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Abstract. We derive closed-form expressions for several new classes of
Hurwitzian- and Tasoevian continued fractions, including

[0; p− 1, 1, u(a + 2nb)− 1, p− 1, 1, v(a + (2n + 1)b)− 1 ]∞n=0,

[0; c + dmn]∞n=1 and [0; eun, fvn]∞n=1. One of the constructions used to
produce some of these continued fractions can be iterated to produce
both Hurwitzian- and Tasoevian continued fractions of arbitrary long
quasi-period, with arbitrarily many free parameters and whose limits
can be determined as ratios of certain infinite series.

We also derive expressions for arbitrarily long finite continued frac-
tions whose partial quotients lie in arithmetic progressions.

1. Introduction

In this paper we exhibit several new infinite families of regular continued
fraction of Hurwitzian- and Tasoevian type, continued fractions whose value
can expressed in terms of certain infinite series.

Hurwitzian continued fractions ([2], [3]) are of the form

[a0; a1, · · · , ak, f1(1), · · · , fn(1), f1(2), · · · , fn(2), · · · ]
=: [a0; a1, · · · , ak, f1(m), · · · , fn(m) ]∞m=1.

Here the fi(x) are polynomials with rational coefficients taking only positive
integral values for integral x ≥ 1 and at least one is non-constant. The
integer n is termed the quasi-period of the continued fraction. The closed
form for Hurwitzian continued fractions is not known in general. This class
contains numbers like

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . ] = [2; 1, 2m, 1 ]∞m=1,

tan 1 = [1; 1, 1, 3, 1, 5, 1, 7, 1, 9, . . . ] = [1; 2m− 1, 1]∞m=1

These continued fractions were also investigated by D. N. Lehmer [11] and
more recently by Komatsu in [5], [7] and [8]. A nice example that follows
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from Lambert’s continued fraction [10]

(1.1)
ez − e−z

ez − e−z
=

z

1 +
z2

3 +
z2

5 +
z2

7 + · · ·
is the following (see also [5]):√

v

u
tan

1√
uv

= [0;u− 1, 1, (4k − 1)v − 2, 1, (4k + 1)u− 2]∞k=1.

A a sub-class of Hurwitzian continued fractions (with all polynomials
fi(x) of degree 1) is due to D.H. Lehmer [12], who found closed forms for the
numbers represented by regular continued fractions whose partial quotients
were terms in an arithmetic progression,

(1.2) [0; a, a + b, a + 2b, a + 3b, · · · ] =
I(a/b)(2/b)

I(a/b)−1(2/b)
,

where

Iν(z) =
∞∑

n=0

(z/2)ν+2m

Γ(m + 1)Γ(ν + m + 1)
.

More transparently,

[0; a, a + b, a + 2b, a + 3b, · · · ] =
1
b

∞∑

k=0

b−2k

(a/b)k+1k!
∞∑

k=0

b−2k

(a/b)kk!

,

where (a/b)0 = 1 and (a/b)k = (a/b)(a/b + 1) . . . (a/b + k − 1) for k > 0.
Lehmer also evaluated continued fractions whose partial quotients con-

sisted of two interlaced arithmetic progressions. Let a, b, c and d be integers
satisfying

2bc = d(2a + b).
Then

[0; a, c, a + b, c + d, a + 2b, c + 2d, · · · ] =

√
d

b

I(2a/b)(4/
√

bd)

I(2a/b)−1(4/
√

bd)
.

An example that Lehmer gave of the former type was the following:

[1; 2, 3, 4, 5, · · · ] =

∑∞
m=0

1
(m!)2∑∞

m=0
1

m!(m+1)!

Tasoev [15], [16] proposed a new type of continued fraction of the form

(1.3) [a0; a, · · · , a︸ ︷︷ ︸
m

, a2, · · · , a2

︸ ︷︷ ︸
m

, a3, · · · , a3

︸ ︷︷ ︸
m

, · · · ],

where a0 ≥ 0, a ≥ 2 and m ≥ 1 are integers. This type was further
investigated by Komatsu in [4], where he derived a closed form for the general
case (m ≥ 1, arbitrary). Komatsu gave several variations of Tasoevian
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continued fractions in [5], [6], [7] and [8]. In [14], the present author and
Nancy Wyshinski derived several variations of Tasoev’s continued fraction
from known results about q-continued fractions. Two examples of our results
from that paper are the following.

Example 1. Define

F (c, d, q) :=
∞∑

n=0

(−1)ncnqn(n+1)/2

(q; q)n(cq/d; q)n

and let ω = e2πi/3. If a > 1 is an integer and c is a rational such that a/c
is an integer, a/c > 2, then[

0;
a

c
− 2, 1,

ak+1

c
− 3

]∞

k=1

=
c/aF (−cω/a, ω2, 1/a)

(1 + cω2/a)F (−cω, ω2, 1/a)
.

