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1. Foreword

I was happy to receive the email sent by the organizers of the Combina-
tory Analysis 2018 conference, reminding attendees that there would be a
“Special Issue of the Annals of Combinatorics to honor George Andrews at
the occasion of passing the milestone age of 80”, and soliciting papers with
“new or unpublished work relating to the mathematical interests of George
Andrews”.

I had previously done some work on extending Schröter’s identity for
a product of two Jacobi triple products to a product of arbitrarily many
such products. When this email sent to conference attendees arrived from
the organizers, it spurred me to complete the proof of the identity that I had
found. The topic, Jacobi triple products, is certainly one that is frequently
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the paper.
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found in the papers of Professor Andrews, so I was happy to submit this
paper to the conference proceedings.

2. Introduction

The Jacobi triple product identity, first proved by Jacobi [9], is one of the
fundamental identities in q-series. It may be written (see, for example, [6,
Equation (II.28), page 357]) as

∞∑
n=−∞

qn
2

zn =

(
−qz, −q

z
, q2; q2

)
∞
. (2.1)

For space saving reasons we will occasionally use the notation

〈a; q2j〉∞
to denote the triple product (a, q2j/a, q2j ; q2j)∞.

This paper is concerned with identities in which products of Jacobi triple
products are expanded into sums and products of other triple products. A
well-known example of such an identity is the quintuple product identity (see
Cooper’s excellent paper [4] for the history of this identity and a survey of
its various proofs). This identity may be written as

(z, q2/z, q2; q2)∞(q2z2, q2/z2; q4)∞ =

(−q2z3,−q4/z3, q6; q6)∞ − z(−q4z3,−q2/z3, q6; q6)∞. (2.2)

Remark: Strictly speaking, the factor (q2z2, q2/z2; q4)∞ is not a triple prod-
uct, but becomes so if we multiply on the left side by (q4; q4)∞, while the
right side remains a sum/product combination of triple products if we multi-
ply on the right side by the equivalent (q4, q8, q12; q12)∞. A similar situation
will hold for other identities in the paper.

A second example is given by the Septuple Product Identity, first found
by Hirschhorn [7] (in fact, Hirschhorn found a two-parameter extension from
which the Septuple Product Identity follows upon setting a = −z/q and
b = −z2/q in Equation (2.1) on page 32), and re-discovered by Farkas and
Kra [5].(

z,
q2

z
, q2; q2

)
∞

(
−z, −q

2

z
, q2; q2

)
∞

(
z,
q4

z
, q4; q4

)
∞

= (q2, q2, q4; q4)∞(q8, q12, q20; q20)∞

×
{(

q4z5,
q16

z5
, q20; q20

)
∞

+ z3
(
q16z5,

q4

z5
, q20; q20

)
∞

}
− (q2, q2, q4; q4)∞(q4, q16, q20; q20)∞

×
{
z

(
q8z5,

q12

z5
, q20; q20

)
∞

+ z2
(
q12z5,

q8

z5
, q20; q20

)
∞

}
.

A third example is contained in Winquist’s Identity (Winquist [10]):
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(
a,
q2

a
, b,

q2

b
, ab,

q2

ab
,
a

b
,
q2b

a
, q2, q2, q2, q2; q2

)
∞

= (q2, q2; q2)∞

[
(
a3,

q6

a3
, q6; q6

)
∞

{(
b3q2,

q4

b3
, q6; q6

)
∞
− b

(
b3q4,

q2

b3
, q6; q6

)
∞

}
− a

b

(
b3,

q6

b3
, q6; q6

)
∞

{(
a3q2,

q4

a3
, q6; q6

)
∞
− a

(
a3q4,

q2

a3
, q6; q6

)
∞

}]
.

In the present paper we prove an expansion for a product of k (k ≥ 3)
Jacobi triple products in terms of sums of products of other Jacobi triple
products (Theorem 2.1 below), and then show that all of the identities above,
and also various other identities, follow as special cases. The main theorem
of the paper is the following.

