
FURTHER RESULTS ON VANISHING COEFFICIENTS IN

INFINITE PRODUCT EXPANSIONS

JAMES MC LAUGHLIN

Abstract. We extend results of Andrews and Bressoud on the vanish-
ing of coefficients in the series expansions of certain infinite products.
These results have the form that if

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

=:

∞∑
n=0

cnq
n,

for certain integers k, m s and t, where r = sm+t, then ckn−rs is always
zero. Our theorems also partly give a simpler reformulation of results
of Alladi and Gordon, but also give results for cases not covered by the
theorems of Alladi and Gordon.

We also give some interpretations of the analytic results in terms of
integer partitions.

1. Introduction and Background

In the present paper we prove some new results on vanishing coefficients
in the series expansion of certain infinite q-products. These results have the
form that if

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

=:
∞∑
n=0

cnq
n,

(where k, m s and t are integers to be defined in more detail below, such
that r = sm+ t) then ckn−rs is always zero. Some new theorems on integer
partitions, which follow from these analytic results, are also given. Before
coming to these new results, we first recall some prior work by previous
authors on the topic.

In [3], Richmond and Szekeres proved that if

F (q) :=
(q3, q5; q8)∞
(q, q7; q8)∞

=:
∞∑

m=0

cmq
m,
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then c4n+3 is always zero. They also showed that if

1

F (q)
=:

∞∑
m=0

dmq
m,

then d4n+2 is always zero. These results were derived by Richmond and
Szekeres from Hardy - Ramanujan - Rademacher expansions they developed
of the infinite products. They also conjectured that if

G(q) :=
(q5, q7; q12)∞
(q, q11; q12)∞

=:

∞∑
m=0

amq
m,

then a6n+5 is always zero, and if

1

G(q)
=:

∞∑
m=0

bmq
m,

then b6n+3 is always zero.
In [2], Andrews and Bressoud proved the following general theorem, which

generalizes the results of Richmond and Szekeres as special cases.

Theorem 1.1. If 1 ≤ r < k are relatively prime integers of opposite parity
and

(1.1)
(qr, q2k−r; q2k)∞

(qk−r, qk+r; q2k)∞
=:

∞∑
n=0

φnq
n,

then φkn+r(k−r+1)/2 is always zero.

Andrews and Bressoud derived their result from Ramanujan’s 1ψ1 sum-
mation formula,

(1.2)
∞∑

n=−∞

(a; q)nz
n

(b; q)n
=

(b/a, q, az, q/az; q)∞
(q/a, b, z, b/az; q)∞

,

after replacing q with q2k, specializing a, b and z and employing some q-series
manipulations. The cases (k, r) = (4, 3), (4, 1), (6, 5) and (6, 1), respectively,
give the two results proved by Richmond and Szekeres, and the two results
conjectured by them.

Alladi and Gordon [1] prove a yet more general theorem (we modify their
notation to state their results in the same language used elsewhere in the
present paper).

Theorem 1.2. Let 1 < m < k and let (s, km) = 1 with 1 ≤ s < mk. Let
r∗ = (k − 1)s and r ≡ r∗( mod mk), with 1 ≤ r < mk.
Put r′ = d r∗

mke( mod k) with 1 ≤ r′ < k. Write

(qr, qmk−r; qmk)∞
(qs, qmk−s; qmk)∞

=
∞∑
n=0

anq
n.

Then an = 0 for n ≡ rr′( mod k).
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Note that while there is certainly some overlap with our Theorem 2.1
below, the result of Alladi and Gordon in Theorem 1.2 does not provide any
information about vanishing coefficients in the cases where k < m or k = m.
In contrast, our Theorem 2.1 below has no such restrictions.

Alladi and Gordon [1] also prove a companion theorem to Theorem 1.2
above.

Theorem 1.3. Let m, k, s, r∗, r, r′ be as in Theorem 1.3 with k odd. Write

(qr, qmk−r; qmk)∞
(−qs,−qmk−s; qmk)∞

=
∞∑
n=0

a′nq
n.

Then a′n = 0 for n ≡ rr′( mod k).