Example 2. For r, s and q ∈ C with |q| < 1, define

φ(r, s, q) =
∞∑

n=0

q(n2+n)/2rn

(q; q)n(−sq; q)n
.

Let m and n be positive integers and let d be rational such that dn ∈ Z+ and
dmn > 1. If n > 2 and m > 1 then

[0, 1, d2k−2n2k−1 − 2, 1,m2k−1 − 1, d2k−1n2k,m2k − 1]∞k=1

= 1 +
φ(dm, d,−1/(dmn))

φ(−1/n, d,−1/(dmn))
.

In the present paper we continue our work with q-continued fractions,
giving q-continued fraction proofs for some existing families of Tasoevian
and Hurwitzian continued fractions. In addition, we also find the limits of
some new families of Tasoevian and Hurwitzian continued fractions.

We also evaluate various finite continued fractions containing arithmetic
progressions, deriving Lehmer’s results in the limit.

2. Tasoevian Continued Fractions

In [1], the following result on q-continued fractions was proved.

Theorem 1. Let a, b, c, d be complex numbers with d 6= 0 and |q| < 1.
Define

H1(a, b, c, d, q) :=
1
1 +

−abq + c

(a + b)q + d + · · · +
−abq2n+1 + cqn

(a + b)qn+1 + d + · · · .

Then

(2.1)
1

H1(a, b, c, d, q)
− 1 =

c− abq

(d + aq)q

∑∞
j=0

(b/d)j(−c/bd)j q(j+1)(j+2)/2

(q)j(−aq2/d)j

∑∞
j=0

(b/d)j(−c/bd)j qj(j+1)/2

(q)j(−aq/d)j

.
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Here we are employing the standard notation for q-products:

(z)0 := (z; q)0 := 1, (z)n := (z; q)n :=
n−1∏

k=0

(1− z qk), if n ≥ 1.

This theorem immediately leads to some general results concerning Taso-
evian continued fractions.

Theorem 2. Let c, e and m be integers, m > 1 and let d be a rational such
that dm2, dcm/e ∈ N, and c + dcm/e, e + dm2 > 0. Let

a =
e−

√
e2 + 4e/c

2
, b =

e +
√

e2 + 4e/c

2
.

Then

(2.2)
[
0; c +

dc

e
m2n−1, e + dm2n

]∞

n=1

=
e/c

md + a

∑∞
n=0

(b/d)nm−n(n+3)/2

(1/m; 1/m)n(−a/dm2; 1/m)n

∑∞
n=0

(b/d)nm−n(n+1)/2

(1/m; 1/m)n(−a/dm; 1/m)n

.

Proof. With the stated values of a and b,

[0;c +
dc

e
m2n−1, e + dm2n]∞n=1

=
1

−((a + b) + dm)/(ab) +
1

(a + b) + dm2 +

· · · +
1

−((a + b) + dm2n−1)/(ab) +
1

(a + b) + dm2n + · · ·
=

−ab

(a + b) + dm +
−ab

(a + b) + dm2 + · · · +
−ab

(a + b) + dmn + · · ·

=
−ab/m

(a + b)/m + d +
−ab/m3

(a + b)/m2 + d + · · · +
−ab/m2n−1

(a + b)/mn + d + · · · .

The result now follows from (2.1), upon setting q = 1/m and c = 0. ¤
Corollary 1. Let c and m be integers, m > 1 and let d be a positive rational
such that dm ∈ N and c + dm > 0. Let

a =
c−√c2 + 4

2
, b =

c +
√

c2 + 4
2

.

Then

(2.3) [0; c + dmn]∞n=1 =
1

md + a

∑∞
n=0

(b/d)nm−n(n+3)/2

(1/m; 1/m)n(−a/dm2; 1/m)n

∑∞
n=0

(b/d)nm−n(n+1)/2

(1/m; 1/m)n(−a/dm; 1/m)n

.
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Proof. Let e = c in Theorem 2.2. ¤

Remarks: 1) We believe that the limit of the general Tasoevian continued
fraction of the form [0; c + dmn]∞n=1 has not been evaluated before, although
special cases have occurred in the literature, such as [0; dmn]∞n=1 by Komatsu
in [5]. We believe that the evaluation of the general Tasoevian continued
fraction [0; c + dc

e m2n−1, e + dm2n]∞n=1 is also new.
2) It is clear from Theorem 1 that (2.3) also holds for many cases where

the partial quotients in (2.2) or (2.3) are not positive integers. In particular,
we can let the parameters assume negative values and then convert the
resulting continued fractions to regular continued fractions by removing any
resulting zero- and negative partial quotients. This will produce still further
general classes of Tasoevian continued fractions.