Theorem 2.1. Let k ≥ 1 be a positive integer and let n1, n2, . . . , nk, N be
positive integers such that N = lcm(n1, n2, ..., nk), or a multiple thereof. For
ease of notation, for 1 ≤ i ≤ k set ui := N/ni, vi := u1 + u2 + · · · + ui,
and wi := vi + 1. Let z, a, a1, a2 . . . ak be non-zero complex numbers and
suppose |q| < 1. Then

〈
−qNaz; q2N

〉
∞

k∏
i=1

〈
−qniaiz; q

2ni
〉
∞

=

v1∑
j1=0

v2∑
j2=0

· · ·
vk∑

jk=0

zjkqn1j
2
1+n2(j2−j1)2+n3(j3−j2)2+···+nk(jk−jk−1)

2

aj11 a
j2−j1
2 aj3−j23 . . . a

jk−jk−1

k

〈
−qn1+N+2n1j1

a1
a

; q2(n1+N)
〉
∞

k∏
i=2

〈
− qni(wiwi−1+2wiji−1−2wi−1ji)

a au1
1 au2

2 . . . a
ui−1

i−1
a
wi−1

i

; q2niwiwi−1

〉
∞

×
〈
−qNwk+2Njkau1

1 au2
2 . . . auk

k azwk ; q2Nwk
〉
∞ . (2.3)

Observe that the expansion (2.3) provides a wk-dissection of the left
side into powers of z that lie in arithmetic progressions modulo wk.

The quintuple product identity, the septuple product identity and Win-
quist’s identity, and others, all follow from special cases of the above identity.
Other applications include expansions of Ramanujan theta functions, or pow-
ers of these, as sums and products of Jacobi triple products. As an example
of one of these latter identities, we have that, for an arbitrary integer k ≥ 3,

(q; q)
k
∞ =

1∑
j1=0

. . .

k−1∑
jk−1=0

(−1)jk−1q3(j
2
1+j22+···+j2k−2)+jk−1(3jk−1+1)/2−3(j1j2+···+jk−2jk−1)

×
〈
−q3+3j1 ; q6

〉
∞

〈
(−1)k+1q2k+3jk−1 ; q3k

〉
∞
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×
k−1∏
i=2

〈
−q3i(i+1)/2+3(i+1)ji−1−3iji ; q3i(i+1)

〉
∞
.

Remark: Cao [3] proves a quite general theorem (Theorem 1.4) which
also exhibits a product of arbitrarily many Jacobi triple products as a sum
containing other Jacobi triple products. Cao’s theorem is more general in
the sense that it allows for a greater variety of expansions, but in full gen-
erality appears more restrictive in the sense that for such identity, it must
also be shown that the entries of a certain associated matrix satisfy certain
conditions. We had initially though that the result in the present paper was
independent of Cao’s result. However, it was pointed out by one of the ref-
erees that the key induction step in the proof of our Theorem 2.1, namely,
Corollary 3.8, is actually a special case of Corollary 2.2 in Cao’s paper [3],
and thus that our result in Theorem 2.1 could have been derived from the
results in Cao’s paper [3], by following the appropriate path and making the
appropriate specializations.

3. Extensions of Schröter’s Identity.

Before coming to the main theorem and its consequences, we first consider
Schröter’s Identity, and also state some elementary extensions. The methods
of proof will also preview the methods used to prove the main theorem in the
next section.

Schröter’s identity (see [2, page 111]),〈
−qn1a; q2n1

〉
∞

〈
−qn2b; q2n2

〉
∞

=

n1+n2−1∑
j=0

qn1j
2

aj
〈
−qn1+n2+2n1ja

b
; q2(n1+n2)

〉
∞

×
〈
−q(n1+n2+2j)n1n2an2bn1 ; q2(n1+n2)n1n2

〉
∞
, (3.1)

first appeared in Schröter’s 1854 dissertation.
In Lemma 3.3 we introduce a variable z as a “book-keeping” device by

replacing a with az and b with bz, and also give a proof of a slight extension of
Schröter’s identity by introducing an integer variable m into the summation
range (Schröter’s original identity is the case m = 1 of the identity in Lemma
3.3), and then use this result in conjunction with Lemma 3.1 to derive a more
general extension.

