
IRRATIONAL LINEAR FORMS IN PRIME VARIABLES

SCOTT T. PARSELL∗

Abstract. We apply a recent refinement of the Hardy-Littlewood method to ob-
tain an asymptotic lower bound for the number of solutions of a linear diophantine
inequality in 3 prime variables. Using the same ideas, we are able to show that
a linear form in 2 primes closely approximates almost all real numbers lying in a
suitably discrete set.

1. Introduction

Suppose that F is a form with real coefficients, not all in rational ratio. When
F is diagonal and indefinite, a version of the Hardy-Littlewood method developed
by Davenport and Heilbronn [6] allows one to demonstrate that the values of F at
integral points are dense in the real line, provided that the number of variables is
sufficiently large in terms of the degree. A quite different method of Margulis [9] in
fact establishes such a conclusion for arbitrary indefinite quadratic forms in three
variables, and work of Schmidt [12] allows one to consider non-diagonal forms of odd
degree. The Davenport-Heilbronn method seeks to exploit the irrationality of F to
show that the relevant product of exponential sums has its only substantial peak
near the origin, and one typically achieves this by restricting the main parameter
to a sequence determined by the denominators occurring in the continued fraction
expansion of one of the coefficient ratios. While this approach is often sufficient to
demonstrate that there are infinitely many solutions x to an inequality of the shape
|F (x)−µ| < η, one drawback is that it does not yield the expected estimate for the
number of solutions lying in a box unless the box size happens to coincide with an
element of the sequence mentioned above. In particular, the method does not give
estimates that are valid for all sufficiently large boxes, as one normally desires.

When the form F is definite, its values will not be dense, but one may instead
hope to establish that the gaps between its values tend to zero near infinity. The
type of strategy described above, however, would yield at best the conclusion that
there exist arbitrarily small gaps between values. To recover control of the limiting
process, one often imposes a hypothesis that certain coefficient ratios are algebraic
(or badly approximable). Then, without restricting the parameter governing the
box size, one can show that abnormally large exponential sums would lead to ratio-
nal approximations that are incompatible with such a hypothesis, except possibly
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on a set of very small measure. This restriction to algebraic coefficients, while un-
desirable, has in fact been imposed in a number of papers dealing not only with the
topic at hand [4, 7] but also with systems of diophantine inequalities [3, 5, 11].

A recent innovation of Bentkus and Götze [2] provides a remedy for both types
of defects mentioned above. One of the main results of [2] deals with gaps between
values of positive definite quadratic forms, and further development of these ideas by
Freeman [8] yields asymptotic estimates for the number of solutions of inequalities
involving indefinite forms. We seek here to apply this new method to provide similar
conclusions concerning the values of irrational linear forms at prime arguments.
As with the conventional version of Goldbach’s problem, one can make interesting
statements about both binary and ternary forms.

Our first result deals with indefinite forms in three primes. Let N(X; η) denote
the number of solutions of the inequality

|λ1p1 + λ2p2 + λ3p3 − µ| < η (1)

in primes p1, p2, p3 not exceeding X. The following theorem provides the expected
lower bound for N(X; η).

Theorem 1. Suppose that λ1, λ2, and λ3 are non-zero real numbers, not all of the
same sign, and not all in rational ratio. Then given any η > 0 and µ ∈ R, there is
a number X0 = X0(λ, µ, η) such that for X ≥ X0 one has

N(X; η)� ηX2(log X)−3,

where the implicit constant depends at most on λ.

We mention that Vaughan [13] has already shown that there are infinitely many
solutions to (1), and in fact it is a simple matter to obtain such a result with
η replaced by a negative power of log X, where X = max(p1, p2, p3). Vaughan’s
paper in fact demonstrates using zero-density estimates and a zero-free region for
the Riemann zeta function that η can be replaced by the function X−1/10(log X)20.
Results of this type are not obtainable by the Bentkus-Götze-Freeman method, and
it has been pointed out by A. Baker (see [14], exercise 11.4) that such improvements
are in fact impossible in the situation of Theorem 1. That is, for any explicit function
η(X) tending to 0, there are choices of the λi, and arbitrarily large X, for which the
inequality (1) becomes insoluble when η is replaced by η(X). Thus one is forced to
choose between a result that quantifies the rate of decay and one that captures the
asymptotic density of solutions.

