications, however, as a result of our definition (7.7),
in which the dimensions of the boxes N(q, a) are independent of q.

When α ∈ N(q, a), write βi = αi−ai/q for i = k, n, define Vi(α) as in the
proof of Lemma 7.2, and write Wi(α) = q−1Si(q, a)wi(β). Then, whenever
α ∈ N(q, a) ⊆ N, we see from Lemma 8.5 of Wooley [37] that

fi(α)−Wi(α)� W 2P (log P )−1

and from Theorem 7.2 of Vaughan [30] that

Fi(α)− Vi(α)� W 2.

In view of (7.7), we have meas(N)�W 5P−k−n, and we therefore find as in
the argument of [37], Lemma 10.1, that∫

N

F(α) dα =

∫
N

t∏
i=1

Vi(α)

s∏
i=t+1

Wi(α) dα+ O(P s−k−nW 7(log P )−1).



50 SCOTT T. PARSELL

As usual, we can factor the integral on the right as a product of a truncated
singular series and a truncated singular integral. On writing

(7.11) S(q) =

q∑
a=1

q∑
b=1

(q,a,b)=1

s∏
i=1

q−1Si(q, a, b), S(W ) =
∑
q≤W

S(q),

and

J(W ) =

WP−k∫
−WP−k

WP−n∫
−WP−n

t∏
i=1

vi(β)
s∏

i=t+1

wi(β) dβ,

we see immediately that

(7.12)

∫
N

F(α) dα = S(W )J(W ) + O(P s−k−nW 7(log P )−1).

We now complete S(W ) and J(W ) to infinity by defining

S =

∞∑
q=1

S(q) and J =

∫ ∞
−∞

∫ ∞
−∞

t∏
i=1

vi(β)

s∏
i=t+1

wi(β) dβ.

By applying the argument of Vaughan [30], Lemma 2.11, as in Lemmas 10.4
and 10.5 of Wooley [37], we find that the function S(q) defined in (7.11) is
multiplicative. Moreover, since cidi 6= 0 for each i, we have (q, cia, dib) �
(q, a, b), and it then follows from (7.4) that

(7.13) S(q)� q2−s/k+ε.

When s > 3k, we therefore have that S is absolutely convergent and that

S−S(W )�W−τ

for some τ > 0. Furthermore, on using (7.5) and (7.6) and making a change
of variable, we find that

(7.14) J � P s−k−n

∫ ∞
0

∫ ∞
0

(1 + βk)
−s/2k(1 + βn)−s/2kdβ � P s−k−n

whenever s > 2k. Thus J is absolutely convergent, and it follows similarly
that

J − J(W )� P s−k−nW 1−s/2k,

again provided that s > 2k. On taking W = (log P )1/8, we therefore deduce
from (7.12) that

(7.15)

∫
N

F(α) dα = SJ + O(P s−k−nW−σ)

for some σ > 0. The following lemma provides us with the required asymp-
totic information concerning the singular integral J .
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Lemma 7.4. If s > 2k, then one has J � P s−k−n.

Proof. Here we deviate from the argument of [37] and instead apply a
method of Schmidt [26], which avoids the use of Fourier’s integral formula.
Let T be a positive real number, and introduce the functions

KT (β) =

(
sin πβT−1

πβT−1

)2

and KT (β) = KT (βk)KT (βn).

It follows from Lemma 14.1 of Baker [2] that

(7.16) K̂T (y) =

∫ ∞
−∞

KT (β) e(βy) dβ = T max(0, 1− T |y|)

for all real numbers y. We write

JT =

∫
R2

KT (β)
t∏

i=1

vi(β)
s∏

i=t+1

wi(β) dβ

and note that the argument leading to (7.14) gives

(7.17) J − JT � P s

∫
R2

(1−KT (β))(1 + P k|βk|)−
s

2k (1 + P n|βn|)−
s

2k dβ.

A simple calculation reveals that

1−KT (β)� min(1, |β|2T−2),

so on making a change of variable in (7.17) and considering the resulting
integral over the regions |β| ≤ T and |β| > T separately, it is easily shown
that

J − JT � P s−k−nT−δ

for some δ > 0, provided that s > 2k. Hence for any fixed P , we have

(7.18) J = lim
T→∞

JT ,

and so it suffices to analyze JT . By making a change of variable, we find
that

(7.19) JT = P s

∫
B

H(γ) K̂T (P kF (γ)) K̂T (P nG(γ)) dγ,

where we have written

F (γ) = c1γ
k
1 + · · ·+ csγ

k
s , G(γ) = d1γ

n
1 + · · ·+ dsγ

n
s ,

H(γ) =
s∏

i=t+1

ρ

(
log(Pγi)

log R

)
, and B = [0, 1]t × [R/P, 1]2u.

