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Notes on Rogawski’s Calculus: Early Transcendentals
Scott Parsell

§2.1—Limits, Rates of Change, and Tangent Lines

Example 1. The distance in feet that an object falls in ¢ seconds under the influence of
gravity is given by s(¢) = 16¢%. If a ball is dropped from the top of a tall building, calculate
its average velocity

(a) between t =3 and t =4
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(e) between ¢t = 3 and ¢ = 3.001
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What appears to be the instantaneous velocity of the ball at ¢ = 37

16 e



In general, if an object’s position is given by s(t), then the average velocity aver the

interval [ty, 11] is
As _ s(t1) — s(t)

At Tt —t
By allowing the point ¢; to move closer and closer to ty, we are able to estimate the instan-
taneous velocity at #o. This process of computing what happens as t; gets very close to
(but never equal to) 4o is an example of taking a limit.

Even more generally, the average rate of change of the function y = f(z) over the

interval [zg, 1] is
ég _ f(z1) — f(=z0)
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Geometrically, it is the slope of the secant line connecting the points (zy, f(zq)) and (x4, f (z1)).
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By allowing the point z; to move closer and closer to zg, we obtain the tangent line
to the graph of ¥ = f(z) at the point z = zy. The slope of the tangent line at z, is the
instantaneous rate of change of y with respect to z at the point z.

Example 2. Find the slope of the secant line on the graph of f(z) = ® for each of the
following intervals.

(a} [0, 0.5] (b) [0,0.1]
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What appears to be the slope of the tangent line to the graph at'z = 07 What is the
equation of this tangent line?
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§2.2—Limits: A Numerical and Graphical Approach

As we saw in the previous section, in order to make sense of instantancous rates of change,
we need to understand the concept of limits.

Definition. If we can make f(z) as close as we like to L by taking z sufficiently close to
¢, then we say that the limit of f(z) as z approaches ¢ is equal to L, and we write

lim f(z) = L.

¢

In other words, this statement means that the quantity | f(z) — L| becomes arbitrarily small
(but not necessarily zero) whenever x is sufliciently close to (but not equal to) c.

Note: In the previous section, we used numerical data to analyze

o 1682 — 144 - |
lim and lim .
t—3 t—3 2—0

Important points:

1. We must consider values on both sides of .
2. The limit may or may not exist.

3. The value of f at x = ¢ is irrelevant.

Example 1. Use numerical and graphical data to guess the values of the following limits.
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One-sided limits

lim f(x) = L means f(z) approaches L as x approaches c from the right

z—ct

lim f(z) = L means f(x) approaches L as z approaches ¢ from the left

T

We have lim f(z) = L if and only if lim f(z) =L and lim f(z) = L.
T—re z—ct T—rc”

Example 2. Compute each of the following limits for the function graphed below.

i .
} Y= Tix)
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(a) Jim_ f(z) (b) lim f(z) () lim f(z)
= 3 = does vl exist
(d) lim f(z) (e) lim f(z) - (f) lim f(z)
= 2 ' - 2 = 2

Infinite Limits
We write lim f(z) = oo if the values of f(x) become arbitrarily large and positive as z
approaches c.mgimilarly, we write :L]i[g f(z) = —oo if the values of f(z) become arbitrarily
large and negative as z approaches ¢. Similar definitions apply to one-sided infinite lirnits.
Notice that if lim f(z} =4oco or lim f(z) =+co then the line z = ¢ is a vertical

z—et

asymptote for the graph of y = f(x).

Example 3. Evaluate each of the following limits.
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§2.3—Basic Limit Laws

While numerical data and graphs often provide useful intuition about limits, relying

exclusively on this type of information can give misleading results if a function has subtle
behavior that is not captured by our data. Therefore, we need to develop explicit methods

for

computing limits. The following example illustrates some of the basic principles.

Example 1. Evaluate each of the following limits.
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From the reasoning in parts (a) and (b) we can say in general that for any constants k&

and ¢ we have

Iim k=£& and lim z = c.
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We can also generalize the observations from parts (¢) and (d). Assuming that lim f(z) and

T—C

lim g{z) both exist, we have the following limit laws:
r—rC

(1) Sumns and Differences: liin (f(z) £ g(z)) =lim f(z) + liin g(z)
T—C T—rC T—+C

(2) Constant Multiples: For any constant k, we have 1i£ﬂ kf(z) =klim f(z)
T—¥C T—rC

(3) Products: lim f(z)g(z) = (EEE; f(a:)) (lim g(ﬁ))

T—c r—rcC

(4) Quotients: lim = 3¢ provided that lim g(z) # 0.
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§2.4—Limits and Continuity

The reasoning from Example 2 of §2.3 shows that the limit of any polynomial or rational
function can be found by direct substitution, provided the limit of the denominator is not
zero. This property is known as continuity and is shared by many familiar types of functions.

Definition. We say that f is continuous at z = c if lim f(z) = f(c).
xT-3C

This implicitly requires checking three things:
(1) f(e) exists (i) lim f(z) exists (iii) the numbers in (i) and (ii) are equal.
r—C

If ¢ is an endpoint of the domain, we use the appropriate one-sided limit instead. A point
where f is not continuous is called a discontinuity.

Example 1. At what points does the function graphed below fail to be continuous?
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Notice that there are various ways in which a function can fail to be continuous—for
example, a hole in the graph, a finite jump, or a vertical asymptote.

Example 2. Sketch the graphs of the following functions near z = 2 to illustrate the
nature of the discontinuity there.
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Useful facts:

1. Sums, differences, products, quotients, powers, roots, and compositions of continuous
functions are continuous at all points of their domains.

2. Polynomials, rational functions, root functions, trigonometric functions, exponentials,
and logarithms are continuous at all points of their domains.

2 + sin(z?
Example 3. For what values of z is the function f(z) = _ZL(E) continuous?
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Note that the definition of f(z) in Example 4 automatically ensures that the limit as
approaches 3 from the left is equal to f(3), so we say that f is left-continuous at z = 3.
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§2.5—Evaluating Limits Algebraically

We saw in Example 2 of §2.4 that the behavior of a function near a point where both
the numerator and denominator approach zero can sometimes be analyzed by cancelling a
common factor. These “0/0” limits occur frequently when dealing with instantaneous rates
of change, so we illustrate here some of the algebraic manipulations that can be useful.
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Example 5. Evaluate %il% 2+ hf); — f(2), where f(x) = %

Note: This is the instantaneous rate of change of f at z = 2.
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§2.6—Trigonometric Limits

Example 1. Calculate li_r}% z?sin(1/z).
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The reasoning used in Example 1 is a special case of the following theorem.

The Squeeze Theorem. Suppose that I(z) < f(z) < u(z) for all z # ¢ in some open
interval containing ¢. If imI(z) = liin u(z) = L then lim f(z) = L.
T—rc r—rc T—C

An important application of the Squeeze Theorem is the following result, which we pre-
dicted numerically in Example 1{(b) of §2.2.
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Example 2. Evaluate the following limits.
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Review of the Unit Circle. If your trigonometry is rusty, now would be a good time
to check out §1.4 in the text. In particular, recall that the z and y coordinates of a point on
the unit circle at an angle 6 (measured counter-clockwise from the positive z-axis) are given
by 2 = cos# and y = sinf. Hence the Pythagorean Theorem immediately gives the identity

cos? 0 +sin® 8 = 1.

Moreover, by generalizing to a circle of radius r, we obtain the familiar right-triangle rela-
tionships given by SOHCAHTOA. You should also remember the values of sin€ and cos#
at the special angles in the first quadrant:

0 10| n/6 | w/4 | w/3 | 7/2
sing | 0| 1/2 [+v/2/2|+v3/2] 1
cosd | 1(~3/2]+2/2] 1/2 | 0

It’s then easy to move to other quadrants using a reference angle, remembering that sine
is positive in Quadrants I and 11 and cosine is positive in Quadrants T and IV. Everything

about the other four trig functions follows from what we know about sine and cosine via

sin 8 cot9=0089 ool — 1,

tanfd = _—
A sinf’ cos 6

cos @’

In particular, it's easy to show that

1+tan?0 —=sec? and cot?@+1 = csc? 0.
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§2.7—The Intermediate Value Theorem

An important property of continuous functions is that they do not “skip over” any y-
values. The precise statement is as follows:

The Intermediate Value Theorem. Suppose that f is continuous on [a, b] and f(a) #
f(b). Then for every value M between f{a) and f(b), there exists at least one value ¢ in the
interval {a, b) for which f(c) = M. ys 20
)

M

Pe ISR

Tay

Example 1. Show that the function f(z) = z* + z® + 1 takes on the value 10 for some
z in the interval (1,2}. .
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Root-finding. An important corollary of the TVT is that if f is continuous on [a, b]
and f(a) and f(b) have opposite signs, then the equation f(z) = 0 has a solution in (a,b).
By applying this repeatedly, one can find roots of equations to arbitrary accuracy. The
algorithm, known as the Bisection Method, is illustrated in the following example.

Example 2. Find an interval of length 1/4 in which the equation 2* + z+ 1 =0 has a
solution.
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§3.1—Definition of the Derivative

The slope of the secant line connecting the points P(a, f(a)) and Q(a-+h, f(a+h)) on

the graph of f is
Ay _ fla+h)~ fla)

Az h
This is the average rate of change of f over the interval [a, a -+ A].