We begin by recalling the following well-known elementary identity.

Lemma 3.1. Let p be a positive integer and let q and z be complex numbers
with z 6= 0 and |q| < 1. Then

〈
−qz; q2

〉
∞ =

p−1∑
j=0

qj
2

zj
〈
−qp

2+2pjzp; q2p
2
〉
∞
. (3.2)



A Generalization of Schröter’s Formula 5

Proof. The proof follows directly from (2.1), upon breaking the sum on the
left side into p sums, in each of which the exponents n all lie in the same
arithmetic progression modulo p, and then applying (2.1) to each sum. �

Before coming to the extension of Schröter’s identity, we also need a
preliminary lemma.

Lemma 3.2. If c is a non-zero complex number, n is any positive integer, j
is any integer, and |q| < 1, then

(cqn+2jn, qn−2jn/c; q2n)∞ = (cqn; qn/c; q2n)∞

(
−1

c

)j
1

qnj2
. (3.3)

Proof. The statement is clearly true if j = 0. If j > 0, then

(cqn+2jn, qn−2jn/c; q2n)∞ = (cqn; qn/c; q2n)∞
(qn−2jn/c; q2n)j

(cqn; q2n)j
,

and the result follows for j > 0 upon applying the identity (see [6, Identity
(I.8), page 351])

(aq−j ; q)j = (q/a; q)j

(
−a
q

)j

q−j(j−1)/2

to (qn−2jn/c; q2n)j (with a = qn/c and q replaced with q2n). The result for
j < 0 follows from the j > 0 case, after replacing j with −j and c with
1/c. �

Lemma 3.3. (An extension of Schröter’s Identity) Let a, b and z be non-zero
complex numbers, let q be a complex number with |q| < 1, and let m ≥ 1 be
an integer. Then〈
−qn1az; q2n1

〉
∞

〈
−qn2bz; q2n2

〉
∞

=

m(n1+n2)−1∑
j=0

qn1j
2

(az)j
〈
−qn1+n2+2n1ja

b
; q2(n1+n2)

〉
∞

×
〈
−q(m(n1+n2)+2j)n1n2mamn2bmn1zm(n1+n2); q2(n1+n2)n1n2m

2
〉
∞
. (3.4)

Proof. After two applications of the Jacobi triple product identity,

F 1(z) :=
〈
−qn1az; q2n1

〉
∞

〈
−qn2bz; q2n2

〉
∞

=
∑

m1,m2∈Z
qn1m

2
1(az)m1

qn2m
2
2

(bz)m2

=
∑

t,m2∈Z
(az)tqn1(t

2+2tm2+m2
2)
qn2m

2
2am2

bm2
(t = m1 −m2)

=
∑

t,m2∈Z
(az)tqn1t

2

q(n1+n2)m
2
2

(
aq2n1t

b

)m2
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=
∑
t∈Z

(az)tqn1t
2

〈
−qn1+n2+2n1ta

b
; q2(n1+n2)

〉
∞
.

Now set t = m(n1 + n2)r + j, r ∈ Z, 0 ≤ j ≤ m(n1 + n2) − 1, and
apply Lemma 3.2 (with n1 + n2, n1mr and −ab−1q2n1j instead of n, j and
c, respectively) to the triple products to get

F1(z) =

m(n1+n2)−1∑
j=0

qn1j
2

(az)j
〈
−qn1+n2+2n1ja

b
; q2(n1+n2)

〉
∞

×
∑
r∈Z

qm
2(n1+n2)n1n2r

2

(an2bn1zn1+n2q2n1n2j)mr.