We now formulate a statement concerning positive binary forms in two primes.
Given a set of positive real numbers Z, we say that Z is η-spaced if every two distinct
elements of Z differ by at least η. Write E(X;Z; η) for the set of all z ∈ Z ∩ [1, X]
for which the inequality

|λ1p1 + λ2p2 − z| < η (2)

has no solution in primes p1, p2, and let E(X; η) denote the supremum of |E(X;Z; η)|
over all η-spaced sets Z. The following result may be viewed as an approximation
to the conjecture that the gaps between the values of λ1p1 + λ2p2 tend to zero near
infinity.
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Theorem 2. Suppose that λ1 and λ2 are positive real numbers with λ1/λ2 irrational,
and fix ε > 0. Then there is a function Φ(X), depending at most on λ and ε, such
that Φ(X) = o(X) as X →∞ and

E(X; η) ≤ η−2−ε Φ(X)

for every η with 0 < η < 1.

In fact, if R(z; η) denotes the number of solutions of (2), then our methods may
be adapted to give the expected lower bound R(z; η) � ηz(log z)−2 for almost all
z in a given η-spaced set. The conclusion of Theorem 2 should be compared with
the superior bound of η−2X2/3+ε obtained by Brüdern, Cook, and Perelli [4] in
the special case where λ1/λ2 is algebraic. In that case, one can potentially obtain
non-trivial information when η is nearly as small as X−1/3, since the cardinality of
Z ∩ [1, X] may then be nearly as large as X4/3. In the more general situation of
Theorem 2, however, η must be taken somewhat larger than Φ(X)/X, and we have
no information about the rate at which this function approaches zero.

We recall for comparison that Montgomery and Vaughan [10] have obtained a
bound of the form X1−δ for the exceptional set in the binary Goldbach problem,
and that this bound improves to X1/2+ε under the Generalized Riemann Hypothesis.
Furthermore, it is noted in [4] that the bound in the algebraic case of Theorem 2
can be replaced by something slightly better than η−2X1/2+ε under GRH. However,
it seems that GRH would have no consequences so far as the general version of
Theorem 2 is concerned. The weakness of our bound therefore appears to result
mainly from issues in diophantine approximation rather than from poor information
about primes in arithmetic progressions.

In light of the prime number theorem, it is convenient to consider the weighted
exponential sum

f(α) = f(α; X) =
∑
p≤X

e(αp) log p. (3)

Our success depends primarily on being able to establish a non-trivial estimate for
the product f(λ1α)f(λ2α) when λ1/λ2 is irrational and α lies in the region away
from the origin but bounded above by a carefully defined function tending (perhaps
very slowly) to infinity. Section 2 is devoted to establishing such a result and also
to providing suitable estimates for f(α) in mean value. The proofs of Theorems 1
and 2 then follow with little difficulty in Sections 3 and 4, respectively.

The author gladly thanks Bob Vaughan and Koichi Kawada for conversations
that motivated this work, Eric Freeman for patiently describing his version of the
Bentkus-Götze method, and Trevor Wooley for suggesting the type of argument
given in Lemma 1 below.

2. Estimates for the exponential sum over primes

We start with a lemma expressing the general philosophy that large exponential
sums yield good rational approximations to the coefficients.
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Lemma 1. Suppose that |f(α)| ≥ X/A, where A ≤ log X. Then there exist coprime
integers q and a satisfying

q � A2 and |qα− a| � A2X−1.

Proof. We may clearly suppose that α ∈ [0, 1), for then the result extends to all real
α by periodicity after adding a suitable multiple of q to a. Define a set of major
arcs M to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ LX−1} (4)

with (q, a) = 1 and 0 ≤ a ≤ q ≤ L, where L = (log X)B and B is a sufficiently large
constant. By Theorem 3.1 of Vaughan [14], one has

f(α)� (log X)4(Xq−1/2 + X4/5 + X1/2q1/2) (5)

whenever |qα − a| ≤ q−1 and (q, a) = 1. If α /∈ M, then we may use Dirichlet’s
Theorem to obtain coprime integers q and a satisfying

L < q ≤ XL−1 and |qα− a| ≤ LX−1,

so on taking B ≥ 12, we see from (5) that

f(α)� X(log X)−2. (6)