To accomplish this, we recall, as noted in [17], that [m,n, 0, p, α] = [m,n+
p, α] and [m,−n, α] = [m−1, 1, n−1,−α]. We give two examples to illustrate
the phenomenon, using the continued fraction at (2.2)

Corollary 2. Let c, e and m be integers, m > 1 and let d be a positive
rational such that dm2, dcm/e ∈ N. Let

a =
e−

√
e2 + 4e/c

2
, b =

e +
√

e2 + 4e/c

2
.

(i) Suppose that dcm/e− c− 2 > 0 and dm2 + e− 2 > 0. Then

(2.4)
[
0; 1,

dc

e
m2n−1 − c− 2, 1, dm2n + e− 2

]∞

n=1

= 1 +
e/c

−md + a

∑∞
n=0

(b/d)n(−m)−n(n+3)/2

(−1/m;−1/m)n(−a/dm2;−1/m)n

∑∞
n=0

(b/d)n(−m)−n(n+1)/2

(−1/m;−1/m)n(a/dm;−1/m)n

.

(ii) Suppose that dcm/e + c− 1 > 0 and dm2 − e− 2 > 0. Then

(2.5)
[
0;

dc

e
m + c− 1, 1, dm2n − e− 2, 1,

dc

e
m2n+1 + c− 2

]∞

n=1

=
e/c

md + a

∑∞
n=0

(−b/d)n(−m)−n(n+3)/2

(−1/m;−1/m)n(a/dm2;−1/m)n

∑∞
n=0

(−b/d)n(−m)−n(n+1)/2

(−1/m;−1/m)n(−a/dm;−1/m)n

.

Proof. The identity at (2.4) follows from (2.2) upon replacing m by −m,
removing the negative partial quotients from the continued fraction as de-
scribed above, and finally moving the initial −1 to the right side. The iden-
tity at (2.4) follows similarly, upon replacing d by −d and m by −m. ¤
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Before coming to the next result, we need some more terminology. We
call d0 + K∞

n=1cn/dn a canonical contraction of b0 + K∞
n=1an/bn if

Ck = Ank
, Dk = Bnk

for k = 0, 1, 2, 3, . . . ,(2.6)

where Cn, Dn, An and Bn are canonical numerators and denominators of
d0 + K∞

n=1cn/dn and b0 + K∞
n=1an/bn respectively. From [13] (page 83) we

have the following theorem:

Theorem 3. The canonical contraction of b0 + K∞
n=1an/bn with

Ck = A2k Dk = B2k for k = 0, 1, 2, 3, . . . ,

exists if and only if b2k 6= 0 for k = 1, 2, 3, . . ., and in this case is given by

(2.7) b0 +
b2a1

b2b1 + a2 −
a2a3b4/b2

a4 + b3b4 + a3b4/b2 −
a4a5b6/b4

a6 + b5b6 + a5b6/b4 + · · · .

The continued fraction (2.7) is called the even part of b0 +K∞
n=1an/bn. If

a continued fraction converges then of course its even part converges to the
same limit.

Theorem 4. Let u, and v be positive integers, u, v > 1, and let e and f be
rationals such that eu, fv ∈ N. Then

(2.8) [0; eun, fvn]∞n=1

=
(

1
eu
− 1

e2fu2v + e

) ∑∞
n=0

(ef)−n(uv)−n(n+3)/2

(1/uv; 1/uv)n(−1/efu3v2; 1/uv)n

∑∞
n=0

(ef)−n(uv)−n(n+1)/2

(1/uv; 1/uv)n(−1/efu2v; 1/uv)n

.

Proof. We consider the continued fraction

(2.9) [0; b1, eun, fvn]∞n=1,

with b1 an arbitrary positive integer. Clearly this continued fraction con-
verges, and is thus equal to its even part. By (2.7) this equals

eu

eub1 + 1 −
u

1 + (efu)(uv) + u −
u

1 + (efu)(uv)2 + u − · · ·(2.10)

=
eu

eub1 + 1 −
u/(uv)

(1 + u)/(uv) + efu −
u/(uv)3

(1 + u)/(uv)2 + efu − · · · .

We now apply Theorem 1 to the first tail of the continued fraction above,
setting q = 1/uv, c = 0, d = efu, a = 1 and b = u. The result follows
upon inverting both the expression resulting from (2.10) and the continued
fraction at (2.9), and then cancelling b1. ¤

Remark: Komatsu has a result in [5], concerning Tasoevian continued
fractions of the form [0;uak, vbk]∞k=1, but he does not explicitly compute
the limits, expressing them instead as ratios of series containing certain
functions, R0,n and R1,n, which are defined recursively for n ≥ 0. We believe
the result in Theorem 4 to be new.
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In [12], where Lehmer investigated continued fractions whose partial quo-
tients were in arithmetical progressions, he remarked that it was also pos-
sible to evaluate continued fractions in which the terms forming the arith-
metic progressions were separated by constant strings of arbitrary partial
quotients. We next show that this can also be done with some classes of
Tasoevian continued fractions.