We also prove a companion theorem to our Theorem 2.1, namely Theorem
2.4 below, which is similar in nature to Theorem 1.3 of Alladi and Gordon,
but as with Theorem 2.1, our result is not restricted to k > m, as is the case
in their theorem.

2. Main Results

In the present paper our main result, in Theorem 2.1 below, is in part
a reformulation of Theorem 1.2 of Alladi and Gordon [1], but also extends
to cases not covered by Theorem 1.2. The proof of Theorem 2.1 also uses
Ramanujan’s 1ψ1 summation formula.

Theorem 2.1. Let k > 1, m > 1 be positive integers. Let r = sm + t,
for some integers s and t, where 0 ≤ s < k, 1 ≤ t < m and r and k are
relatively prime. Let

(2.1)
(qr−tk, qmk−(r−tk); qmk)∞

(qr, qmk−r; qmk)∞
=:

∞∑
n=0

cnq
n,

then ckn−rs is always zero.

Proof. In Ramanujan’s 1ψ1 summation formula (1.2), replace q with qmk, a
with q−tk, b with qmk−tk and z with qr (note that these choices satisfy the
requirements needed for the series to converge, namely |b/a| < |z| < 1, since
r < mk). This gives, after a little simplification
(2.2)

−q−tk
∞∑

n=−∞

qrn

1− qnmk−tk =
(qmk, qmk; qmk)∞

(qtk, qmk−tk; qmk)∞

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

.

It is clear that to prove the result, all that is necessary is to show that if we
expand

(2.3)
∞∑

n=−∞

qrn

1− qnmk−tk =
∞∑
n=0

qrn

1− qnmk−tk −
∞∑
n=1

qnmk+tk−rn

1− qnmk+tk
=:

∞∑
n=o

dnq
n,
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then dkn−rs = 0 for all n. Thus we just need to consider those n that lead
to powers of q of the form qkn−rs in the two sums in the middle expression
just above, and thus all that is necessary is to show that

(2.4)
∞∑
n=1

qr(nk−s)

1− q(nk−s)mk−tk −
∞∑
n=0

q(nk+s)mk+tk−r(nk+s)

1− q(nk+s)mk+tk
= 0.

Note that if s = 0, then the first sum should start at n = 0 and the second
sum should start at n = 1, but it can be seen that if s = 0, then the term
corresponding to n = 0 in the first series is 1/(1 − q−tk) = −qtk/(1 − qtk),
while the term corresponding to n = 0 in the second series is qtk/(1 − qtk)
when s = 0. Thus the assertion that all that is necessary to prove the result
is to show that (2.4), also holds when s = 0.

∞∑
n=1

qrnk−rs

1− qnmk2−smk−tk =

∞∑
n=1

qrnk−rs
∞∑
p=0

qp(nmk2−smk−tk)

=
∞∑
p=0

qp(−smk−tk)−rs
∞∑
n=1

qn(pmk2+rk)

=
∞∑
p=0

qp(−smk−tk+mk2)+rk−rs

1− qpmk2+rk

=
∞∑
n=0

qn(−(sm+t)k+mk2)+rk−rs

1− qpmk2+rk
.

We now use the fact that r = sm+t, which easily implies that the last series
above and the second series at (2.4) are identical, giving the result. �

Remark: It may happen r < tk, in which case it will be necessary to use
the identity

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

=
−1

qtk−r
(qmk−(tk−r), qtk−r; qmk)∞

(qr, qmk−r; qmk)∞

if it is desired that all the exponents in the infinite products be positive.
We give the following example as an illustration of the result in Theorem

2.1, and also to highlight the differences between this result and that of
Andrews and Bressoud in Theorem 1.1. In each case mk = 30, r = t = 1
and s = 0, so that Theorem 2.1 gives that ckn = 0 for all n. However, since
r − k < 0 in each case, we modify the infinite products as described above,
so that the progressions containing zero coefficients are thus shifted.

Corollary 2.2. a) Let

(q2, q28; q30)∞
(q, q29; q30)∞

=

∞∑
n=0

cnq
n.

Then c3n+2 = 0 for all n ≥ 0. (Here k = 3, so r − k = −2.)
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b) Let

(q4, q26; q30)∞
(q, q29; q30)∞

=
∞∑
n=0

cnq
n.