The slope of the tangent line to the curve y = f(z) at the point P(a, f(a)) is

h—{} h

1

provided the limit exists. This is the instantaneous rate of change of f at z = a and is
also called the derivative of f at z = a. By setting x = a + h, we can alternatively write

ff(a) = lim f(x) —' f(a)

r—ra xr—a

1

which is sometimes easier to work with. NERED)

Example 1. Find the derivative of the function f(z) = 1622 at = = 3.
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Example 2. Find the equation of the tangent lineff(:c) = +/z + 1 at the point (3,2)
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Example 3. Find the equation of the tangent line to f{z) = 1/z* at the point (—1,1)
S0 5 lim SQ-\%) - B0
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§3.2—The Derivative as a Function

The derivative of the function f(z) with respect to the variable z is the function f’

whose value at z is

o) — lim LD = F(2).

h—+0 h

The process of calculating a derivative is called differentiation.

_ . dy d , ,
We sometimes write o O d_x[ f{z)] instead of f'(z).

Example 1. Use the above definition to find the derivative of the following functions.
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Some Basic Rules:

d
1. Derivative of a Constant Function: ~d—~(c) =0
z

d
2. Power Rule: —;(x”) = nz™! when n is a constant.

d
3. Derivative of the Natural Exponential Function: E(e”’") = ¥
4. Constant Multiples: %[C f(z)] = ef ()

5. Sums and Differences: %[f(a:) + g(z)] = f'(z) L ¢'(z)

Example 2. Find the derivative of each of the following functions.
5] e
(a) f(a:):3:c5—4:c3+;2-—|-6 (b) f(a:)zfle”—%l{)%—i—g

T co ~3
S T I 2

-
= =4

T30 oy S e ©
YY) , -4
He™ u‘rlc-—gir;%%"ﬁ(“%c' )

1

S0 = 305N 3T 5 (267 5

— " z [T9) . Je
S R X = "l(i?( 1 ﬁ_z - i_
K g#h 4

A function f(r} is differentiable at z = ¢ if f/(c) exists. There are several ways a
function can fail to be differentiable:
1. Corner 2. Cusp 3. Vertical tangent 4. Discontinuity

\/ \/ ‘ \
i
i /O
Theorem. Differentiability implies continuity. In other words, if f has a derivative at
z = ¢ then f is continuous at z = c.
The converse of this theorem is false! Continuity does NOT imply differentiability—see

the corner, cusp, and vertical tangent examples ahove.

Example 3. At What points does the function graphed below fail to be differentiable?
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§3.3—The Product and Quotient Rules

Differentiating products and quotients is not quite as simple as differentiating sums and
differences. For example, consider writing z° as the product z° - z2. The product of the-
derivatives of the two factors in the second expression is 3z? - 2z = 62°, but we know that
the derivative of this product is really 5z*. This shows that the derivative of a product is
NOT equal to the product of the derivatives. Instead we have:

The Product Rule: {(x)o(s)] = /(x)g'(z) + (@) f'(x)

Example 1. Find the derivative of each of the following functions.

(a) h(z)=(z*+3z + 1)e*
L\[(‘A) < [;{2{.3.}(%1>.6x “+ ex.-QZ%’—FB)

< (\xz*kl’)_x%-"f‘) C’/x

(b} P(z)= (3223 + 2¢*)(4 — 279)

T = (3x2/3+ ze“) (Sx""") P (L(m{s)(zx%ﬁr 2ef<>

Example 2. A company’s revenue function is given by R(z) = zq(z), where ¢(z) is the
number of items it can sell at a price of $x apiece. If ¢(10) = 200 and ¢'(10) = ~13, what is
R'(10)7

R&) = X qx)
2 RG) = xqle) v )
ZORe) = feql(le) t )
= lo(-13) + 200
- 70 Corclusion + A Price
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Likewise, simple examples show that the derivative of a quotient is NOT equal to the
quotient of the derivatives. The correct result is as follows:

ot Ruder 4 [£@)] _ 9@)1' @)~ fa)g(a)
The Quotient Rule: . L?(CC)} ()P

Example 3. Find the derivative of each of the following functions.

(a) hlz) = <=
, (x43) "1 = X Sec”
) (x7¢3)°
_ 3 - Hx®
(«St3)”
b) Fl@) ==
F'(x) (T-Ry[xe v ] = xe® (~3 <)
(7-R)°

T

Example 4. Find the equation of the tangent line to the curve y =

at the point

0,1/2 e
() /) A\d . (?(.‘_?_). 67’6 _ e/x‘ -\
e (%%2’)1
=) ?EVS \ ~ 2z (‘30 - € _ A
hx \xzg T - 4
vaskion S U BN
B W3 g Lo



§3.4—Rates of Change
Recall that the instantaneous rate of change of y == f(x) with respect toz at z = ¢ is

dy| oy Jla+h)— fla)
Em: _f(a’)"*“}ll_i% A 3

a

provided the limit exists. This is the limit of the average rates of change of f over smaller
and smaller intervals of the form [a,a + Al.

Some examples:
s(t) = position &'(t) = velocity
v(t) = velocity v'(t) = acceleration
Q(t) = charge Q'(t) = current
W (t) = work/energy W'(t) == power
P(t) = population P'{t) = population growth rate
R(x) = revenue from producing z units R/(z) == marginal revenue

C(z) = cost of producing z units C'(x) = marginal cost

Example 1. The position (in meters) of a particle moving along the s-axis after ¢ seconds
is given by s(t) = £t° — 2% + 3t for t > 0.
{a) When is the particle moving forward? Backward?

Sftt) = SL-?)'EZ-- 224 ¥ 3 VCLG&::{'\:)
= 4T - ut r3
= (“{7-3)(_%’\\
R\Mw& E t"l, t 23
+ - +

‘ Bochword : < ¥< 3

{(b) When is the particle’s velocity increasing? Decreasing?

\/f(’o) =2t mecelsretion.,
- 2 (’c~2,)
- t
— = I‘nc.\mgfwa . t7 2
2
Dzorecﬂsisvj : t<2
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Example 2. A rock thrown vertically upward from the surface of the moon at a velocity
of 24 m/s reaches a height of s = 24t — 0.8¢? meters in ¢ seconds.
(a) Find the rock’s velocity and acceleration at time t.

ViE) = 24 - L6k

C’\(“U) -~ 1.6

{b) How long does it take the rock to reach its highest point? What is its maximum
height? .
\!(&,) - 24 - lLet = ©

=5 oz ZL% o = \§ geC,WALg

s(is) £ 24-ls ~ o5 ()]

= “50 nebers

Example 3. Suppose that the cost of producing z washing machines is C{z) = 2000 -
100z — 0.1z2.

(a) Find the marginal cost when 100 washing machines are produced.
Cfey = Qoo - G2
C((Lao) = loo- 0.2 (1eo)
= ¥ go per mackine

(b) Compare the answer to (a) with the cost of producing the 101st machine.

Acvoal.  cest of Pmﬂk@c{wg 1ol st mackdwe s

C(ret) - ¢ = 2000 t {evrlo) - 9] (ac;)?‘
— 26pg - %000 o,i(zrzo'j?‘
= %79 90

Nobe - c'(tec) & Qw_(ioi)‘ctlao)

lot - {po
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§3.5—Higher Derivatives

When we compute the derivative of a function f(z), we get a new function f'(z). If we
take the derivative of the function f'(x), we get another new function, which is called the
second derivative of f{x) and denoted f”{z). For example, the derivative of position with
respect to time is velocity, and the derivative of velocity with respect to time is acceleration;
therefore we say that acceleration is the second derivative of position: a(t)} = v'(f) = ¢"(¢).
We can continue this process to get higher derivatives:

(@) = > 1) =

{1st derivative)

r
() = %[ (2)] = % (2nd derivative)
'z = d%[f”(a:) = % (3rd derivative)
F9(z) = L[z = % (4¢h derivative)

and so on.

Example 1. Find the first, second, third, and fourth derivatives of the function f{z) =
10 — 5zt + 3z + 2.

‘g'f(?q = t@,(‘i - 20‘;’{ 3
-{y”(ﬂ = ‘10;('% "“G@Kl

5!”6&) = 20 ;(7 = {20 x

Example 2. Find f”(1) for the function f(z) = z%¢®.
$10) = et w el 3
= el C < % ”:ich)
1;”0‘) . (i’( ( 3%y Gx} N (K.'?,'[‘ ,S?{z) CK
- e*(xg* Gr' 4 6x)

ED) e (1¥ 6+ )

7

= 3¢
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§3.6—Derivatives of Trigonometric Functions

Our goal in this section is to find formulas for the derivatives of the 6 basic trig functions:

d . - _ d S

a—m(SIH.ﬁl‘) = (es ¥ T (cotz) = CoC™ %

%(cosx) = ~sin ¥ &%(sec:c) =  Sec x btan x
d

@(tan:c) = Setx a»;(csc:c) = -Csc ¥ CoL X

To find a formula for the derivative of the function f(z) = sinz we must return to the
definition of the derivative in terms of a limit, which we studied in §3.2:

oy fle+h)— flz)
f(z) = lim . _

h—0

Here the trigonometric identity

sin(z -+ h) =sinzcos h -+ coszsin h

will help us get started, and we will need to recall two special trigonometric limits that we
calculated back in §2.6:

in h h—1

lim 22 =1 and  lm ST =0,

A0 b0 h

- St +h) - Sin %
é’ (‘Si‘vx ‘76) = hw\, th (‘?{3 )
Ax s ¢ h
= I Sip 3 Cos bk + cas X Sk 7 Sim X
- W -
h—o i’\,
- Sin x (cog h-l) T o5 % Sl
E Iiww A ; e
b~y o N
— . S’(V\ lf\
x Sin % Liva tos b — 1 L tos % lin
hIo b T b
e —— e
© i
= Lvs X
- " ) A _ .
A Sivn \ow X u‘me,‘,\ft WES L cos :«,> = Cin
\ d J dx (
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Example 1. Find the derivatives of the following functions.