The result follows after one further application of the Jacobi triple product
identity. �

Theorem 3.4. (A second extension of Schröter’s Identity) Let a, b and z be
non-zero complex numbers, let q be a complex number with |q| < 1, and let
m ≥ 1, n1 ≥ 1, n2 ≥ 1 and p ≥ 1 be integers. Then〈
−qn1az; q2n1

〉
∞

〈
−qn2bz; q2n2

〉
∞

=

m(n1+p2n2)−1∑
j1=0

p−1∑
j2=0

qn1j
2
1+j22n2aj1bj2zj1+j2

〈
−qn1+p2n2+2n1j1−2pj2n2a

bpzp−1
; q2(n1+p2n2)

〉
∞〈

− amp2n2bmn1pzmp(n1+pn2)qmn1pn2(2j1p+2j2+mp(n1+p2n2));

q2m
2n1p

2n2(n1+p2n2)〉
∞. (3.5)

Proof. Apply Lemma 3.1 to the product
(
−qn2bz,−qn2/bz, q2n2 ; q2n2

)
∞, and

then apply Lemma 3.3 to each pair of triple products in the resulting expres-
sion. �

Remark: For the statement of Lemma 3.3, and Theorem 3.4, the pres-
ence of the z variable is not actually necessary, as it could be absorbed into
the a and b variables, without affecting the generality of the result. How-
ever, its usefulness derives from the fact that the right side of (3.4) provides
a m(n1 + n2)-dissection of the left side into m(n1 + n2) functions in each
of which the powers of z all lie in the same arithmetic progression modulo
m(n1 + n2). For this reason, we retain the variable z in Theorem 3.4, and
elsewhere throughout the paper (see, for example, the proof of Corollary 4.6,
where this dissection proves useful).

We note that in the case where n1|n2, there exists a second family of
expansions that do not come directly from Theorem 3.4.
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Corollary 3.5. Let a, b z, q, m, p, n1 and n2 be as in Theorem 3.4, with the
additional requirement that n1|n2. Then〈
−qn1az; q2n1

〉
∞

〈
−qn2bz; q2n2

〉
∞

=

m(1+p2n2/n1)−1∑
j1=0

p−1∑
j2=0

qn1j
2
1+n2j

2
2aj1bj2zj1+j2

〈
−qn1+p2n2+2n1j1−2pj2n2a

bpzp−1
; q2(n1+p2n2)

〉
∞〈

− amp2n2/n1bmpzmp(1+pn2/n1)qmpn2(2j1p+2j2+mp(1+p2n2/n1));

q2m
2p2n2(1+p2n2/n1)〉

∞. (3.6)

Proof. Write〈
−qn2bz; q2n2

〉
∞ =

〈
−(qn1)n2/n1bz; (qn1)2n2/n1

〉
∞
,

and then apply Theorem 3.4, with n1 replaced with 1, n2 replaced with
n2/n1 and q replaced with qn1 . �

Theorem 3.4 is more general in the sense that it holds also when n1 - n2.
However, when n1|n2, Corollary 3.5 is actually the stronger result as it implies
Theorem 3.4 in this case (replace m with mn1 in Corollary 3.5).

Remarks: (1) Cao ([3, Theorem 2.3, Equation (2.50)]), using a different
approach, has given a Generalized Schröter’s Formula for a product of two
Jacobi triple products, a formula which implies our identity (3.4), but not
(3.5) (or at least not without additional transformations).

(2) Even though no applications of (3.4), (3.5) and (3.6) are given in
the present paper with m > 1 or p > 1, they are included for the sake of
completeness.

We note that the quintuple product identity also follows from Schröter’s
Theorem. The quintuple product identity is usually written in the form

(−z,−q/z, q; q)∞(qz2, q/z2; q2)∞ =

∞∑
n=−∞

(−1)nqn(3n−1)/2z3n(1 + zqn).

Upon replacing q with q2, z with −z, using the Jacobi triple product identity
to sum the resulting series on the right side, this identity may be restated in
the form given at (2.2), and we show that it follows from Corollary 3.5.

Corollary 3.6. Let z be a non-zero complex number, and suppose |q| < 1.
Then (2.2) holds.