Then c5n+4 = 0 for all n ≥ 0. (Here k = 5, so r − k = −4.)
c) Let

(q5, q25; q30)∞
(q, q29; q30)∞

=

∞∑
n=0

cnq
n.

Then c6n+5 = 0 for all n ≥ 0. (Here k = 6, so r − k = −5.)
d) Let

(q9, q21; q30)∞
(q, q29; q30)∞

=
∞∑
n=0

cnq
n.

Then c10n+9 = 0 for all n ≥ 0. (Here k = 10, so r − k = −9.)
e) Let

(q14, q16; q30)∞
(q, q29; q30)∞

=

∞∑
n=0

cnq
n.

Then c15n+14 = 0 for all n ≥ 0. (Here k = 15, so r − k = −14.)

Remark: The identity at e) is also given by Theorem 1.1 of Andrews and
Bressoud (k = 15 and r = 14 in their theorem), but none of the identities
a) - d) above follow from their theorem. Similarly, parts c), d), and e) are
given by Theorem 1.2 of Alladi and Gordon, but not parts a) and b).

We also give the following result with to further illustrate the difference
between Theorem 2.1 and Theorem 1.2 of Alladi and Gordon (which does
not imply the result in Corollary 2.3, since k = m). In each case in the
corollary below, k = m = 3.

Corollary 2.3. a) Let

(q, q8; q9)∞
(q4, q5; q9)∞

=

∞∑
n=0

cnq
n.

Then c3n+2 = 0 for all n ≥ 0. (Take s = t = 1, so r = 1(3) + 1 = 4,
r − tk = 4− 1(3) = 1 and −rs ≡ 2( mod 3).)

b) Let

(q2, q7; q9)∞
(q, q8; q9)∞

=

∞∑
n=0

cnq
n.

Then c3n+2 = 0 for all n ≥ 0. (Take s = t = 2, so r = 2(3) + 2 = 8,
r − tk = 8− 2(3) = 2 and −rs ≡ 2( mod 3).)

c) Let

(q4, q5; q9)∞
(q2, q7; q9)∞

=

∞∑
n=0

cnq
n.

Then c3n+1 = 0 for all n ≥ 0. (Take s = 2, t = 1, so r = 2(3) + 1 = 7,
r − tk = 7− 1(3) = 4 and −rs ≡ 1( mod 3).)



6 JAMES MC LAUGHLIN

There is also a companion result to Theorem 2.1, in the same way that
Alladi and Gordon’s Theorems 1.2 and 1.3 are companions. However, in
contrast to Theorem 1.3, our Theorem 2.4 does not have the restriction that
m < k.

Theorem 2.4. Let k > 1, m > 1 be positive integers, with k odd. Let
r = sm + t, for some integers s and t, where 0 ≤ s < k, 1 ≤ t < m and r
and k are relatively prime. Let

(2.5)
(qr−tk, qmk−(r−tk); qmk)∞

(−qr,−qmk−r; qmk)∞
=:

∞∑
n=0

dnq
n,

then dkn−rs is always zero.

Proof. The argument is essentially the same as that used in the proof of
Theorem 2.1, so details are omitted. The only additional facts needed are
that if k is odd, then (−1)kn = (−1)n, and (−1)n−s = (−1)nk+s. �

Corollary 2.5. a) Let

(q, q8; q9)∞
(−q4,−q5; q9)∞

=
∞∑
n=0

c′nq
n.

Then c′3n+2 = 0 for all n ≥ 0.
b) Let

(q2, q7; q9)∞
(−q,−q8; q9)∞

=

∞∑
n=0

c′nq
n.

Then c′3n+2 = 0 for all n ≥ 0.
c) Let

(q4, q5; q9)∞
(−q2,−q7; q9)∞

=
∞∑
n=0

c′nq
n.

Then c′3n+1 = 0 for all n ≥ 0.

Proof. Let k = m = 3 in Theorem 2.4, and let s and t have the same values
as in the corresponding parts of Corollary 2.3. �

3. Partition Implications

Theorems 2.1 and 2.4 also have implications for certain types of restricted
partitions.