(a) f(z)=a%sinz + 2cosx
S0y = x oces o b (Sin )2k T 2 S X

= ')(,2 et X 4\-(\?—% "'Z) Sim X
A

(b) g()

- t —sint

4(5) = -

!

t

Example 2. Use the quotient rule to find the derivatives of tan z and secz.
( §mns\ow M’a\/w»*s ALy
d d $la % to b % amd CsC %
IR ( Ton x ) = - —
dx AX es X

tes x ¢ Ces x  ~ S X C—’s{‘h x)
( eos :a)g"

'3 o
g res W o fin X

J———

eos T K

- 2
“ii = Sec «x
Cos™ %

i

s (o) fx (5:??6)

sec x tow x

H

A\



Example 3. Find the derivatives of the following functions.
(a) f(z) =€e"secz + 2tanz

x B

Sec X (E’;Xmac e w 2§ec?6>

I+ cotd
(b) 7(0) = 3 —4decsch

Qeg’ "—Xcsa@) (_cSC'&@) - (\'t cot ®> (3@ T L‘lt‘.jc@"-@")ﬁe>

(6% Resce )’

YJ!CG) =

§3.7—The Chain Rule

How do we differentiate compositions of functions like €%, cos(z?), v/23 + 1, or sin® 2?

Suppose that y = f(u) and u = g(z), so that y = flg(z)). It is helpful to think of f as
the “outer” function and g as the “inner” function.

ay _
) : . du . . :
approximately 2 units change in u, which then gives approximately 6 units change in y.

If we have % = ¢'(z) = 2 and f'(u) = 3, then a 1 unit change in z gives

fa :E_
K T oy, T Y
: du ' d
| e T2 a3
(A 2 waite 32 = ¢ uvweils

ch_ﬂe AN Y CL»AMSE, e e e

CMQ.

d d
This heuristic argument suggests that —z - d—z— = f(u)g(z) = f'(g(z))g' (z). This
is in fact true whenever f and g are differentiable and is known as the Chain Rule.
. d ' /
The Chain Rule:  —[/(4(2))] = (5(2))¢' (@)

In words, this says that the derivative of a composition is the derivative of the outer
function, evaluated at the inner function, times the derivative of the inner function.
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Example 1. Find the derivatives of the following functions.

(a) h(z) = &> sibee = S(u) e
. Flewy = e
1\’(?0) = 62% L .
’ TS sl ‘3(%) = 2w
£ ae O

(b) h(z) = cos{z?) odec + £ (m) T oees W

) Frituy = —Sih w
L) = (- si‘n(xz))~ 2x “)
- 2z
(RN ' el 3(;%} = K
= = 2x Sin (x1> (=) & 2x
(¢) h(z) = VZ®+ 1 Ya

cuber ° ﬁz(u):m =

Ve L 2 -7 e e
hiody = & ()7 3% oy = g w2 o
N Y ® Tnhey s (%) = %t}
2'\\1}{%'{' | f]f(?fa = 3%A_
~ ‘1 5 i.s‘
(d) h(z) =sin*z = (&~ x) oubor © Fiw) & ow
,3 J}’Lu> = Lt U\b
}\'m) = (s{a\ x} © TS X ) )
' Ve ¢ 9 Loc) = Sw K
TY s s x 47x) = cos x

Exainple 2. Find formulas for the velocity and acceleration of a particle whose position
is given by s(t) = 5 cos(2t).

) e 0 2
=10 sin (2t)
ae) = cg (ces (20)) - 2
= T 20 ces (2%)
2

i1



In many problems, the Chain Rule must be applied in combination with other rules
such as the product and quotient rules. It is also possible to have a composition within a
composition, f(g(h(z)), which requires more than one application of the Chain Rule. The
following examples illustrate these more challenging situations. '

Example 3. Find —;—% for the following functions.

(a) y = ¢* cos3z

i‘i s e (= siw %)’% + (cos ‘*’w) e 2%

2 ' -
= ¢ (\27@ cos 3%~ 3 Siw D?C\)

(b) y = sin{vz*+ 1)

-1 3
: . . 72 3
ij = CGS(.?(‘*LQ.] ) . “:%_ (X 1*\) . Hox
Ax _ | |
- 1’7(3 cm(m)
() bl
tan(e*®
(C)y=($—2+—1)6
2 ’ , , 2 2
ay (1) - ose () ze - (o (7)) 7 6 Ce41) - 2x
;\-'k_ - (klﬁ_\)\?_

(d)y=+/1+/1+x

- -1

)/"2.‘-_.‘[_?(?_
, 2

7
;T]

o -

T .
dy l(l*i(«%ﬁ ) i(
dx 2

: 347°
() y = cos®(sin®z) ~ LCOS ((Sih %) )J

— -

By (e (G )] Con () 3 (i) - wes x
AK _
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§3.8—Implicit Differentiation

Example 1. Find the equation of the tangent line to the circle 2?4y =4 at {1,V3).

Solution #1 (Solving for y):

2 . z
’\3 = f—( - ?Q
i a = l ;_‘;__d?_ ("CU\S 1‘\@;“?
=) ~3 N
j 8 &b cutcle
= d ‘ . 2y V2
SRR e
RS -
- X
Ja-x> Setion -
-1 |
4-15 - T (x-1)
3y -~ ?
7L \ i G L L4 3
A K o=y N3 = R L + 33
Yoy gt
Solution #2 (Differentiating implicitly):
Thide & 4= £6)
4 T, 1 - n )
o (egt)y = G .
Then = (47)
hLﬂ, (:L'X
=Y 2 & 2y 01—3 = G 2
,?( _ Dr{., ¥ . =
= 5 U]
-‘L} H
= 9 = 4 Coy ! .
2 Ko * s k] £
‘ - . &y
=) CD:\_ﬁ = -?f- A :'j "9\7’:
o 9
oy o
= - \ I So  wE 3(‘( thre St
dhx (‘i@) {3 R
EQUEI i A abeve

In many of our examples it will not be possible to solve for y, so we'll be forced to use

the second method.

Basic procedure for implicit differentiation:
1. Take the derivative of both sides with respect to z. In doing this, we think of 4 as a
function of z, so derivatives of expressions involving y require the Chain Rule.

d
2. Solve algebraically for il by collecting all the terms containing = on one side of the
T

equation and then factoring and dividing,.
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Implicit differentiation can be used to prove the power rule for rational exponents once it

has been proved for integer exponents. For instance, if y — %3, then we can write y* = z?
and hence

d
2—ym2:.r:

— dy 2 2z 2
dx de 3y 3z%3 3

3y

1/3

Example 2. Find the slope of the tangent line to the curve 3z'y? — Tzy® = 4 — 8y at
the point (0,1/2).

5(9@“‘,23? 1 sz:"l-&gD ”‘7(%-'?332?3 +-‘:)."36[ ) =g 3;%(

- x
Ty My PR N SN day
T R Py ek T O I o
Hoodw o R el 4y ) EA S Y
G 3 Tx l?‘\j T v & = = 7‘:] | 2 = Y
(QL\ = 21 x +-¥) Yy - 97 “'\-2%3“1
" \3 kj A j J
3 - 3‘:" s
=3 éﬁ = r?xj - l2x N
d & e N
b x 9 A\?ﬂj 1 4
= | R N7 L
de Yoy F —3 = e

d
Example 3. Find d—g for the curve zcosy + ycosz = 1.

i

' o A
%« (=5 9) fi%i b (s y)e1 v g (ser) bl ) P2 -

. \PP )
= = 8 Siw +  Cos x ) 9 = Si x  — 98 Y
( ) ) Ix J
S ox o~ Cos U
=3 ﬂi‘d - J 3

ha s X~ X St Y
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§3.9—Derivatives of Inverse FFunctions

Review of Inverses. A function is one-to-one if no y value occurs for two different
values of x. For example, f{z) = z° is one-to-one, but f{z) == z? is not. This definition
is captured graphically by the Horizontal Line Test: a function is one-to-one if and only if
no horizontal line intersects its graph more than once. If f is one-to-one, then there is an
inverse function ! defined by

FHy) =1 <= [f(z) =y.

The domain of f~! is the range of f, and the range of f~! is the domain of f. The graph
of f~1 is the reflection of the graph of f across the line y = z. Note that f and f~! “undo”
each other, meaning that f(f~'(z)) =z and f71(f(x)) = 2.

1
Warning: ' (z) is NOT the same as ——.
g: [ (z) @)

Example 1. Find the inverse of the function f(z) = 2z + 1.

M oe 2 4 3

L

The Inverse Trig Functions. Even though the trigonometric functions are not one-to-
one, we can define inverses for them by restricting their domains to intervals on which the
functions are one-to-one. For example, sin z is one-to-one on the interval —7/2 < 2 < /2
and cosz is one-to-one on the interval 0 < x < w. Moreover, these functions cover the full
range of i values between —1 and 1 as z runs over these restricted intervals. Tt is often
helpful to think of the values of inverse trig functions as angles.

e y = sin" !z is the number in [—7/2,7/2] for which siny = x

L% is the number in [0, 7] for which cosy =z

® Yy == COS
e y = tan"! z is the number in (—7/2,7/2) for which tany =z

y = cot ™ z is the number in (0, ) for which coty =z

1

e y = sec™tz ig the number in [0,7/2) U {n/2, 7] for which secy ==z

e y = csc !z is the number in [—7/2,0) U {0, 7/2] for which cscy =z

Example 2. Evaluate each of the following.
(a) sin'(3) (b) cos™(—3) (c) tan™1(1)

I
&
il
L
i
3
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Example 3. Convert cos (tan“l(g)) to an algebraic expression in x.