Proof. In (3.4), set m = 1, n2 = 2, a = −1/q3, b = −1/z3, and (2.2) follows
after some simple manipulations, after using the fact that (q4, q8, q12; q12)∞
= (q4; q4)∞. �
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Schröter’s theorem and its various extensions for a product of two Jacobi
triple products naturally leads to the following question. Given a product of
k (k ≥ 3, k an integer) Jacobi triple products,

F (z) :=

k∏
i=1

〈
−qniaiz; q

2ni
〉
∞ ,

and we M -dissect F (z) by writing

F (z) =

M−1∑
j=0

zjFj(z
M ),

for some integer M , can an explicit representation of each Fj(z
M ) be given?

We gave an affirmative answer to this question in Theorem 2.1, and prove
this theorem in the next section, in the case where each ni|N (with M =
N/n1 + · · ·+N/nk + 1).

To this end, an identity which follows from a special case of the next
identity, due to Cao [3], is needed. We state this result of Cao in terms of
q-products, rather than using Ramanujan’s theta function f(a, b), as Cao did.

Proposition 3.7. (Cao, [3, Corollary 2.2]) If |ab| < 1 and (cd) = (ab)k1k2 ,
where both k1 and k2 are positive integers, then

(−a,−b, ab; ab)∞(−c,−d, cd; cd)∞ =

k1+k2−1∑
r=0

(ab)r
2/2
(a
b

)r/2
×

(
(ab)k

2
1/2+k1r

(a
b

)k1/2

c, (ab)k
2
1/2−k1r

(
b

a

)k1/2

d, (ab)k
2
1cd; (ab)k

2
1cd

)
∞

×

(
(ab)k

2
2/2+k2r

(a
b

)k2/2

d, (ab)k
2
2/2−k2r

(
b

a

)k2/2

c, (ab)k
2
2cd; (ab)k

2
2cd

)
∞

.

(3.7)

The special case that is needed may be stated as follows.

Corollary 3.8. Let j′ be an integer and let n, N and w′ be positive integers
such that n|N . Let a, e, z and q be non-zero complex numbers with |q| < 1.
Define

u :=
N

n
, w := u+ w′, v := w − 1.

Then

〈
−ezqn; q2n

〉
∞

〈
−azw

′
qNw′+2j′N ; q2Nw′

〉
∞

=

v∑
j=0

ej−j
′
qn(j−j

′)2zj−j
′

×
〈
−a
ew′

qnw
′w+2n(j′w−jw′); q2nw

′w

〉
∞

〈
−aeuzwq2jN+Nw; q2Nw

〉
∞ . (3.8)
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Proof. In Proposition 3.7, set a = ezqn, b = qn/(ez), c = qN(w′−2j′)/(azw
′
),

d = azw
′
qN(w′+2j′), k1 = u and k2 = w′. Then it can be seen that (cd) =

(ab)k1k2 , and that the left side of (3.7) becomes the left side of (3.8). The
right side of (3.7) becomes

v∑
r=0

qnr
2

(ez)r〈−aeuzwqN(w+2r+2j′); q2Nw〉∞

× 〈−e
w′

a
qnww′+2n(w′r−j′w)+2nj′w′ ; q2nww′〉.

The result follows upon, in turn, replacing r with r− j′ (so that the interval
of summation is also changed to one of another w consecutive integers), using
the division algorithm (with r and w) to write each of the resulting new r
values in the form r = mw+ j for some integers j and m with 0 ≤ j ≤ w−1,
and finally applying (3.3) to each of the terms in the resulting sum. �

4. Main Result and its Implications

We now come to the proof of the main result of the paper. The proof is
essentially a simple induction argument using identities (3.6) and (3.8).

Remark: It should be pointed out that attempting to iterate Schröter’s
original identity (the case m = 1 of the identity in Lemma 3.3) does not
appear to easily lead to any result similar to that in Theorem 2.1.