Now suppose instead that α ∈ M(q, a) ⊆ M. Then it follows easily from [14],
Lemma 3.1, that

f(α) =
µ(q)

φ(q)
v(α− a/q) + O(X exp(−C

√
log X)) (7)

for some constant C, where

v(β) =

∫ X

1

e(βu) du. (8)

The bound

v(β)� X(1 + |β|X)−1 (9)

is immediate, and we also recall that

φ(q) ≥ q
∏
p≤q

(
1− 1

p

)
� q

log 2q
,

by Mertens’ theorem. Therefore one has

f(α)� X log 2q

q + |qα− a|X (10)

whenever α ∈M(q, a) ⊆M, since the expression on the right of (10) then dominates
the error term in (7). On combining (6) and (10), we find that for any α ∈ [0, 1),
there exist coprime integers q and a for which

f(α)� X

(log X)2
+

X log 2q

q + |qα− a|X .
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Thus if |f(α)| ≥ X/A, where A ≤ log X, we see that

A−1 � log 2q

q + |qα− a|X .

It follows immediately that q � A1+ε and hence also that |qα− a| � A1+εX−1 for
any ε > 0. �

We note that a version of Lemma 1, with an additional power of log X in the two
bounds, would follow directly from (5) without incorporating major arc information.
Such a result, however, would not be adequate for our purposes, as the proof of the
following lemma exploits the case where A is a constant, and the result that q is
then also bounded by a constant is crucial to the argument.

Lemma 2. Suppose that B and T are fixed positive numbers, and write I(X) for
the interval [LX−1, T ], where L = (log X)B. Then whenever λ1/λ2 is an irrational
number, one has

lim
X→∞

sup
|α|∈I(X)

|f(λ1α)f(λ2α)|
X2

= 0.

Proof. If the statement is false, then we can find ε > 0 and sequences of real numbers
{Xn} and {αn}, with Xn →∞ and |αn| ∈ I(Xn), such that

|f(λiαn; Xn)| ≥ εXn (i = 1, 2)

for each n. Thus by applying Lemma 1 with A = 1/ε, we obtain a sequence of
integral 4-tuples (q1n, a1n, q2n, a2n) with

(qin, ain) = 1, qin � 1, and |qinλiαn − ain| � X−1
n (i = 1, 2), (11)

where the implicit constants of course depend on ε. It follows that there are
only finitely many distinct choices, depending on ε, T , λ1 and λ2, for the 4-tuple
(q1n, a1n, q2n, a2n), and hence there is a 4-tuple (q1, a1, q2, a2) that occurs for infin-
itely many n. Moreover, since each αn lies in the compact interval [−T, T ], there
is a subsequence S of these latter n along which αn converges to a limit, say α0.
If α0 = 0, then for sufficiently large n we have |αn| ≤ (2q1|λ1|)−1 and hence (11)
implies that a1 = 0. But then αn � X−1

n for large n, which is impossible since
|αn| ∈ I(Xn). Hence we must have α0 6= 0, so on letting n→∞ through S, we see
from (11) that

qiλiα0 = ai (i = 1, 2),

and thus λ1/λ2 = a1q2/(a2q1), contradicting the hypothesis that λ1/λ2 is irrational.
�

Before proceeding to the proofs of our theorems, we record an optimal mean value
estimate for f(α).

Lemma 3. Whenever s > 2, one has∫ 1

0

|f(α)|s dα� Xs−1.
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Proof. First of all, by orthogonality and the prime number theorem, one has∫ 1

0

|f(α)|2 dα� X log X. (12)

We now consider a Hardy-Littlewood dissection as in the proof of Lemma 1. Define
M as in (4), and put m = [0, 1) \M. Write s = 2 + δ, where δ > 0, and set
B = 4/δ + 8. Then by (5) and the argument leading to (6), one has

sup
α∈m
|f(α)| � X(log X)−2/δ,

which in combination with (12) gives∫
m

|f(α)|s dα�
(

sup
α∈m
|f(α)|

)δ ∫ 1

0

|f(α)|2 dα� Xs−1(log X)−1.