Toon  oos (ke (%))

bk & =t (%)
. x
s tam & T 75 = cos O
. 3
K
The Derivative Formulas:
d 1 1 d 1 d 1
—(sinTt 1) = ——— —(tanTl ) = —(secly) = ——cm
izt )= iz )= mr &'t ) |zlv/z2 —1
- ot ]
\ﬂ = Sin X% %
_ 3
<__-_-—"J S"W‘\_ /\3 = OQ ‘mﬂ.
o oy U k-kﬂ = A
= cos J &x
1
=5 al__\f Py N '\ - o
A €05 Y ==~
The derivatives of the inverse “co” functions are just the negatives of these. For instance,
sinT'z+cos 'z =2 = cosloz=%—sin"lz = (cosT'z) =—(sin"!a).
Example 4. Find the derivatives of the following functions.
(a) y= (sin™ z)% + cos™(z*)
‘{*\7\ 2 ] A
{R'L = 3 (5'\}»4 x) o L - \ - 3%
x Ny T
(b)) y=a?tan 1z + sec 1z
S L= , N I
oL s g (bad 2 ) 2 & 5 (s # <l T
dac s s

Derivatives of inverse functions in general. If f is one-to-one and we write g = f1,

then we have f{g(z)) = z, so differentiating both sides using the Chain Rule gives
1

fllglz)d' (z) =1 = ¢'(z : X
(9{z))g' (=) g'(=) @)
For instance, in Example 1 we have f(z) = 2z + 1 and g(z) = 1z — §, so f/(z) = 2 implies

that ¢'(z) = 1/f(g9(z}) = 1/2. This is exactly the technique we used for sin™' z above, and
we will use it again in the next section to find derivatives of logarithmic functions.
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§3.10—Derivatives of General Exponential and
Logarithmic Functions

Review of logarithms. Suppose that ¢ > 0 and a # 1. The function ¥ = a” is one-to-

one, so it has an inverse, namely f!(z) = log, z. The domain of log, z is (0, o), and the
range is (-—o00,00). Thus we have

y=log,z &= o' =uz.

In other words, log, z is the power that we must raise a to in order to get z. In particular, we

have a'°8a® = z for all z > 0 and log, a® = z for all z. There are 3 main algebraic properties
of logs to remember:

(1) log,(zy) =log,z +1log,y (2) log,(z/y) =log,z —log,y (3) log,s" =rlog,=

The case where the base a is e = 2.71828 occurs so frequently that we use the special
notation Inz to stand for log, z, so that y =Inz <= &Y =1z,

Derivatives of Logarithmic Functions. We already know how to differentiate e”,
and we can use this to find the derivative of Inz via implicit differentiation:

9

/lj = ln x = ¢ = %
= 93y = 4 Thus we have
S
d /. i
o\‘ _L . i e ( lin 3() - —
=Y 9 = ¥ - —
A% e? % A x

Example 1. Compute the derivatives of the following functions.

(a) y=2a*Inz+In(cosz)

ﬁ‘j — kar"‘L ‘{* (lh ?c)“ ;.):b “‘* B 2
J,";;@ B x Ceg X

-3 -

- ¥  + Ix i LI Tan

(b) y= (Inz)" + In(ln(ln z))
f A 4

e (hx)  tnz %

dy s ©i
ng = 7(%96) P9

Remark. By writing 2™ = ¢®") = ¢*!"% we can use the Chain Rule and the formula for
the derivative of Inz to prove the power rule for any real exponent n:

d n d nlnz nlnz n__ n TL__ n—1
a(m)—a(e ) =e o=l == ngt
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Example 2. Find the derivatives of the following functions.

(a) y=2° (b) y =logyz
n Y = % ln 2 23 s %
S W MY 5 S da
Y dx 2 (n2) = =]
= C&j = Y in 2 =2 i'-\é = {
A ’ A% L?,?’ 2
o
= R a2 ~ _l____
Y ln 2
The calculations in Example 2 generalize to show that

d

d 1
rg(aw) =a“lnag  and £(log& x)

" zlna
whenever a is a positive constant. Note that the formulas for the derivative of ¢* and Inz
are special cases of this, since lne = 1.

Example 3. Find the derivatives of the following functions.
(a) y =sec(3%logyy )

dy

"3 ; i 3% - + Uu %) 3;‘7 Y %]
A = see® l“’ﬁiex) T (3 “’ju*) [ e ln 10 e _

(b) y = 5% +logs(tan*(z%))

61"] Sim %
A«

o

|

(In5) ces (f%“(xs)) Wy % £

Example 4 (Logarithmic differentiation). Find the derivative of the function y = z*
by first taking the natural log of both sides and then differentiating implicitly.

w = * o [PV = % %
R ? 3
= A Chj - e+ (la :{)1
§ dx x (
iy 1 + ln %
= Ay -
v\ﬁ(/



§4.1—Linear Approximation and Applications

The tangent line to the curve y = f(z) at x = a is given by y — f(a) = f'(a){z — a), or
y = fla) + fl(a)(z — a).
Thus when z is close to a we have the approximation f(z) = f(a) + f'(a){z — a).

¥

I ;‘}J{o\) (x-a) = gi(}l) Ax

1
|
|
sl

A%t

F{a)

1
T

1
L3

o, -/

This is called the linear approximation or tangent line approximation to f af a.

The function
_ L(z) = f(a) + f(a)(z — a)
is called the linearization of f at z = «a.

Nks 3() = G5 e 5

Example 1. Let f(z) = /7 and a = 25.
(a) Find the equation of the tangent line to f at x = 25, and write down the linearization

Cirn L =i ’ . A= \ R )
s(%) = Ji;{ S =) :?(QS'J = ‘é‘ pis) = ;{%5 = ‘ILG; 3\0?&,

3~ 5 F «iit_ {%-25)

Eﬁ\\)t&)ﬁf@n
-3 Y = 5 o+ %‘5 (q{ - 15) ’b‘ﬂu,-.i\u,\?c Vime.
L(ac) = 5o ﬁ (=~ QS‘) Wneoe veadion
(b) Use the linearization from part {a) to estimate V26, /23, and /28.
EQ = ?(Q-;) g L,(zf:,) = T+ _l;é (25-35) - 5
oy = ;F(z:a) & W (m) = 54 \43 (23- 25‘) = M3
{2y = 5G9« L{28) = 5+ ’llo (28-25) = 5.73

(c) Analyze the quality of the approximations from {b) by completing the following table.

z | Linear approx L{z) f(z) = /z via caleulator | Error = |f(z) — L(z)|
26 5, | e = 5,099¢(95._.. 0.0609%3. _,
23 4. 8 A3 = 4. 7958305.... 0, tosles .
28 5.3 7 = s.291s026 0. G084 T ...
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Example 2. Use a linear approximation to estimate each of the following;:
(a) sin(0.02)

(b) /3.06
SOy = stw k. A F 9, Ry =0 FCr) = 3%, % T8 +(8) ;/32
e L ‘“?/3 = g_fcg = Lo®
5“’(,4) = cos K =7 g’(’a‘) = | ¥ Cﬁ) = 3 X =2 ) 3 \
- : R
y-0 T 1(%@0) "3_2 = '('2“'(7‘“'8)
= »ﬁ LS t&hamt ii.v\.z = j PO B TLZ C;UHS?)
Lix) 5 % Veearizekion Lix) = 2+ TLz (x-8)
———n . ) - ;L ‘\Jcn(l,r)
siw {0-02) & L (w.o2) = 0.0 e, ee & L(E,o@) = 7% {2 (e
- ‘ 2.005
(c) 093 (d) In(0.95)
S = K ) a0 F) 7 Fey = e a s 1 (1) = o
siey = et Sy 7 oy = ;‘C— = §FC0y = |
y-oU o7 1(?{,~c) Yy ~a = i(b»l)
=) 3 = |+ % N y - -\
LL%) = \'i‘ X L('?C) - % '_\
QU!OE a L ({)-63> = ’l +0.03 ti (O."’[E) Pd L ('O,ﬁ§> = 0,95 - {
= 1:03 = - 0,05-

When we are primarily interested in estimating the change in a given quantity, it is
sometimes more convenient to rewrite the linear approximation in the form

flz) — fla) = f'(a)(z - a) or Af = f'(a)Az,

where Az =z —aand Af = f(z) — f(a). A typical application involves the analysis of error
propagation, as in the following example.

Example 3. The edge of a cube is measured at 30 cm, with a possible error of £0.1 cm.
Estimate the maximum possible error in computing the cube’s volume.

Volume VU&) - ox” whave, % = 1%3{«% it on ef{ﬁe,
2 =3
Vi) = 3x" nEee
Ax = T o,
Se AN & V(*) aw

= v30) (for)

(3]

- 3'[30')2 (o) =t 270 owm
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§3.11—Related Rates

Suppose that two or more quantities are related by some equation. For instance, if C' is
the circumference of a circle and r is the radius, then C = 2zr. As another example, if a
and b are the legs of a right triangle with hypotenuse ¢, then o? + b = 2.