Proof of Theorem 2.1. The proof is by induction on k. If k = 1, then (2.3)
becomes〈
−qNaz; q2N

〉
∞

〈
−qn1a1z; q

2n1
〉
∞ =

v1∑
j1=0

zj1qn1j
2
1aj11

〈
−qn1+N+2n1j1

a1
a

; q2(n1+N)
〉
∞

×
〈
−qNw1+2Nj1au1

1 azw1 ; q2Nw1
〉
∞ .

However, this is simply identity (3.6), with n2 = N , b = a, m = p = 1, upon
recalling that v1 = u1 = N/n1 and w1 = v1 + 1.

Now suppose (2.3) holds for k = 1, 2, . . . r. Now consider the left side of
(2.3) with k = r + 1, so that after employing the k = r case on the first r
Jacobi triple products,

〈
−qNaz; q2N

〉
∞

r+1∏
i=1

〈
−qniaiz; q

2ni
〉
∞ =

v1∑
j1=0

v2∑
j2=0

· · ·
vr∑

jr=0

zjrqn1j
2
1+n2(j2−j1)2+n3(j3−j2)2+···+nr(jr−jr−1)

2

aj11 a
j2−j1
2 aj3−j23 . . . ajr−jr−1

r

〈
−qn1+N+2n1j1

a1
a

; q2(n1+N)
〉
∞
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r∏
i=2

〈
− qni(wiwi−1+2wiji−1−2wi−1ji)

a au1
1 au2

2 . . . a
ui−1

i−1
a
wi−1

i

; q2niwiwi−1

〉
∞

×
〈
−qNwr+2Njrau1

1 au2
2 . . . aur

r azwr ; q2Nwr
〉
∞

〈
−qnr+1ar+1z; q

2nr+1
〉
∞ .

(4.1)

Identity (3.8) is now applied to the final two triple products on the
right side of (4.1) above. In this identity, n is replaced with nr+1, j′ with jr,
j with jr+1, e with ar+1, a with aau1

1 au2
2 . . . aur

r and w′ with wr. Hence, in the
notation of Theorem 2.1, u takes the value N/nr+1 = ur+1, w takes the value
u+w′ = ur+1 +wr = wr+1, and v takes the value w− 1 = wr+1 − 1 = vr+1.
After these substitutions are made, then (3.8) gives that〈
−qnr+1ar+1z; q

2nr+1
〉
∞

〈
−qNwr+2Njrau1

1 au2
2 . . . aur

r azwr ; q2Nwr
〉
∞

=

vr+1∑
jr+1=0

a
jr+1−jr
r+1 qnr+1(jr+1−jr)2zjr+1−jr

〈
− qnr+1(wr+1wr+2wr+1jr−2wrjr+1)

a au1
1 au2

2 . . . aur
r

awr
r+1

; q2nr+1wr+1wr

〉
∞

×
〈
−qNwr+1+2Njr+1au1

1 au2
2 . . . aur

r a
ur+1

r+1 az
wr+1 ; q2Nwr+1

〉
∞ . (4.2)

The substitution of the right side of (4.2) into (4.1) to replace the left side
of (4.2) gives that (2.3) holds for k = r + 1, and thus by induction that it is
true for all integers k ≥ 1. This concludes the proof of Theorem 2.1. �

Corollary 4.1. Let z, a1, a2 . . . ak be non-zero complex numbers and suppose
|q| < 1. Then

k∏
i=1

〈
−qaiz; q2

〉
∞ =

1∑
j1=0

2∑
j2=0

· · ·
k−1∑

jk−1=0

zjk−1qj
2
1+(j2−j1)2+···+(jk−1−jk−2)

2

aj11 a
j2−j1
2 . . . a

jk−1−jk−2

k−1〈
−q2+2j1

a1
ak

; q4
〉
∞

〈
−qk+2jk−1a1a2 . . . akz

k; q2k
〉
∞

×
k−1∏
i=2

〈
−qi(i+1)+2(i+1)ji−1−2iji aka1a2 . . . ai−1

aii
; q2i(i+1)

〉
∞
. (4.3)