Since we have assumed that the system F (γ) = G(γ) = 0 possesses a non-
singular real solution η = (η1, . . . , ηs) with ηi ≥ 0 for each i, the Implicit
Function Theorem ensures that locally near η there is an (s−2)-dimensional
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space of real solutions, continuously parameterized by s − 2 of the coordi-
nates. Therefore, by exploiting continuity as in the proof of [37], Lemma
6.2, we may suppose that each ηi is non-zero and hence that η lies in the
interior of B for P sufficiently large. Now consider the map ϕ : Rs → Rs

defined by

ϕ1(γ) = F (γ), ϕ2(γ) = G(γ), and ϕi(γ) = γi (3 ≤ i ≤ s).

By the Inverse Function Theorem, there is an open set U ⊆ B contain-
ing η, and an open set V containing (0, 0, η3, . . . , ηs), such that ϕ maps U
injectively onto V . Since H(γ) � 1 on B and the integrand in (7.19) is
non-negative, we have by a change of variable that

(7.20) JT � P s−k−n

∫
V ∗

K̂T (u1)K̂T (u2) du1 · · · dus,

where V ∗ is the set of all u for which (P−ku1, P
−nu2, u3, . . . , us) ∈ V . In

particular, it is clear that the projection of V ∗ onto the first two components
contains the set D = [−1/2T, 1/2T ]2 whenever T ≥ 1 and P is sufficiently
large. By (7.16), the integrand in (7.20) is bounded below on D by (T/2)2,
and meas(D) � T−2, so it follows immediately that JT � P s−k−n for
T ≥ 1, where the implicit constant is independent of T . The lemma therefore
follows from (7.18) on letting T →∞. �

We now turn our attention to the singular series.

Lemma 7.5. If s > 3k, then one has S > 0.

Proof. On recalling (7.13), we see that the series

T (p) =
∞∑

h=0

S(ph)

is absolutely convergent whenever s > 3k. We therefore find as in Woo-
ley [37], Lemma 10.8, that S is represented by the absolutely convergent
product

S =
∏

p

T (p),

and that there exists an integer p0 such that

1

2
≤
∏
p≥p0

T (p) ≤ 3

2
.

It therefore suffices to show that T (p) > 0 for primes p < p0. Let Ms(q)
denote the number of solutions of the pair of congruences

c1x
k
1 + · · ·+ csx

k
s ≡ d1x

n
1 + · · ·+ dsx

n
s ≡ 0 (mod q).
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By applying the argument of [30], Lemma 2.12, as in [37], Lemma 10.9, we
find that ∑

d|q

S(d) = q2−sMs(q),

and it follows that

T (p) = lim
h→∞

∑
d|ph

S(d) = lim
h→∞

ph(2−s)Ms(p
h).

Since we have assumed that the system (1.1) possesses a non-singular p-
adic solution for each prime p, we may apply a Hensel’s Lemma argument
as in Wooley [37], Lemma 6.7, to conclude that there exists an integer
u = u(p) <∞ such that for all h one has

Ms(p
h) ≥ p(h−u)(s−2).

It follows that T (p) ≥ pu(2−s) for each p < p0, and this completes the
proof. �

In view of Lemmas 7.4 and 7.5, the lower bound (7.3) follows immediately
from (7.9) and (7.15). Thus on recalling Lemma 7.1, we find that

(7.21) G∗(k, n) ≤ min
u∈N

(
2u +

[
2k−1∆u

]
+ 1
)
,

where ∆u denotes an admissible exponent. The bounds claimed in Theorem
1.1 now follow by choosing u as indicated in Table 7.1 and examining the
results of §6.

8. Dealing with Zero Coefficients

Here we prove Theorem 1.2 as an indication of how one may adapt the
argument of §7 to handle systems in which a limited number of zero coef-
ficients are present. Although Theorem 1.2 is stated for systems consisting
of a quintic form and a cubic form,

(8.1) c1x
5
1 + · · ·+ csx

5
s = d1x

3
1 + · · ·+ dsx

3
s = 0,

it is certainly possible to establish analogous results for other pairs of de-
grees. Indeed, our argument closely follows that of Wooley [37] for cubic-
quadratic systems. It is somewhat awkward, however, to write down a gen-
eral statement in terms of k and n, since the choice of parameters appearing
in conditions (a), (b), and (d) depends on the available results concerning
the solubility of single additive equations of degree k and n.

One knows from Baker [3] that an additive cubic equation in 7 or more
variables has a non-trivial integral solution. The following result on quintics
is well-known to experts but not readily found in the literature.
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Lemma 8.1. Suppose that s ≥ 17 and that c1, . . . , cs are integers. Then the
equation

c1x
5
1 + · · ·+ csx

5
s = 0

has a non-trivial integral solution.