Theorem 5. Let c, e and m be integers, with m > 1.
Let a1, a2, . . . , ak be fixed positive integers and, for 1 ≤ i ≤ k, define Pi

and Qi by
Pi

Qi
=

1
a1 +

1
a2 + · · · +

1
ai

,

and set C = Qk−1 + Pk + c Qk and E = Qk−1 + Pk + eQk. We suppose
further that d is a positive rational such that Cdm/E, dm ∈ N.

If k is even, set

a =
E −

√
E2 + 4E/C

2
,

b =
E +

√
E2 + 4E/C

2
.

Then

(2.11)
[
0; a1, . . . , ak, c +

C

E
dm2n−1, a1, . . . , ak, e + dm2n

]∞

n=1

=
Pk

Qk
+

E/C

Qk(mdQk + a)

∑∞
n=0

(b/dQk)nm−n(n+3)/2

(1/m; 1/m)n(−a/dQkm2; 1/m)n

∑∞
n=0

(b/dQk)nm−n(n+1)/2

(1/m; 1/m)n(−a/dQkm; 1/m)n

.

If k is odd, set

a =
E −

√
E2 − 4E/C

2
,

b =
E +

√
E2 − 4E/C

2
.

Then

(2.12)
[
0; a1, . . . , ak, c +

C

E
dm2n−1, a1, . . . , ak, e + dm2n

]∞

n=1

=
Pk

Qk
+

−E/C

Qk(mdQk + a)

∑∞
n=0

(b/dQk)nm−n(n+3)/2

(1/m; 1/m)n(−a/dQkm2; 1/m)n

∑∞
n=0

(b/dQk)nm−n(n+1)/2

(1/m; 1/m)n(−a/dQkm; 1/m)n

.
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Proof. For any α,

[0; a1, a2, . . . ak, α] =
αPk + Pk−1

αQk + Qk−1

=
Pk

Qk
+

(Pk−1Qk −Qk−1Pk)/Q2
k

Qk−1/Qk + α

=
Pk

Qk
+

(−1)k/Q2
k

Qk−1/Qk + α
,

where the last equality follows from a standard identity in continued frac-
tions. Thus

[
0; a1, . . . , ak, c +

C

E
dm2n−1, a1, . . . , ak, e + dm2n

]∞

n=1

=
Pk

Qk
+

(−1)k/Q2
k

Pk+Qk−1

Qk
+ c + dCm

E
+

(−1)k/Q2
k

Pk+Qk−1

Qk
+ e + dm2 + · · ·

=
Pk

Qk
+

1
Qk

(
(−1)k

C + CdQk
E m +

(−1)k

E + dQkm2 + · · ·

)
.

If k is even, then

[
0; a1, . . . , ak, c +

C

E
dm2n−1, a1, . . . , ak, e + dm2n

]∞

n=1

=
Pk

Qk
+

1
Qk

[
0;C +

CdQk

E
m2n−1, E + dQkm2n

]∞

n=1

,

and (2.11) now follows from Theorem 2.
If k is odd, then

[
0; a1, . . . , ak, c +

C

E
dm2n−1, a1, . . . , ak, e + dm2n

]∞

n=1

=
Pk

Qk
+

1
Qk

[
0; (−C) +

(−C)dQk

E
m2n−1, E + dQkm2n

]∞

n=1

,

and (2.12) likewise follows from Theorem 2. ¤

Corollary 3. Let c and m be integers, m > 1 and let d be a positive rational
such that dm ∈ N and c + dm > 0.

Let a1, a2, . . . , ak be fixed positive integers and, for 1 ≤ i ≤ k, define Pi,
Qi by

Pi

Qi
=

1
a1 +

1
a2 + · · · +

1
ai

,

and set C = Qk−1 + Pk + c Qk.
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If k is even, set

a =
C −√C2 + 4

2
,

b =
C +

√
C2 + 4
2

.

Then

(2.13) [0; a1, a2, . . . ak, c + dmn]∞n=1

=
Pk

Qk
+

1
Qk(mdQk + a)

∑∞
n=0

(b/dQk)nm−n(n+3)/2

(1/m; 1/m)n(−a/dQkm2; 1/m)n

∑∞
n=0

(b/dQk)nm−n(n+1)/2

(1/m; 1/m)n(−a/dQkm; 1/m)n

.

If k is odd, set

a =
C −√C2 − 4

2
,

b =
C +

√
C2 − 4
2

.