If the quantities involved change with time, then we can differentiate both sides of the
equation with respect to ¢ to derive a relationship between the rates of change:

dC dr da db de
.g. — =2r— or 20— + 2b— = 2c—.
“4 i dt “E TR T E

If some of these rates of change are known, then we may be able to use these equations

to solve for the unknown rates of change.

Example 1. The radius of a circular oil spill is increasing at a constant rate of 1.5 meters
per second. How fast is the area of the spill increasing when the radius is 30 meters?

A = 'ﬂ“f} Qiven - j{% = .5

’\‘ — Worl te Trede % when = 30
Tudione & T

tl—i\\ = Zgvr de
Ak VT dx
= gg-30 0 Ls o= fdew

" .Z.'
The SF{U’S Greo. 1S fmtrtws‘{wj ol o vode ""\? low ‘m/s'er.
o s iestonds

Example 2. Boyle’s Law states that when a sample of gas is compressed at constant
temperature the product of the pressure and the volume remains constant. At a certain
instant, the volume of a gas is 600 cubic centimeters, the pressure is 150 kPa, and the
pressure is increasing at a rate of 20 kPa per minute. How fast is the volume decreasing at

this instant?
G(ve,m . N = feo P-(se,

P\f = CWE%@\)‘JE AP
RO
dv i : L
- Y T 0 e Py AV
6%5{: + U‘U\,_ Wcunt % ‘ﬂvxck : CUC
5o Cak_\f + Gon - 20 o O
Al
v - 12006
_— = = - o
AL Y 8

Tln,e, Y C‘KU\'\(\L is (:"kwtc\ 51 \/\.j o & rglt‘e O_{l 8 o C\m;/ .
N ! 7oy
wy Tas et
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Example 3. A ladder 25 feet long is leaning against a vertical wall. The bottom of the
ladder is being pulled horizontally away from the wall at a constant rate of 3 feet per second.
At the instant when the bottom of the ladder is 15 feet from the wall, determine

(a) how fast the top of the ladder is sliding down the wall
(b) how fast the angle between the top of the ladder and the wall is changing

Givenm C%; 2
.- ol & e -
Waek 1 {"Eh& (}éé 1 &E \r‘l«eﬂr\ x = 15 ; | 20
/
VR \(2 = 2\5—2 Simte ]':'?'Jsz: 2‘51
— cs\ et\ _
= 9. s g = = O
- LN toe / AT
= 2153 + P-2g- f_‘ﬁ = 0 =y 'd_ﬂ = "‘_‘Ll_
at s 4
Ly Sie & o= A -
=2 g & “_j:_g - ._.‘Ik é‘_?_j{—
S 25 '
- d& 3
= o d & - L =3 — = e
25 A% ) 15 7 At 2

AL 1 \_wg‘tcwjf, e ft'j‘r s s“'\rob{hﬁ Q"Scfw'v\ G\.t' % 'p‘t’//ge,c Bb\n& "JC)\P»Q,
&mﬁ{,@, 15 TRTE G {V\j ok %//I’.o \”1(\[/5'&4: .
Example 4. A tank has the shape of an inverted cone with height 16 meters and base
radius 4 meters. Water is being pumped into the tank at a constant rate of 2 cubic meters
per minute. How fast is the water level rising when the water is 5 meters deep?

. A~ .
Vs %‘W"“EL Qiven o v Lgt
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§4.2—FExtreme Values

Let f be a function with defined on some interval 7. We say that f(a) is the absolute
maximum of f on I if f(a) > f(z) for all z in I. We say that f(a) is the absolute
minimum of f on I if f(a) < f(z) for all z in I.

Note: The absolute maximum and minimum values refer to the largest and smallest y
values on the graph, not the z values at which they occur.

We say that f has a local maximum at z = ¢ if f(¢) > f(z) for all z in some open
interval containing ¢. We say that f has a local minimum at ¢ if f(¢) < f{z) for all z in
some open interval containing c.

Maxima and minima are sometimes called ertrema. Absolute extrema are sometimes
called global extrema, and local extrema are sometimes called relative extrema.

Example 1. Identify the coordinates of all absolufe and local extrema for the function
graphed below on the interval [0, 10].

Abs may ¢ H 7 deeus @ (ofuf)
Abs i ¢« — 3 T Ocewd & ('2}~3)

/\ ' Local mmax @ C 5—, 2)

t T g T \‘/ ' o LOC@L wean @ (?“f_s)%: QYJ_E\)

Example 2. Determine the absolute extrema of each function on the given intervals.
(a) y =2 {(b)y=1/z

(i) [0,2] (1) (0,3]
Abs ey ¢ X No  obs  mar

Aby i o /IJ‘LTS W L '/’-3

(if) [0,2) (ii) [3, 00)

No abe nay Alos My - VB‘

Abs wom @ O No wbe o
(iii) (0,2] (iii) [-3, 3]

AEWS' ol H

. Ng  abs max or abs min
Noooabs wdn
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Extreme Value Theorem. If f is continuous on the closed interval [a, b, then f attains
both an absolute maximum and an absolute minimum value in [a, b].

A number ¢ in the domain of f for which f'(c) = 0 or f'(¢) does not exist is called a
critical point of f. The only possible places where local and absolute extrema occur are at

critical points or at endpoints of the domain.

Example 3. Find the absolute maximum and minimum values of the function f(z) ==
z* — 12z + 1 on the interval [~3, 5].

gf('?‘)t e -l = O

= Xx = X 92 Lk okl Y“ts

Tegt, entiad ‘\Zt‘; ‘:& awnd Vt‘g

5(-3) < fo £(2) = ~\s Abs vein
Example 4. Find the absolute maximum and minimum values of the function f(z) =
2/3 -
753 — 102%/% on the interval [—8, 8]. | Test  ceitical pho 4 gt
5 7—/3 %i ~ /3 .
g CK) ? 3 " 5(‘ 5) = -7 Abs  sun
- ,35 “/3 (7(»"1) $(e) = o Abs wex
N 5 ¥~ 15,12
Cv el F%@ . X = 5 R K= O C&) (5.1
| 7 r %C%) = -~ &

5 ’(‘i) =Q gf(cv n Ajv,{_,‘hu(

Example 5. Find the absolute maximum and minimum values of the function f(z) =
z?Inz on the interval {£, c0).

SleeN = Al n 2L
T - v, o(x)
_ B 5~ !f/ — _H_,_',L P -
X (2 x) =0 (e ™) Se o, i8%
=5 Ve o {1+ 2 lwx = 0 Ce -1 [T v N &\;g AL
., 2e
Mot = g o= 7) -
A in " /Z gl‘h":’t li—m _S:{?(B = 00/
L he e
=7 K= e thoere 6 W0 atoe [



§4.3—The Mean Value Theorem and Monotonicity

The Mean Value Theorem. Suppose that y = f(z) is continuous on the closed interval
la, b and differentiable on the open interval (a, ). Then there is at least one point ¢ in (a, b)

for which 16— f(a)
b —a - f (C)'
The picture that makes this “obvious”: 3{0?@, $/tey

RERL

!

F\/ f[o?e {1(/'0‘) ~£(2)

b-o

i
4

b

A — -

/ 4,
Consequences of the MVT. One useful interpretation of the theorem is that there is

some point in the interval at which the instantaneous rate of change is equal to the average
rate of change. Another important consequence is the following:

Increasing/Decreasing Test:

If f'(z) > 0 for all  in some interval, then f is increasing on that interval (4.e., the y
values are getting larger).

If f'(z) < 0 for all z in some interval, then f is decreasing on that interval (i.e., the y
values are getting smaller).

Example 1. Show that the function f(z) = z® + 2z + 4 is always increasing.

Yo s 356 2 0y 00 e ool x

7

<o 5 15 @J\wm\(,s fmwms{wﬂ bf} the E/D test

Example 2. For what values of z is the function f(z) = ze™* decreasing?

-/ ) - -
S = o x(-e") +oe
T (mxa) erit pr: X = |
T i ~ 5 ’ So & s clec'rcc;,sf@xﬂj
1 " _
S S on the jeterval

(ijaa")
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First Derivative Test for Local Extrema: Suppose that ¢ is a critical point of a differ-

entiable function f.
$o FI? o
1. If f’ changes from negative to positive at ¢, then f(c) is a local minimum. \/
< {
$iye N Fco

2. If f’ changes from positive to negative at ¢, then f(c) is a local maximum. ]
¢

3. If f" does not change sign at ¢, then f(c) is neither local maximum nor a local minimum.

AR AP
e El
[
Example 3. Find the intervals on which the function f(z) = 3z* — 42® — 1222 + 5 is
increasing and decreasing, and identify all local extrema of the function.

g 3
Sy = 12x -~ lax - 24k

- 2
~ 11;( (K - K - 'l)
Crit ?\?
’ 7{:-0},:’./ ~\

= \zx(xw.z)(w‘r\)

- + ~ . % 37
L | ¢
i !
N - ™ 2
ool lycer local
Pt ey e

Y iw—crﬁm%‘»i%a > (-1, O) 4 (2/@) Local waximun @ x50

5‘ ':S é\g_u—-en&g';hltj Cmn (-— 00} - {) %‘ (0; ) ') LC’C:G'/X W\“,hlAMGL @ }( = 7 il/ 1

Example 4. Find the intervals on which the function f(z) = z* — 1523 +4 is increasing
and decreasing, and identify all local extrema of the function.
o 2.
5’(}\ = by - H9x
-~ 5}( 2 ( x 2‘» q )

14
NI
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T 5T (%-3) et 3) ot gte s ks
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§4.4—The Shape of a Graph

Concavity
f is concave up < [’ is increasing <= " >0
f is concave down <= f'is decreasing <= f" < {

Four basic shapes of graphs:
(a) f/>0, f">0 (b) />0, f"<0 () f/ <0, f7>0 (d) f/<0, f7<0

D N

A point on the graph of f where the concavity changes is called an inflection point of
f. These can only occur where f” = 0 or f” is undefined. Note that these are the local
maxima and minima of f’.