Proof. The existence of non-trivial p-adic solutions for each prime p is en-
sured by Gray [17] whenever s ≥ 16. The result therefore follows by applying
the Hardy-Littlewood method through an adaptation of the arguments of
Vaughan and Wooley [31], [32]. �

Cases (ii) and (iii) of Theorem 1.2 can now be dealt with quite easily.
The following observation, modeled after [37], Lemma 6.3, suffices.

Lemma 8.2. Suppose that the system (8.1) satisfies conditions (a), (b), and
(c) of Theorem 1.2. Further suppose that at least 16 of the di are zero or
that at least 6 of the ci are zero. Then the equations (8.1) have a non-trivial
integral solution.

Proof. Suppose that at least 16 of the di are zero. Then by a rearrangement
of the variables, we may suppose that d1 = · · · = d16 = 0. It then follows
from condition (a) of the theorem that s ≥ 23, and thus we know from
Baker [3] that there are integers y17, . . . , ys, not all zero, such that

d17y
3
17 + · · ·+ dsy

3
s = 0.

Now write Ci = ci for i = 1, . . . , 16 and C17 = c17y
5
17 + · · · + csy

5
s . Then

by Lemma 8.1, there are integers u1, . . . , u17, not all zero, satisfying the
equation

C1u
5
1 + · · ·+ C17u

5
17 = 0.

The s-tuple x = (u1, . . . , u16, y17u17, . . . , ysu17) is now a non-trivial integral
solution to the system (8.1). A similar argument, invoking condition (b) of
the theorem, applies to the case where at least 6 of the ci are zero. �

Theorem 1.2 now follows in cases (ii) and (iii). Note that the infinitude
of solutions asserted by the theorem follows immediately from the existence
of a single non-trivial solution, in view of the homogeneity of the system.

Notice that condition (c) of the theorem was not actually needed to es-
tablish Lemma 8.2. In order to obtain a suitable analogue of the lemma
when k or n is even, however, one not only needs condition (c) but also
some additional maneuvers (see for example [37], Lemma 6.4) to ensure the
solubility of the auxiliary equations occurring in the proof.

In order to establish Theorem 1.2, we may suppose from now on that
s ≥ 32, that at most 15 of the coefficients di are zero, and that at most
5 of the coefficients ci are zero. By rearranging variables, we may further
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suppose that the first m of the di are zero and that the last n of the ci are
zero. On writing h = s−m− n, we then have

(8.2) m ≤ 15, n ≤ 5, and h ≥ 12.

Let fi(α) and Fi(α) be as in §7 (with k = 5 and n = 3), and write

F(α) =
m+h−2∏

i=1

fi(α)
s∏

i=m+h−1

Fi(α)

We also introduce the shorthand notation

gi(α5) = fi(α5, 0) and Hi(α3) = Fi(0, α3).

The integral

N(P ) =

∫
T2

F(α) dα

gives the number of solutions of the system (8.1) with

xi ∈ A(P, R) (1 ≤ i ≤ m + h− 2) and 1 ≤ xi ≤ P (m + h− 1 ≤ i ≤ s).

We estimate N(P ) by dissecting into major and minor arcs as in (7.2). The
following lemma takes care of the minor arcs.

Lemma 8.3. For some δ > 0, one has∫
m

F(α) dα� P s−8−δ.

Proof. By using the trivial inequality |z1 · · · zr| ≤ |z1|r + · · ·+ |zr|r, we find
that∫

m

F(α) dα�
(

sup
α∈m
|Fl(α)|

)2 ∫
T2

|fi(α)|h−2|gj(α5)|m|Hk(α3)|n dα

for some i, j, k, and l satisfying

(8.3) m + 1 ≤ i ≤ m + h− 2, 1 ≤ j ≤ m, m + h + 1 ≤ k ≤ s,

and l = m + h− 1 or m + h. We introduce the abbreviations

(8.4) f = |fi(α)|, g = |gj(α5)|, H = |Hk(α3)|.
Now by arguing as in the proof of Wooley [37], Lemma 7.3, we find that

fh−2gmHn � P s−32
(
f 30 + f 16H14 + f 14g16 + g16H14

)
.

By combining the results of §6 and [32] with the argument of the proof of
[37], Lemma 7.2, we find that∫

T2

(
f 30 + f 16H14 + f 14g16 + g16H14

)
dα� P 22.113201 + P 22.077363.
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Finally, by applying Theorem 5.1 of Baker [2] as in the proof of Lemma 7.1,
we obtain

sup
α∈m
|Fl(α)| � P 15/16+ε,

and the lemma now follows on noting that that 1/8 > 0.113201. �

We now define the pruned major arcs N as in (7.7). In order to handle
the pruning argument, we need some further mean value estimates.