Then

(2.14) [0; a1, a2, . . . ak, c + dmn]∞n=1

=
Pk

Qk
+

−1
Qk(mdQk + a)

∑∞
n=0

(b/dQk)nm−n(n+3)/2

(1/m; 1/m)n(−a/dQkm2; 1/m)n

∑∞
n=0

(b/dQk)nm−n(n+1)/2

(1/m; 1/m)n(−a/dQkm; 1/m)n

.

Proof. Set e = c in Theorem 5. ¤
Corollary 4. Let c and m be integers, m > 1 and let d be a positive rational
such that dm ∈ N and c + dm > 0. Let k be an even positive integer, let Fi

denote the i-th Fibonacci number and set C = 2Fk + c Fk+1. Set

a =
C −√C2 + 4

2
,

b =
C +

√
C2 + 4
2

.

Then

(2.15) [0; 1, 1, . . . , 1, 1︸ ︷︷ ︸
k

, c + dmn]∞n=1

=
Fk

Fk+1
+

1
Fk+1(mdFk+1 + a)

∑∞
n=0

(b/dFk+1)nm−n(n+3)/2

(1/m; 1/m)n(−a/dFk+1m2; 1/m)n

∑∞
n=0

(b/dFk+1)nm−n(n+1)/2

(1/m; 1/m)n(−a/dFk+1m; 1/m)n

.
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Proof. This follows immediately from Corollary 3, upon noting that

[0; 1, 1, . . . , 1, 1︸ ︷︷ ︸
i

] =
Fi

Fi+1
.

¤
We also require some preliminary results before our next construction (see

also (2.6) above). The following theorem can be found in [13], page 85.

Theorem 6. The canonical contraction of b0+K∞
n=1an/bn with C0 = A1/B1

Ck = A2k+1 Dk = B2k+1 for k = 1, 2, 3, . . . ,

exists if and only if b2k+1 6= 0forK = 0, 1, 2, 3, . . ., and in this case is given
by

(2.16)
b0b1 + a1

b1
− a1a2b3/b1

b1(a3 + b2b3) + a2b3 −
a3a4b5b1/b3

a5 + b4b5 + a4b5/b3

−
a5a6b7/b5

a7 + b6b7 + a6b7/b5 −
a7a8b9/b7

a9 + b8b9 + a8b9/b7 + · · · .

The continued fraction (2.16) is called the odd part of b0 + K∞
n=1an/bn.

The following corollary follows easily from Theorem 6.

Corollary 5. The odd part of the continued fraction
c1

1 −
c2

1 +
c2

1 −
c3

1 +
c3

1 −
c4

1 +
c4

1 − · · ·
is

c1 +
c1c2

1 +
c2c3

1 +
c3c4

1 + · · · .
This corollary implies the following result.

Corollary 6. Let p and bi, i ≥ 1 be complex numbers. If the continued
fraction

1/p

1 −
p/b1

1 +
p/b1

1 −
1/pb2

1 +
1/pb2

1
(2.17)

−
p/b3

1 +
p/b3

1 −
1/pb4

1 +
1/pb4

1 − · · ·

−
p/b2n−1

1 +
p/b2n−1

1 −
1/pb2n

1 +
1/pb2n

1 − · · ·
converges, then

(2.18)
[
0; p,

−b2n−1

p2
,−p, b2n

]∞

n=1

=
1
p

+ [0; b1, b2, b3, . . . ].

Proof. The continued fraction at (2.17) is easily seen to be equivalent to the
continued fraction on the left side of (2.18), after a sequence of similarity
transformations is applied to the former continued fraction to transform all
the partial numerators into “1”’s. On the other hand, since the continued
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fraction at (2.17) converges, it is equal to its odd part, which, by Corollary
5, is the continued fraction

1
p

+
1/b1

1 +
1/b1b2

1 +
1/b2b3

1 +
1/b3b4

1 + · · ·
=

1
p

+ [0; b1, b2, b3, . . . ].

¤

We will also make use of Worpitzky’s Theorem (see [13], pp. 35–36) to
ensure convergence of the continued fraction at (2.17).

Theorem 7. (Worpitzky) Let the continued fraction K∞
n=1an/1 be such that

|an| ≤ 1/4 for n ≥ 1. ThenK∞
n=1an/1 converges. All approximants of the

continued fraction lie in the disc |w| < 1/2 and the value of the continued
fraction is in the disk |w| ≤ 1/2.

Corollary 6 can now be used to derive the limit of new Tasoevian contin-
ued fractions from existing Tasoevian continued fractions whose values are
known. The new continued fraction will contain an additional free parame-
ter. We give two examples.

Theorem 8. Let c, e, m > 1 and p > 1 be integers. Let d be a positive
rational such that dm, dcm/e ∈ N, and c + dcm/e− 1, e + dm2 − 1 > 0. Let

a =
e−

√
e2 + 4e/cp2

2
, b =

e +
√

e2 + 4e/cp2

2
.