Example 1. Find the points of inflection of f(z) = 2® — 622 + 1, and determine the
intervals on which the curve is concave up and concave down.

§r(;<) = 3)&2 ~ {Z)(

$7xy = 6x -12 = 0 = x=a (EPD)
- e _:r 7 '§! Lo\ AN C. v? e (2/ :&D)
- o
~ 4 ~ § £ Cowcane  dewn  om (-w, '2,)

Second Derivative Test for Local Extrema: Suppose f” is continuous and f'(¢) = 0.

1. If f”(c) > 0, then f has a local minimum at z = c.
2. If f”(c} <0, then f has a local maximum at = = c.

3. It f”’(c) = 0, then the test gives no information. In this case, we must go back to the
first derivative test.

e.g. flz) =2* Versus flz) =z*

Example 2. Use the second derivative test to determine the location of all local maxima
and local minima of f(x)} = 3z* — 42 — 122? + 5. [Compare with Example 3 in §4.3.]
Gk

z /

ey = ey - 21 x

5o

et pret X202, -1

Sex - 2k - 24

P2 (37~ 2¢ - 2)

Ui

2

5::!(,0 = =24 <4 © 5"#[2‘) - T2 > 0 -3-‘”(”—1\): 36 > O
o lecnl  wawy @& ;(-TC)) locah  miw & x - 2, ~{
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§4.5—Graph Sketching and Asymptotes

Example 1. Sketch the graph of each of the following functions.

(a) flz) =a* —da® = xP(x-%) D X ikeccepts @ %7 9 1
= 4
§iey = Ax® T lax ety
% ., m
= L‘X_ X g) ‘ ,\ i L 3
—- _ & .f;,ﬁ K 4] ™ 2 3 ../)

;Q'f@q - ill;{z - a;{x
= 2x (x-2)
+ - 47
i —t
(R N A 5
(b) f(x)mmz/s(mi‘lj) = K‘*fn%-crc{.?\‘f) & K=o s
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- Sommm
5:'!('() = 5 x"fg - le Y Vv oy
3 3 ]
t — i
5 =1
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g
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l
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Fex)

50

5”(;2')

x> =yt

Asymptotic behavior. We say that lim f{z) = L if f(z) can be made as close as we
T-—>00
like to I by taking z sufficiently large. Similarly, we say that lim f(z) = L if f(z) can be
T——00

made as close as we like to L by taking —x sufficiently large (that is, |z| sufficiently large
and z < 0). If
lim f(x)=L  or lim f(x)=1L,

T—00 T——00

then the line y = L is called a horizontal asymptote for the graph of y = f(x).

Example 2. Evaluate each of the following limits.

. 8z*+5zx+1 _ 3z% — 10
(0) i =5 a b) a1
. §x” 5y 4 3% - 10
ftim, —T = Wi, <>
K2 ' 3 o s A
27+ 4 T e K743 4 |
— %
- 3 AL
- ltrm ¥+ x* * 7(3 N Hm ':::23 . \“9;“
7<’_:’.‘)& T Ky - X —_
94 & ® 3 {
X? L+ 24 v s
= L.r - G
. . z+2
Example 3. Sketch the graph of the rational function f{z) = T
z
XE2. i L+ 2
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§4.6—Applied Optimization

Example 1. A farmer with 600 feet of fencing wants to construct a rectangular pen and
then divide it in half with a fence parallel to one of the sides. What dimensions maximize

the area of the pen?

Wal o maxiaize A 7 gy shjet tv e

i F
Y l Constrmint 2x % 37/ = §Co |
l )
% \T‘nxm ‘?:f = Lo - T =) 4 = 200 "*-g-;a 5
7d Al x = -
%5 () x (200~ % )
o 2 ﬂv’ g wWé S'Lu«,- A ,;L
= 200 ~ 3 K
take x =150

A/‘UC) — 2080 — %X = o %c}\ \‘j: [Keleln

A’VUQ = % < 0 50 We have A mGXipavva

Example 2. You are asked to design a cylindrical can (with top and bottom) of volume
500 cubic centimeters. What dimensions should the can have in order to minimize the

amount of metal used?
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‘Evkicr_“.}f Te T Qﬁh‘it\’oqwt "TT\(“Q[—l = Koo .
TL\L‘\A i"\, - S-OU/;{TFZ , Y
2 Sug
SCry = 2ae 4 2w (T o)
TLNS e 5140{;;\(,& Toke
= Q‘ETY‘E + ]fj_’_?
i ' re 4.3 and
f |
S) = Hwe e L g he 8.6 .
r_'l_’.-.
=2 Liﬁrg - jooo
[y o 1/
= e~ E%?’/Tr) ’ & 4.3
S G Rk i R I’

3
\ﬁ

T6  wWe  hpve R WO nlmum .

44



When arguing that a critical number actually yields the optimal result, we frequently
make use of the following principle:

First Derivative Test for Absolute Extrema. Suppose that f is continucus and
that c is the only critical number of . If f(c) is a local maximum (resp. minimum), then it
is also the absolute maximum (resp. minimum).

Example 3. You are asked to design an athletic complex in the shape of a rectangle
with semi-circular ends. A running track 400 meters long is to go around the perimeter.
What dimensions will give the rectangular playing field in the center the largest area?

i X ¢ Woll 4 eutivaze A = 9y Svbyet te the
y ‘ Cons Ty oy wit 2% % Ty T Hoo .
—“} Ton x5 S (qeo -y ), e
Aly) = 3 (Heo- Ty A'(y) = ~T < ©
= Z Pty - j:: 4 b 5 we hove & maskimoe. .
A’(gﬁ - 200 — Ty = 0 Thvs ot shedtdh bedee
=y = el WG x5 oo

Example 4. A box with no top is to have volume 4 cubic meters, and its base is to be
a rectangle twice as long as it is wide. If the material for the bottom costs $3 per square
meter and the material for the sides costs $1.50 per square meter, find the dimensions that
minimize the total cost of constructing the box.,

Wort o mininsze ¢ = 3 2x + 1,5 & Y
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Lo 2 :?"‘
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Example 5. You are standing on a sidewalk at the corner of a muddy rectangular field
of length 1 mile and width 0.2 miles. You can run along the sidewalk bordering the long
side of the field at 8 mph, and you can run through the mud at 5 mph. Assuming there is
no sidewalk along the short side of the field, find the quickest route to the opposite corner.

1 o )
[&] N . .. —— -
T Wandl e vl 2 1 = \__N?‘ + 3
: % L
3 .2
- .y N N ] . b3 ) - !
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= gx = 5 4% oo.ek
=) chix® = 25x +
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Example 6. Find the volume of the largest cylinder that can be inscribed in a sphere

of radius R. What percentage of the sphere’s volume is occupied by such a cylinder?
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§4.7—IL’Hopital’s Rule

A general method for evaluating “0/0” or “oo/00” fype limits:

L’Hépital’s Rule. Suppose that either

(i) lim f(z)

=0 and limg(z)=0 or
T—ra T—a

f@) _ o F@)

s g’(a:)

(ii) lim f(x)

r—a

Then we have lim
T—a g(:c)

Example 1. Evaluate the following limits.

. ; @ . In=z
(a) lim o (b) lim —
z—0 xT o T—ro0 €T
e L
" Y N IR
£9¢ L7 x9s 4 e
= e )
1 = k :lAg.-\,{\V e
P K
) [ = O

Warning: L'Hopital’s Rule does not apply unless (i) or (it) holds. For example,

. sinz CcosS T
0 = lim =1

1111
z—=0 2 1 z—=0 1

Sometimes it’s necessary to apply 'Hépital’s Rule more than once:

Example 2. Evaluate the following limits.

1l —cosz i " e*
a) lim ——— ~ b) lim —
( ) =z—0 _’L‘z G ( ) e Tes] $4
) St K l (i?{
= ' - e g ™ = Tinn, -
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ip? H e rS vl Aoy 5d R
«
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= i = ‘
LiH fE 24

i
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Here a can be a real number or 4c0.
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We can sometimes deal with other indeterminate forms like 0 - 0o, 0°, co — oo, and 1%°
by converting them to 0/0 or oo/oc and then applying I'Hopital’s Rule.

Example 3. Evaluate the following limits.
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84.9—Antiderivatives

We say that F is an antiderivative of f if F'(x) = f(z) for all z. For example,
7% and z? + 1 are antiderivatives of 2z

sinz and sinz — 17 are antiderivatives of cosz

If F'is any antiderivative of f, then it follows from the Mean Value Theorem that the
most general antiderivative of f is F'(z) + C, where C' is an arbitrary constant. The set of
all antiderivatives of f is denoted [ f(z)dz and is called the indefinite integral of f with
respect to x. For example,

f2:£d:1:=3:2+(7 and /cosccd:czsinx—l-c.

Example 1. Evaluate the following indefinite integrals.
(a) /(:c2 + 2cosz) dr

.-.3

-5
= -cesx Y 22w C
-5
(c) /(63”’-!—356-02 z)dx
eF ) -
= %eﬂ b 3taax + C

Some Useful Indefinite Integrals

n ‘,rnJrl 1d .
/:c dﬂ:—n+1+C’ (n # -1) /E z=ln|z|+C

1
/sinkmdm=—%coskz+6‘ /coskxd:cx—i;sinkx—{—c /ek”’c&:%ek“’—l—o
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7 1
Example 2. Evaluate / (cos 27 — B5/7 + p =+ ﬁ_) dz.