Lemma 8.4. Suppose that i, j, and k satisfy (8.3). Then one has the
estimates∫

T2

|fi(α)18Hk(α3)
8| dα� P 18,

∫
T2

|gj(α5)
18Hk(α3)

8| dα� P 18,∫
T2

|fi(α)8gj(α5)
18| dα� P 18,

∫
T2

|fi(α)|32 dα� P 24.

Proof. By considering the underlying diophantine equations and applying
the Hardy-Littlewood method, it follows easily from the results of [32] that∫ 1

0

|g(α)|18 dα� P 13,

and one also knows from Theorem 2 of Vaughan [28] that∫ 1

0

|H(α)|8 dα� P 5.

The first three estimates of the lemma now follow by imitating the proof of
Wooley [37], Lemma 9.1, and the final estimate follows from Lemma 7.3 on
making a change of variables. �

We are now in a position to complete the pruning argument. As in the
proof of Lemma 8.3, we have∫

M\N
F(α) dα� P s−32

∫
M\N

F 2(f 30 + f 16H14 + f 14g16 + g16H14) dα,

where f , g, and H are as in (8.4) for some i, j, and k satisfying (8.3), and
where we have written F = |Fl(α)| for l = m+h−1 or m+h. On applying
Hölder’s inequality, we obtain the estimates∫

M\N
F 2f 30 dα�

(∫
M\N

F 32 dα

)1/16(∫
T2

f 32 dα

)15/16

,

∫
M\N

F 2f 16H14 dα�
(∫
M\N

F 18H14 dα

)1/9(∫
T2

f 18H14 dα

)8/9

,
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M\N

F 2g16H14 dα�
(∫
M\N

F 18H14 dα

)1/9(∫
T2

g18H14 dα

)8/9

,

∫
M\N

F 2f 14g16 dα�
(∫
M\N

F 18f 14 dα

)1/9(∫
T2

f 14g18 dα

)8/9

.

After making trivial estimates and recalling Lemmas 7.2 and 8.4, we find
that each of the four integrals above is O(P 24W−σ) for some σ > 0, and we
conclude that

(8.5)

∫
M\N
F(α) dα� P s−8W−σ.

It therefore suffices to deal with the pruned major arcs N. On taking W
to be a suitable power of log P , we find as in §7 that

(8.6)

∫
N

F(α) dα = S(W )J(W ) + O(P s−8W−σ)

for some σ > 0, where S(W ) is as in (7.11), and where

J(W ) =

WP−5∫
−WP−5

WP−3∫
−WP−3

m+h−2∏
i=1

wi(β)
s∏

i=m+h−1

vi(β) dβ.

The completed singular integral is now given by

J =

∫ ∞
−∞

∫ ∞
−∞

m+h−2∏
i=1

wi(β)

s∏
i=m+h−1

vi(β) dβ,

and by the appropriate modifications of (7.5) and (7.6), we find that

J � P s

∫ ∞
0

∫ ∞
0

(1 + P 3β3)
−n/5(1 + P 5β5)

−m/5(1 + P 3β3 + P 5β5)
−h/5 dβ.

In view of (8.2), we see that whenever s ≥ 21 one has

J � P s

∫ ∞
0

∫ ∞
0

(1 + P 3β3)
−6/5(1 + P 5β5)

−6/5 dβ � P s−8

and J−J(W )� P s−8W−1/5. Moreover, the argument of Lemma 7.4 applies
with only minor changes to show that J � P s−8. For the singular series,
we first note that by (7.4) we have

S(q)�
q∑

a=1

q∑
b=1

(q,a,b)=1

(q−1/5+ε)s(q, a)m/5(q, b)n/5,
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since (q, b)1/3q2/3 ≤ (q, b)1/5q4/5. Whenever T ≥ 1, we have as in the proof
of [37], Lemma 10.6, that

q∑
c=1

(q, c)T ≤
∑
d|q

dT (q/d)� qT+ε,

so on recalling (8.2), we see that

S(q)� q−s/5

q∑
a=1

(q, a)3

q∑
b=1

(q, b)� q4−s/5+ε.

Whenever s ≥ 26, it follows that S � 1 and S −S(W ) � W−τ for some
τ > 0. Moreover, the argument of the proof of Lemma 7.5 allows us to
conclude that S > 0. It therefore follows from (8.6) that∫

N

F(α) dα� P s−8,

and the proof of Theorem 1.2 is now completed on recalling (8.5) and Lemma
8.3.
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[5] R. C. Baker and J. Brüdern, On pairs of additive cubic equations, J.

reine angew. Math. 391 (1988), 157–180.
[6] B. J. Birch and H. Davenport, On a theorem of Davenport and Heil-

bronn, Acta Math. 100 (1958), 259–279.
[7] Z. I. Borevich and I. R. Shafarevich, Number theory, Translated from

the Russian by Newcomb Greenleaf, Pure and Applied Mathematics,
vol. 20, Academic Press, New York-London, 1966.
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