Then

(2.19)
[
0; p− 1, 1, c +

dc

e
m2n−1 − 1, p− 1, 1, e + dm2n − 1

]∞

n=1

=
1
p

+
e/cp2

md + a

∑∞
n=0

(b/d)nm−n(n+3)/2

(1/m; 1/m)n(−a/dm2; 1/m)n

∑∞
n=0

(b/d)nm−n(n+1)/2

(1/m; 1/m)n(−a/dm; 1/m)n

.

Proof. Replace c by cp2 in Theorem 2 and let the resulting continued fraction
be the continued fraction on the right side of (2.18). After the negatives
are removed (see the remark before Corollary 2) from the corresponding
continued fraction on the left side of (2.18), the continued fraction on the
left side at (2.19) is produced and the result follows. ¤
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Theorem 9. Let u, and v be positive integers, u, v > 1, and let e and f be
rationals such that eu− 1, fv − 1 ∈ N. Then

(2.20) [0; p− 1, 1, eun − 1, p− 1, 1, fvn − 1]∞n=1

=
1
p

+

(
1

ep2u
− 1

e2fp4u2v + ep2

) ∑∞
n=0

(efp2)−n(uv)−n(n+3)/2

(1/uv; 1/uv)n(−1/efp2u3v2; 1/uv)n

∑∞
n=0

(efp2)−n(uv)−n(n+1)/2

(1/uv; 1/uv)n(−1/efp2u2v; 1/uv)n

.

Proof. The proof is similar to that of Theorem 8, except we replace e with
ep2 in Theorem 4. ¤

Remark: It is clear that many other continued fractions of Tasoevian
type could be produced from those listed in this section, by either replacing
various parameters by their negatives, or applying Corollary 6 differently
(for example, by replacing m by mp or mp2 (instead of replacing e by ep2)
in Theorems 8 and 9). However, we feel these methods have been sufficiently
illustrated here and refrain from further examples.

3. Hurwitzian Continued Fractions

We first recall some of the well-known classes of Hurwitzian continued
fractions and consider some elementary generalizations of them. We first
note that Lehmer’s continued fraction (1.2)

[0; a, a + b, a + 2b, a + 3b, · · · ] =
I(a/b)(2/b)

I(a/b)−1(2/b)
,

can easily be generalized. Replace a by a
√

uv and b by b
√

uv, multiply both
sides of (1.2) by

√
v/u, apply a sequence of similarity transformations to

the resulting continued fraction to make it regular once more, and we get

(3.1) [0;ua, v(a + b), u(a + 2b), v(a + 3b), · · · ] =
√

v

u

I(a/b)(2/b
√

uv)
I(a/b)−1(2/b

√
uv)

.

Komatsu also derives this generalization in [5], but his derivation is more
complicated. We note that several of the well-known classes of Hurwitzian
continued fractions follow as special cases of (3.1). For example, before
removing the negative partial quotients, Lambert’s continued fraction (1.1)
gives that

(3.2)
√

v

u
tan

1√
uv

= [0, u,−3v, 5u,−7v, . . . ],
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which follows upon setting a = 1, b = 2 and replacing v with −v. The
continued fraction

(3.3)
√

v

u
tanh

1√
uv

= [0, u, 3v, 5u, 7v, . . . ],

is clearly also a special case. The continued fraction

[0; (4n + 2)s ]∞n=0 =
e1/s − 1
e1/s + 1

is clearly a special case of (1.2). Thus, as Komatsu indicated in [9], the
continued fraction at (3.1) may be used to generalize several of the well-
known Hurwitzian continued fraction expansions. As in Corollary 2, further
variations follow upon replacing some of the parameters by their negatives.

We also recall a well-known continued fraction expansion for ez, z ∈ C
(see [13, page 563], for example):

(3.4) ez =
1
1 −

z

1 +
z

2 −
z

3 +
z

2 −
z

5 +
z

2 −
z

7 + · · · .

Set z = 1/m2 and apply a sequence of similarity transformations to the
resulting continued fraction some to get that

m(1− e−1/m2
) = [0; (4n + 1)m, 2m,−(4n + 3)m,−2m ]∞n=0(3.5)

= [0;m, 2m− 1, 1, (2n + 1)m− 1 ]∞n=1.

If we set m =
√

uv and multiply the left side of (3.5) and the first continued
fraction on the right side of (3.5) by

√
v/u, we get

v(1− e−1/uv) = [0; (4n + 1)u, 2v,−(4n + 3)u,−2v ]∞n=0(3.6)

= [0;u, 2v − 1, 1, (2n + 1)u− 1 ]∞n=1.