Vv1-—a?
1 . ¥ : : N -
= 5 Sin 2¢ - 5 X & izl v st ox o+ C
32
- Aosin 28 - 2 w72 4 Thalx] oSt oxo v O

2

"

Note that we can split up sums and differences of indefinite integrals:

JCCEYOE [ f)do [ oo o

However, there is no such law for products:

[ @ats)io 2 [ f@de [ o(@)a.

For example,

2
/:ccos:zdm% %Siﬂ:E—FC.

Initial Conditions. If we know a function’s derivative and the value of the function at
one point, we can determine the function by first finding the general antiderivative and then
using the known value to solve for C.

Example 3. Suppose that f'(2) = 3z% and f(1) = 5. Find a formula for f(z).

X L .3
5o FW) ¢ K0t € Fae Swee cemstmet C
New §¢y =5 = (v ¢ =5 = =4

so  F) T KT A

Example 4. A particle’s acceleration is given by a(t) = 5 + 4t — 2t?, and its initial
velocity and position are v{0) = 3 and s(0) = 10. Find formulas for v(f) and s(?).

f(Feqe-2vt)de = 5t & 28’ = 2ed s
e Lrd 3 — ~ i
Se N{y) 7 ST TSt & G fv Same coteed o
wd V() 3w e = 3
se vy £ Sttt -3+ 3
v z 2 3 _i'? e .
3(\5’5""%“'"%’(3#3)& = gt +~3—«c«—%“ﬁ + 3t 4+ C
. ) 2 3 3 ; A
So s(t) = {?,f%: oot “?L £ s 3k 4 , Pe sopre. o st c.
and 5(e) = ¢ 5 0 o= o



§5.1—Approximating and Computing Area

Example 1. Estimate the area of the region bounded by the curve y = z? and the
r-axis between z = 0 and z = 2 by approximating the region with 4 rectangles of equal

width whose heights are determined using
(a) left endpoints

- 2 2«»1. 3
Lu‘;—u*%*(%)'%_*l 2+(5)
3
. (g y i i
) z k0+—ﬁ[%§‘r%>2
) - - N 7 _ ;
IR g m < LIS

(b) right endpoints

= 2 = 3,75
2 S ’5:12’__1& 7
My = (5144 ) L (@)t
: - i A 25 4 Byd
A ) (1£+15 AT 3‘:) 2
7T
vl _ -
LT T2 o 2e2w
AR ¥

Using a larger number of rectangles gives a better estimate of the area, and we define
the exact area to be the limit of these approximations as the number of rectangles tends to
infinity. In order to add up a large number of terms, it is convenient to use sigma notation:

N
S aj=ar+tay+az+--+ay1+ay
j=1

Example 2. Evaluate the following:

Vet
™

N

.
i

1+ 243+t 5+ ¢+ 7 28

if

2.

5 2 2 - =
(b)Y 7 = Fx 2733 44 a5 . 25
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Example 3. Use sigma notation to write the right-endpoint approximation Ry for the
area of the region bounded by the curve y = 22 and the z-axis between z = 0 and x = 2.

2
=~

wiakl o ewdh Wc'tm'\ngﬂe_, = "

I

\ ® i : 2
helght f jth vetongle 2 %\)
n
2
™

. |
}

1\1‘2‘{22
Re= 2 ()8 -

3=

il

To find the exact area under the curve, we need to find a way to express Ry (or Ly or
Mpy) in closed form so that we can compute the limit as N — oo. In general, it is quite
difficult to do this, but there are many special cases that can be handled; for instance:

Zj:N(N2+1) wd 3 N(N + 12N +1)

j=1 i=1

Example 4. Calculate the exact area of the region bounded by the curve y = z* and
the z-axis between £ =0 and z = 2.

1
™

™
A= bw T
™

SR 3EI
< g N(Nil) ()
1‘«WL, ""‘3* . —
N g N G
- . ul (\45\_\ 24 = 2z
S V(2 N) 7 3
N

Finding distance traveled. By applying the same reasoning as above and using the
fact that distance = velocity x time when velocity is constant, we see that the net change
in position of an object over an interval is the area under its velocity curve.

Example 5. A car’s velocity during a 1-hour period is measured at 12-minute intervals:

time (hours) G 102]04]06]08]10
velocity (miles per hour) | 66 | 75 | 78 | 82 | 79 | 74

Estimate the total distance traveled by the car during the hour using

(a) left endpoints
(cet I5¢ 7% t 82 ¢ 7)) (o2 = T6 wile s

(b) right endpoints

Cas + 7% 4 52 & 113 T (e.2) = UT.6 wiles
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§5.2—The Definite Integral

To approximate the area bounded by a continuous function y = f (z} and the z-axis on
the interval [a, b], we divide into N subintervals of width

b—a

Az=222
TETN

The jth subinterval is the interval [z;_1, z;], where z; = a + jAz. For each j, we use a

rectangle of height f{x;) and width Az to approximate the area under that portion of the
curve.

:3"%‘\; ‘ricfﬁhgiﬁt";

ﬁ*(ij')
1 l- : T oL T
- o %j"i ‘365 b EN x'e
The Riemann sum %, =
Ay
N
Ry=Y  f(z;)Az = f(z:)Az + f(zz) Az + - + flan) Az

i=1

approximates the total area under the curve on the interval [a, b]. We get the exact area by
letting N — oo, which gives the definite integral of f from a to b:

N
: flzyde = Jim Z o)Az

Here the function f is called the integrand and the numbers a and b are the limits of
integration. Note that the choice to use right-endpoints here is simply a convenience; for

continuous functions, we could choose points randomly in each subinterval and still get the
same result as Az — 0.

Example 1. Calculate the following definite integrals directly from the definition.

3 8 .
(a)[ o dr - \HN\ Z (?:_:} ) :i /] {3 1)
° N il.-!: i ‘\L N 4 f'/’l.:/‘
bdx = 2 _ o N i ”m
N TR A
'R Nog N T
X< 3 .
M':Lw ® ‘2‘ Z

53



2

N
o b L
b - ] -
o [0 e 2 L)
0 N~ & 171
3 . 3 Noe
D F ‘i‘ ~ Hina, }i E_ i
' N7 g N3 jei
. by
a i o bE N (NP (2NE )
™ - l]m -, 2
now o N
. w
3

If f(z) takes both positive and negative values on la, b], then the definite integral gives

the “signed area” under the curve. That is, areas above the z-axis are counted positively,
and areas below the z-axis are counted negatively.

Example 2. Evaluate the following integrals.

(a) f:ﬂsinmd:c | _ @AW (b) /_ia:da:

= 2 o4 X
O = 2+ 3
= 2
Properties of the definite integral 2

a b a
o Conventions: / flz)de = — / flz)dz and / flz)dz =0
b a a

e Linearity: /b(kf(:c) +mg(z))de =k ]b flz)dz £ m/bg(:n) dz (k, m constant)

o Additivity: /b flz)dz + /: flx)dx = /C flz)dx

b b
e Comparison: If f(z) < g(z) for all z in [a, b], then f flz)dz < / g(z)dz.

1
Example 3. Suppose that / f(x)dz =2 and that f(z) <4 for all z in {1,3]. What is
0

3
the largest possible value that the integral / f{z)dz could have?
0
3

) | 3
5 ) g Fie) de ¥ S €(x) dx

¢ o

"

I
5
s
——y
i
£
Foo
&
5t

2 Hﬂ(awﬂ

= 1o
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§5.3—The Fundamental Theorem of Calculus, Part 1

It turns out that the key to evaluating definite integrals efficiently is finding an antideriva-
tive for the integrand. We actually observed a special cage of this in Example 5 of Section
5.1 when we saw that the area under a velocity graph gives the net change in position. More
generally, if f has an antiderivative ', then we can view f as a rate of change of I' and
apply the same reasoning to establish the following:

Fundamental Theorem of Calculus, Part I. If f is continuous on [a,b] and F is any
antiderivative of f, then

/ Fla)dz = F(b) — Fla).

This theorem (often called the FTC for short) may be interpreted as saying that the
definite integral of a rate of change gives the total change. For example, if f represents
velocity and F represents position, then the definite integral of velocity is change in position.

Example 1. Use the FTC to calculate each of the following.

2 ‘ s o i ,
OF R . 2
’ 3 G 3 2
Fa) = & - 4
F(x) 3 :
w/2 ) 7?2 § LT - e o
(b)/ cos = dx = Sin X = Sin 5 in
0 o
- \
ZEeS K
F[?{) S E ij Aces 1
725
% %
~\ 3 - - \
1 gz s ton X = Tan (1) - o (@
© [ G
~} "f

29



Example 2. Evaluate each of the following definite integrals.