Moreover, by (10), one has∫
M

|f(α)|s dα� Xs
∑
q≤L

(log 2q)sq1−s
∫ ∞

0

dβ

(1 + βX)s
� Xs−1,

and the lemma follows. �
Of course, it is immediate from (12) that the mean value considered in Lemma 3

is bounded by Xs−1 log X, but such a result does not suffice in our situation because
of the lack of quantitative information available in Lemma 2.

3. Indefinite ternary forms

Given the estimates of the previous section, the proof of Theorem 1 is essentially a
routine exercise. Before starting the analysis, we make some simplifying reductions.
First of all, by relabeling variables, we may clearly suppose that λ1/λ2 is irrational.
If λ1/λ2 > 0, then both λ1/λ3 and λ2/λ3 must be negative, and at least one of
these must be irrational. Thus by further relabeling, we may suppose that λ1/λ2 is
irrational and negative. Additionally, we may replace each λi by −λi and µ by −µ if
necessary to ensure that λ3 > 0, and we may suppose after possibly one more switch
that λ1 > 0 and λ2 < 0. Finally, after dividing both sides of (1) by min(λ1, |λ2|, λ3),
we may assume that for each i one has |λi| ≥ 1.

We suppose throughout that X is sufficiently large in terms of λ, µ, and η. We
adopt the notation fi(α) = f(λiα), where f(α) is as in (3), and we introduce the
kernel

K(α) = K(α; η) =

(
sin πηα

πα

)2

. (13)

A simple calculation (see for example [1], Lemma 14.1) reveals that

K̂(t) =

∫ ∞
−∞

K(α)e(αt) dα = max(0, η − |t|), (14)

and we note also the obvious bound

K(α)� min(η2, |α|−2). (15)
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When B ⊆ R, we define the integral

IB(X; η) =

∫
B

f1(α)f2(α)f3(α)e(−αµ)K(α) dα.

Then in view of (14) we have

IR(X; η) =
∑

p1,p2,p3≤X
K̂(λ1p1 + λ2p2 + λ3p3 − µ) log p1 log p2 log p3

≤ η(log X)3N(X; η).

In order to prove Theorem 1, it therefore suffices to establish the estimate

IR(X; η)� η2X2, (16)

where the implicit constant depends at most on λ.
Write L = (log X)B, and define the major arc to be the interval

M = {α : |α| ≤ LX−1}. (17)

We first obtain a lower bound for IM(X; η). When α ∈M, one has by (7) that

f(α) = v(α) + O(X exp(−C
√

log X)),

where v(α) is as in (8). Let us write vi(α) = v(λiα). Since meas(M) � LX−1, it
follows easily that

IM(X; η) =

∫
M

v1(α)v2(α)v3(α)e(−αµ)K(α) dα + O(X2 exp(−C1

√
log X)).

Furthermore, on using (8) and (9), we find that

IM(X; η) = J(X; η) + O(X2(log X)−2B),

where

J(X; η) =

∫ ∞
−∞

∫
[1,X]3

e((λ1u1 + λ2u2 + λ3u3 − µ)α)K(α) du dα.

Now on interchanging the order of integration, we see that

J(X; η) =

∫
[1,X]3

K̂(λ1u1 + λ2u2 + λ3u3 − µ) du. (18)

Let U denote the set of (u1, u2) for which

X/2 ≤ λ1u1 ≤ 2X/3 and X/4 ≤ |λ2|u2 ≤ X/3.

If X is taken large enough so that |µ| ≤ X/12, then for any (u1, u2) ∈ U , we have
X/12 ≤ λ1u1 + λ2u2 − µ ≤ X/2. Hence for each point in U there is an interval
V (u1, u2) for u3, of length η/λ3 and contained in [1, X], on which the integrand in
(18) is at least η/2. It follows that J(X; η)� η2X2 and therefore

IM(X; η)� η2X2. (19)
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We divide the remaining region into minor and trivial arcs as follows. In view of
Lemma 2, we can find a non-decreasing sequence of positive numbers Xm, tending
to infinity, such that

sup
LX−1≤|α|≤m

|f1(α)f2(α)| ≤ m−1X2

whenever X > Xm. Now define the function T (X) by taking T (X) = m when
Xm < X ≤ Xm+1, and write

m = {α : LX−1 < |α| ≤ T (X)}
and

t = {α : |α| > T (X)}.
We seek to demonstrate that the contribution from each of these regions is o(X2).
First of all, we have by (15) and the trivial inequality xyz ≤ x3 + y3 + z3 that