We have not seen the continued fraction expansions at (3.5) and (3.6) else-
where.

We are now ready to derive several new families of Hurwitzian continued
fractions, using Corollary 6.

Theorem 10. Let a, b, p, u and v be integers restricted in the case of each
continued fraction below so that the partial quotients are all positive. Then

(3.7) [0; p− 1, 1, u(a + 2nb)− 1, p− 1, 1, v(a + (2n + 1)b)− 1 ]∞n=0

=
1
p

+
1
p

√
v

u

I(a/b)(2/bp
√

uv)
I(a/b)−1(2/bp

√
uv)

,

(3.8) [0; p− 1, 1, (4n + 1)u− 1, p, (4n + 3)v − 1, 1, p− 2 ]∞n=0

=
1
p

+
1
p

√
v

u
tan

1
p
√

uv
,
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(3.9) [0; p− 1, 1, (4n + 1)u− 1, p− 1, 1, (4n + 3)v − 1 ]∞n=0

=
1
p

+
1
p

√
v

u
tanh

1
p
√

uv
,

(3.10) [0; p− 1, 1, (4n + 1)u− 1, p− 1, 1, 2v − 1, p, (4n + 3)u− 1,

1, p− 1, 2v − 1, 1, p− 2 ]∞n=0

=
1
p

+ v(1− e−1/up2v).

Proof. The claimed identities follow by applying the result in Corollary 6
to, in turn, (3.1), (3.2), (3.3) and (3.6) (replace u by up2 in each case), and
then removing the negative signs from the resulting continued fractions. ¤

Remark: Variants of each of these continued fraction identities could be
produced by replacing some of the parameters in each expansion in Theorem
10 by their negatives, as in Corollary 2, but we do not consider that here.

3.1. Finite continued fractions containing arithmetic progressions.
Here we find expressions for finite continued fractions of the form [0;a, a +
b, a+2b, a+3b, · · · , a+(n−1)b] and [0; a, c, a+b, c+d, a+2b, c+2d, · · · , a+
(n−1)b, c+(n−1)d], where a, b, c and d satisfy a simple algebraic relation.
We first prove the following theorem.

Theorem 11. Let

(3.11)
Pn

Qn
:=

−c

a −
c

a + b −
c

a + 2b − · · · −
c

a + (n− 1)b
denote the n-th approximant of the continued fraction K∞

j=0 − c/(a + jb).
Then

Pn =
b(n+1)/2c∑

i=1

(
n− i

i− 1

)
(−c)i

n−i∏

j=i

(a + j b),(3.12)

Qn =
bn/2c∑

i=0

(
n− i

i

)
(−c)i

n−1−i∏

j=i

(a + j b).

Proof. The statements are easily checked to be true for n = 1 and n = 2
(as usual, the empty product is taken to be equal to 1). Now suppose the
statements are true for n = 1, 2, . . . k.

Pk+1 = (a + kb)Pk − cPk−1

= (a + kb)
b(k+1)/2c∑

i=1

(
k − i

i− 1

)
(−c)i

k−i∏

j=i

(a + j b)

− c

bk/2c∑

i=1

(
k − 1− i

i− 1

)
(−c)i

k−1−i∏

j=i

(a + j b)
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= −c
k∏

j=1

(a + j b) + (a + kb)
b(k+1)/2c∑

i=2

(
k − i

i− 1

)
(−c)i

k−i∏

j=i

(a + j b)

+
bk/2c+1∑

i=2

(
k − i

i− 2

)
(−c)i

k−i∏

j=i−1

(a + j b).(3.13)

If k is odd, then b(k + 1)/2c = bk/2c+ 1 = b(k + 2)/2c and

(a + kb)
(

k − i

i− 1

)
(−c)i

k−i∏

j=i

(a + j b) +
(

k − i

i− 2

)
(−c)i

k−i∏

j=i−1

(a + j b)

= (−c)i
k−i∏

j=i

(a + j b)
(k − i)!

(i− 2)!(k − 2i + 1)!

(
a + kb

i− 1
+

a + (i− 1)b
k − 2i + 2

)

= (−c)i
k−i∏

j=i

(a + j b)
(k − i)!

(i− 2)!(k − 2i + 1)!
(k − i + 1)(a + (k − i + 1)b)

(i− 1)(k − 2i + 2)

=
(

k + 1− i

i− 1

)
(−c)i

k+1−i∏

j=i

(a + j b),

=⇒ Pk+1 =
b(k+2)/2c∑

i=1

(
k + 1− i

i− 1

)
(−c)i

k+1−i∏

j=i

(a + j b).

If k is even, the extra bk/2c+1-th term at (3.13) provides the b(k+2)/2c-th
term in the sum above. The proof of (3.12) for Pn now follows.