Theorem 3.1. Let k > 1, m > 1 be positive integers. Let r = sm + t,
for some integers s and t, where 0 ≤ s < k, 1 ≤ t < m, and r and k are
relatively prime. Let pm,k,r(n) denote the number of partitions of n into
parts ≡ 0,±r( mod mk). Then for each integer n,∑

j

(−1)jpm,k,r(nk − rs−mkj(j + 1)/2− j(tk − r)) = 0,

where the sum is over those j with nk − rs−mkj(j + 1)/2− j(tk − r) ≥ 0.
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Proof. The coefficient of qnk−rs in

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

=
(qr−tk, qmk−(r−tk), qmk; qmk)∞

(qr, qmk−r, qmk; qmk)∞

is zero for all n, by the theorem. However

(qr−tk, qmk−(r−tk), qmk; qmk)∞
(qr, qmk−r, qmk; qmk)∞

=
∑
j∈Z

qmkj(j+1)/2(−qtk−r)j
∑
i≥0

pm,k,r(i)q
i

=
∑
N

qN
∑

mkj(j+1)/2+(tk−r)j+i=N

(−1)jqmkj(j+1)/2+(tk−r)j+ipm,k,r(i)

The result now follows upon setting N = nk − rs and solving for i. �

As an example, take k = 15, m = 2, s = 0 and t = 1 (so r = 1) and
n = 20, so that

nk − rs−mkj(j + 1)/2− j(tk − r) = 300− 15j2 − 29j.

j nj = 300− 15j2 − 29j (−1)jp2,15,1(nj)
-5 70 -13
-4 176 203
-3 252 -1654
-2 298 3838
-1 314 -5773
0 300 4673
1 256 -1654
2 182 393
3 78 -13∑

= 0

Theorem 2.4 similarly has an interpretation in terms of certain restricted
partition functions.

Theorem 3.2. Let k > 1, m > 1 be positive integers, with k odd. Let
r = sm + t, for some integers s and t, where 0 ≤ s < k, 1 ≤ t < m, and r
and k are relatively prime.

Let pem,k,s,t(n) denote the number of partitions of n into parts (possibly re-

peating) ≡ ±r( mod mk) and distinct parts ≡ ±(r− tk)( mod mk), where
the total number of parts, counting multiplicities, is even.

Let pom,k,s,t(n) denote the number of partitions of n into parts (possibly re-

peating) ≡ ±r( mod mk) and distinct parts ≡ ±(r− tk)( mod mk), where
the total number of parts, counting multiplicities, is odd.
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a) If r − tk > 0, then for each integer n,

pem,k,s,t(nk − rs)− pom,k,s,t(nk − rs) = 0.

b) If r − tk < 0, then for each integer n,

pem,k,s,t(nk − r(s+ 1))− pom,k,s,t(nk − r(s+ 1)). = 0.

Proof. It is clear that if r − tk > 0, then

(qr−tk, qmk−(r−tk); qmk)∞
(−qr,−qmk−r; qmk)∞

=
∞∑
n=0

(pem,k,s,t(n)− pom,k,s,t(n))qn

=
∞∑
n=0

dnq
n,

where the dn are as defined in Theorem 2.4, and part a) follows. Part b)

also follows from Theorem 2.4, after writing (qr−tk, qmk−(r−tk); qmk)∞ as

−(qtk−r, qmk−(tk−r); qmk)∞/q
tk−r, and then shifting the −qtk−r to the series

side. �

As an example of this result, again take k = 15, m = 2, s = 8 and t = 1
(so r = 17 and r − tk = 2 > 0). Then −rs = −126 ≡ 14( mod 15), and we
consider n = 9 × 15 + 14 = 149. Then pe2,15,8,1(149) = po2,15,8,1(149) = 6, as

indicated by the following table (each function counts partitions into distinct
part ≡ ±2( mod 30) and possibly repeating parts ≡ ±17( mod 30)).

Partitions counted by po2,15,8,1(149) Partitions counted by pe2,15,8,1(149)

2 + 13 + 176 + 32 2 + 1310 + 17
2 + 177 + 28 2 + 138 + 43

2 + 174 + 32 + 47 138 + 17 + 28
2 + 175 + 62 136 + 28 + 43

13 + 178 139 + 32
176 + 47 137 + 58

It might be illuminating to provide combinatorial proofs of the two par-
titions theorems in this section.
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