It(X; η)�
∑

n>T (X)

n−2

∫ n

n−1

|fi(α)|3 dα

for some index i. Thus, after a change of variable, it follows from Lemma 3 and
periodicity that

It(X; η)� X2

T (X)
, (20)

and this bound is indeed o(X2) since T (X) → ∞. For the minor arcs, the trivial
inequality x3y3z4 ≤ x10 + y10 + z10 yields

Im(X; η)� sup
α∈m
|f1(α)f2(α)|1/4

∫
m

|fi(α)|5/2K(α) dα

for some index i. But by construction we have

sup
α∈m
|f1(α)f2(α)| = o(X2),

so on making a change of variable and applying Lemma 3 and (15) as in the treat-
ment of t, we find that

Im(X; η) = o(X2). (21)

Theorem 1 now follows immediately on collecting (19), (20), and (21).

4. Positive definite binary forms

The analytic set-up used to establish Theorem 2 is slightly different from that of
the previous section, but the analysis itself requires essentially the same techniques.
Let η ∈ (0, 1), let Z be an η-spaced set of real numbers, and write R(z; η) for the
number of solutions of the inequality (2) in primes p1 and p2. We may again suppose
after suitable rescaling that λ1 ≥ 1 and λ2 ≥ 1, since the set cZ is obviously cη-
spaced. Let X be a positive real number, sufficiently large in terms of λ, and define
the set

E∗ = E∗(X;Z; η) = {z ∈ (X/2, X] ∩ Z : R(z; η) = 0}.
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We introduce the exponential sum

H(α) =
∑
z∈E∗

e(−αz),

and let K(α) be as in (13). As in §3, it follows from (14) that the integral∫ ∞
−∞

f1(α)f2(α)e(−αz)K(α) dα

is zero unless the inequality (2) has a solution. We therefore have∫ ∞
−∞

f1(α)f2(α)H(α)K(α) dα = 0, (22)

and this relation provides the starting point for our analysis.
We use the exact same definitions of M, m, and t as in §3 to analyze the various

contributions to this integral. We shall also find it convenient to write m∗ = m ∪ t.
By following the analysis of the previous section, one sees immediately that∫

M

f1(α)f2(α)H(α)K(α) dα =
∑
z∈E∗

(
J(z; X; η) + O(X(logX)−B)

)
,

where

J(z; X; η) =

∫ X

1

∫ X

1

K̂(λ1u1 + λ2u2 − z) du1 du2.

Whenever z ∈ (X/2, X] and λ1u ∈ [z/4, z/2], there is a corresponding interval of
length η/λ2 for u2, contained in [1, X], on which the integrand above is at least η/2.
Hence J(z; X; η)� η2z, and∫

M

f1(α)f2(α)H(α)K(α) dα� η2XY,

where we have written Y = card(E∗). By (22) and the Cauchy-Schwarz inequality,
we may conclude that

η2XY �
∣∣∣∣∫
m∗

f1(α)f2(α)H(α)K(α) dα

∣∣∣∣� J
1/2
1 J

1/2
2 , (23)

where

J1 =

∫
m∗
|f1(α)f2(α)|2K(α) dα

and

J2 =

∫ ∞
−∞
|H(α)|2K(α) dα.

Now fix ε ∈ (0, 1). By (15), we have K(α) � η1−εα−1−ε, so on considering
separately the sets m and t and making use of Lemmas 2 and 3 as in the argument
at the end of §3, we find that

η−1+εJ1 = o(X3), (24)
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where the implicit function depends at most on ε and λ. Moreover, in view of the
spacing condition on Z, we have by (14) that

J2 =
∑

z1,z2∈E∗
K̂(z1 − z2) = η Y.

Substituting this into (23) gives

η2XY � (J1η Y )1/2 ,

and thus (24) yields
η2+εY � η−1+εJ1X

−2 = o(X).

The bound for E(X; η) claimed in Theorem 2 now follows by summing over dyadic
intervals.
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[3] J. Brüdern and R. J. Cook, On pairs of cubic diophantine inequalities, Mathematika 38 (1991),

250–263.
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