The proof for Qn is virtually identical, and so is omitted. ¤

Corollary 7. Let a and b be positive integers. Then

(3.14)
1
a +

1
a + b + · · · +

1
a + (n− 1)b

=

b(n+1)/2c∑

i=1

(
n− i

i− 1

) n−i∏

j=i

(a + j b)

bn/2c∑

i=0

(
n− i

i

) n−1−i∏

j=i

(a + j b)

.

Let f , g, h and k be integers such that 2gh = k(2f + h). Then

(3.15)
1
f +

1
g +

1
f + h +

1
g + k + · · · +

1
f + (n− 1)h +

1
g + (n− 1)k

=

n∑

i=1

(
2n− i

i− 1

)(
2g

2 f + h

)2n−i 2n−i∏

j=i

(
f + j

h

2

)

n∑

i=0

(
2n− i

i

)(
2g

2 f + h

)2n−1−i 2n−1−i∏

j=i

(
f + j

h

2

) .
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Proof. The identity at (3.14) follows immediately, upon setting c = −1 in
Theorem 11. For (3.15), it is easy to see that

−c

a −
c

a + b −
c

a + 2b − · · · −
c

a + (2n− 1)b

=
1

−a/c +
1

a + b
+

1
−a/c− 2b/c

+
1

a + 3b +

· · · +
1

−a/c− (2n− 2)b/c +
1

a + (2n− 1)b
.

Now make the substitutions

a =
2 f g

2 f + h
, b =

g h

2 f + h
, c = − 2g

2f + h
,

and the continued fraction at (3.15) is produced. The result follows, after
some simple manipulations, upon making the same substitutions into the
ratio P2n/Q2n, where P2n and Q2n are as defined at (3.12). ¤

Lehmer’s result (1.2) easily follows from (3.14), upon re-indexing the nu-
merator on the right side by replacing i with i+1, dividing top and bottom
on the right side by

∏n−1
j=0 (a + j b), performing some simple algebraic ma-

nipulations, and then letting n →∞.

Corollary 8. (Lehmer [12]) Let a and b be positive integers. Then

[0; a, a + b, a + 2b, a + 3b, · · · ] =
1
b

∞∑

k=0

b−2k

(a/b)k+1k!
∞∑

k=0

b−2k

(a/b)kk!

.

4. Hurwitzian- and Tasoevian continued fractions with
arbitrarily long quasi-period

We conclude by noting that the construction described in Corollary 6 can
be iterated to produce both Hurwitzian- and Tasoevian continued fractions
with arbitrary long quasi-period, with arbitrarily many free parameters and
whose limits can be determined. We give one example, with seven free
parameters and quasi-period of length 24, to illustrate this.

Theorem 12. Let e, f , p > 1, q > 1, r > 2, u > 1 and v > 1 be positive
integers. Let E = ep2q4r8. Then

(4.1) [0; r − 1, 1, q − 1, r, p− 1, 1, r − 1, q − 1, 1, r − 1, eun − 1, 1,

r − 2, 1, q − 1, r − 1, 1, p− 1, r, q − 1, 1, r − 2, 1, fvn − 1 ]∞n=1

=
1

pq2r4
+

1
qr2

+
1
r
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+
(

1
Eu

− 1
E2fu2v + E

) ∑∞
n=0

(Ef)−n(uv)−n(n+3)/2

(1/uv; 1/uv)n(−1/Efu3v2; 1/uv)n

∑∞
n=0

(Ef)−n(uv)−n(n+1)/2

(1/uv; 1/uv)n(−1/Efu2v; 1/uv)n

.

Proof. For ease of notation, let

f(e) =
(

1
eu
− 1

e2fu2v + e

) ∑∞
n=0

(ef)−n(uv)−n(n+3)/2

(1/uv; 1/uv)n(−1/efu3v2; 1/uv)n

∑∞
n=0

(ef)−n(uv)−n(n+1)/2

(1/uv; 1/uv)n(−1/efu2v; 1/uv)n

,

so that, by Theorem 4,

[0; eun, fvn]∞n=1 = f(e).

Replace e with ep2 and, by Corollary 6,
[
0; p,−eun,−p, fvn

]∞
n=1

=
1
p

+ f(ep2).

Replace p with pq2 and, again by Corollary 6,
[
0; q,−p,−q,−eun, q, p,−q, fvn

]∞
n=1

=
1
q

+
1

pq2
+ f(ep2q4).

Repeat this step once more, by replacing q with qr2, and then
[
0; r,−q,−r,−p, r, q,−r,−eun, r,−q,−r, p, r, q,−r, fvn

]∞
n=1

=
1
r

+
1

qr2
+

1
pq2r4

+ f(ep2q4r8).

Finally, remove the negatives from the continued fraction and (4.1) follows.
¤
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