(2) f e da o) [ A+ 8)dn

3
Sx ~ %2 Vs
L =
= L€ L@ Sc‘(x %3;«:}&%
3
_ 1 5 = 27 2% !
= L (e - ) =Rt 2 ,
- % + 2
&
- 7
Example 3. Find the area bounded by the curve y = 1/z and the z-axis between T = 2
and z = 6. .
¢ i
Ares = g Y O
2 6
= n 2t E ,
= ih & - b 2
x ln 3
Example 4. What is wrong with the following calculation?
2 2
i 1 1 3
—d = —— :wu—l:—-—‘
w["l 1:2 ¥ —1 2 2

"The @eea 16 ebheve Ha 7(-@({5/ So &

HESU&Q{V{_ oG e 15 iw‘;e‘;;i\Dle

The vievr 15 Thek Y 7 i;.,” 16wl

covtinpeus e L7 2] S e Fre deese’t
Yy -
Example 5. Evaluate / 5 V25 — 22 dz.
’ Nk S EM?, NI Lovd  an &mﬁ&www‘cw&/
Lot e vey w1 \l“ﬁ o u\“C”‘ro &
civele N\t codhivs 5 -

T S T - 2 25w
thvs Y {2527 d4x = Jewes™ = =
0 4 Y
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§5.4—The Fundamental Theorem of Calculus, Part II

Example 1. Consider the function f graphed below, and let A{z) denote the signed
area under the curve on the interval [0, z]. Calculate each of the following.

(8) A0) = o
N‘j“‘% 2 + B 500
(b A2) - 3 A "‘)’S He) 4T
() A(B) = -2
- T

Fundamental Theorem of Calculus, Part II. Suppose that f is continuous on [a, ],

and let A(z ] f(¢)dt. Then

Alz) = / 10

That is, A(z) is the antiderivative of f(z) satisfying the initial condition A(a) == 0.

Why is this true?

1{)#_:;(Jﬂ Wt’t@h 1-\, 15 §‘m\i) e con GKY?WK(MG&E
the QLcﬂ_cj\;:c?\. rﬁ-f)fmr- B‘j & V“?C:twa& C‘Q’

hesghe $ (%) owd widbh k. Thus

Aleth) ~ A(x) @ k- $(x)

o o xth = A [ -
d/ (x4 h) W_ﬁ&t\ & Fo)
Acea b
,A(x{.l,\‘) ~Ax) Tq,l{(ha the Ut ag h 5 6 now Si‘ves

ALy = Fx)
i
Interpretation: Differentiation and integration are “inverse” operations, i.e., / f(t)ydt
a

is an antiderivative of f(z).

Example 2. Calculate each of the following derivatives.

sint d f* 3 %
—mdt = i — 3¢t
/ Sin % (b) P / te" dt x e

1

e ~5

x
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Example 3. Find the derivative of each function.

(a) F(a:)=/w V1+t2dt et AW
* T4

if

Ly
=

-
o
-
»
.
F

o /‘\(}(3) S "t\xc[’f
Seo £ - ! 3 2 i .
Fix) = A'{x ) 3x by  the Clan Rule
- ) T 92 —
=l e ) 3x s %x Jlex®
10 e b
(b) G(:c):/ cosfrar T~ | s e de Alo) = | es’t 1t
e2® i :‘0
= A (e Al = estw
a) = - ANT)  2e™
, 2K 3, I
ey - 0053 (62?{) - 2 (’_2‘ r ~ 2% cos (C )
1

Example 4. For what values of  is the function F(z) = / —————di concave up?
o 1+t+t

— \ s
R (e =)
. - E

= = (v eex?) ()

= (1+2) . - o = K= =Y
(trxa x?)

__F_.,_i' i o £ Lo

v N F
Example 5. Find a function F(z) such that F'(z) = Inz and F(1) = 3.

B

15 concave P m (=, 'A!/*z.,)

I
F = [ Wt de + 3

1
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§5.5—Net or Total Change as the Integral of a Rate

A useful interpretation of the FTC (Part I) is that the definite integral of a rate of change

gives total change. For instance, if s(t) represents position, then §'(¢) is velocity (or rate of
change of position), and we have

b
f s'(t) dt = s(b) — s(a).

That is, the definite integral of velocity gives the net change in position. The same principle
applies when integrating any function that can be viewed as a rate of change.

Example 1. A particle’s velocity is given by v(t) = t* — 4¢ + 3.

(a} Find the object’s net change in position over the interval 0 < ¢ < 3.

s(3) - g(e) o j 3 Ctz‘ Ut 4 3) 4t

G
3 2 3 .
R A I
3 o
= [

(b) Find the total distance traveled by the object over the interval 0 < ¢ < 3.

+ - +
= ’ - t - —
Vb = (tm1)(E-3) i -
Vistee o [ {v(o)] 4%
‘i‘nwt\eck [

, |
[ Gareut ) A oy gi (~tvat-3)de

o

' 3 2 3
= (53_?‘_1,{‘*3*)\ o vzt —%)L‘
- T -2 %3t (—a+ty-1) ~ (3 £2-3)

= 3/3
Example 2. The rate of energy consumption in a certain home (in kilowatts) is modeled

by the function R(t) = 2+ 0.5cos(7t/3), where ¢ is measured in months since January 1.
According to this model, how many kilowatt-hours of energy will be used in a typical year?

£ - S'\z ( 2 & 0.5 cos (m/g"))c‘\t

£

i,
- 2t &+ 0.5 2 sin ("% l
1 o

) = - Ev*/
- 2k kW - months : T30 /oa

A

i7,520  &kWh

a9



§5.6—The Substitution Method
In earlier sections, we obtained formulas like
1 : 5z 1 S
cosZa:d:z::ism&B—i-C and e d:c:ge +C

by mentally attempting to reverse the effect of the chain rule. A more systematic approach
is to substitute a new variable for the inner function. For instance, if we let w = 2z in the
first integral above, then du = 2dz, and thus dz = du, so we get

1 1 1 1
fcosZ:cda::zf(cosu)§du:§fcosudu=Qsinu+6‘:§sin2cc+0.

In general, we can evaluate / flg{z))g'(z) dz by substituting u = g(z) and du = ¢'(z) dz.

Example 1. Evaluate the following indefinite integrals.

(a) / 2ze® d = j ﬁ“ S

, z,
Lot w=« = o+ C
G, = 2% A 2

(b)/\/_3x+4dx S S U
— i 2 :,3/"?;_ e
Lk W= 34 b 33w v b
dw = 3 A - 5 3,
ies 14 S G D L
A= “g'u"-\
{c) / z* cos(z”) dz = “é X Cot & oMa
5 5 Log <
L{‘
din = Huw "K?G -
= Losie (XS-) + C
%L\V;\x = = da $
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Example 2. What is wrong with the following calculation of / cos(z°) dz?
Let u = z°, s0 that du = 5z*dz. Then dz = guz, 50
z
du 1 1 . sin(z®)
By 1 — — —
fcos(:z: ydx = /(COSU)EEC'Z =g fcosudu = gﬂ;smu—l—C = +C.

\__’q/ﬂ )
W'mns‘, Crmmet factyr vaviables

outgieh f  The \‘.fr\f\‘eg)(a\}-. .

M T~ = s 5
Nete Yok Ti{x) = Sin (% ) Comndt  be  wigkt s
5= 2
. Sy . 50 - 5in Q(y')' 2@?<3
=L (xv - 5'7« - cos (¢ b * fJ' cos (7(;)
‘ 25 % 3

Example 3. Evaluate the following indefinite integrals.

(1+1n$)10 - o .
(&)f—x—_dx - S A ehud,
1
. & U
ler w= [+ la w0 ¢
Py ‘-L &ﬂ& . i
- = (lwx) ¢
BT
(b)/SH\l/Emd:v = 2 1 snw du
- - . C
et w = gy fa 2 ces w ot
; L~V .
duy = ‘é‘}( da - ~ 9 et & LG
R du = ps
%
sec’ z « O dwm
()/l—l-tana: ﬁ A
et wo= b e K = lalal # C
AU\ = SE'C??( O\\?(
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- rg(®)

b
Substitution in Definite Integrals: / Flog(2))d' (z)dz = flu)du

g(a)

Example 4. Use substitution to evaluate the following definite integrals.
1 3 fo
(a)/ f dz = L § dw
0 zt+9 T . q Io
5 16
[ i i
Ll Ut_:?(.'\fe'\ z L. QJUL/Q \
Lvt.
dw = LE:{B cﬁ.x 1
= L -
L (- 3)
) {
w2 ~
(b)f (1 + sin® z) cos z dx = X (e w?) e
0 o ?
L?.
: = Wt opu l
L we S x 4 o
L-!
- E
4
1 dx _ o T din
© | - : S 2
5 Xlnz N
' W 2
T M
e w= b ox ~ I fwl \
y n 2
do i d X l N
- I (wH) - b (e 2
w u - tn .
- w 5,)
=/ cot 8 2 N W
(d) /ﬁ p 3% cse” 6 df - - S 3" du
i
DI .o~ \"
do T ~Cset @ dE in 3 |
i
- ot 3
13 e 3
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§5.7—Further Transcendental Functions

We record here for reference two important integrals involving the inverse trig functions

/%;5 dr = sin™? (g) +C  and f _d 1tan_l (g) +C

a*+x2  a

Example. Evaluate each of the following integrals.

(2) /250—?—6&"2 - g "d\%

r “Z
5%4% x

Y

Lo tea (2 FOC
5_""“‘(5>

i S Ax Lek
(b) /\/ﬁ = IEEC S

.1 A

) 3 Ja-u?

_ o |

~ é— 51 (’2‘) ¥ C

(© /1/2 T dz g‘fz % Ay ) Lok
0 1624 +1 - . b1 ("-l:}oz)l
1 b A
} b g P w?
© {
_ I A
~ g {-C'Un AN [Q
o .«
= L (g ) 32,
g
@ fﬁde h
1 z4/1—(Inzx)? - § %—_
o N
Y,
b we hnx

)'}

éu:ié\x

Lk

W= 3K

e & Scxpg
we 8x
M & Fx dx