Proof. Replace k with k− 1 in Theorem 2.1, and then set a = ak, n1 = n2 =
· · · = nk−1 = N = 1, so that each ui = 1, vi = i and wi = i+ 1. �

Remarks: 1) Note that the sum (4.3) contains k! terms, each with k
Jacobi triple products.
2) Since the left side of (4.3) is invariant under any permutation of the num-
bers a1, . . . , ak, so is the right side.
3) The appearance of z in (4.3) is essentially a “book-keeping” device, as
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without loss of generality each ai could be replaced with ai/z (or, equiva-
lently, set z = 1).
4) Upon setting each ai = 1, we get an expression for (−qz,−q/z, q2; q2)k∞,
k ≥ 3.〈
−qz; q2

〉k
∞

=

1∑
j1=0

2∑
j2=0

· · ·
k−1∑

jk−1=0

zjk−1qj
2
1+(j2−j1)2+···+(jk−1−jk−2)

2 〈
−q2+2j1 ; q4

〉
∞

×
〈
−qk+2jk−1zk; q2k

〉
∞

k−1∏
i=2

〈
−qi(i+1)+2(i+1)ji−1−2iji ; q2i(i+1)

〉
∞
. (4.4)

This identity provides expansions in terms of triple products for Ra-
manujan’s theta functions, f(−q) = 〈q; q3〉∞ = (q; q)∞, φ(q) = 〈−q; q2〉∞
and ψ(q) = 〈−q; q4〉∞. We give one example.

Corollary 4.2. If |q| < 1, then

f(−q)k = (q; q)
k
∞ =

1∑
j1=0

. . .

k−1∑
jk−1=0

(−1)jk−1q3(j
2
1+j22+···+j2k−2)+jk−1(3jk−1+1)/2−3(j1j2+j2j3+···+jk−2jk−1)

×
〈
−q3+3j1 ; q6

〉
∞

〈
(−1)k+1q2k+3jk−1 ; q3k

〉
∞

×
k−1∏
i=2

〈
−q3i(i+1)/2+3(i+1)ji−1−3iji ; q3i(i+1)

〉
∞
. (4.5)

Proof. In (4.4), replace q with q3/2, and let z = −q1/2. �

Remark: The squares in the exponent of q that precede the infinite
products in (4.4) have been multiplied out and the terms rearranged, to
make it more explicit that, after the replacement of q with q3/2, that the new
exponent is indeed integral.

As a second illustration of (2.3), we exhibit the k = 3 case of the
identity explicitly, and show that it implies the quintuple product identity.
This identity was also stated [3, Equation (3.2)] by Cao.

Corollary 4.3. (Extended Quintuple Product Identity) If a, b, c, z 6= 0 and
|q| < 1, then〈
−qaz; q2

〉
∞

〈
−qbz; q2

〉
∞

〈
−qcz; q2

〉
∞ =

〈
−q

2a

c
; q4
〉
∞{〈

−q
6ac

b2
; q12

〉
∞

〈
−q3abcz3; q6

〉
∞ + qbz

〈
−q

2ac

b2
; q12

〉
∞

〈
−q5abcz3; q6

〉
∞

+ q4b2z2
〈
− ac

q2b2
; q12

〉
∞

〈
−q7abcz3; q6

〉
∞

}
+
q2a

b

〈
−q

4a

c
; q4
〉
∞
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{〈
−q

12ac

b2
; q12

〉
∞

〈
−q3abcz3; q6

〉
∞ +

bz

q

〈
−q

8ac

b2
; q12

〉
∞

〈
−q5abcz3; q6

〉
∞

+ b2z2
〈
−q

4ac

b2
; q12

〉
∞

〈
−q7abcz3; q6

〉
∞

}
. (4.6)

Proof. This follows after some slight rearrangement of terms in (4.3), after
substituting k = 3 and letting a1 = a, a2 = b and a3 = c. �

Recall from (2.2) that the quintuple product identity may be written as

(z, q2/z, qz, q/z,−qz,−q/z, q2, q2, q2; q2)∞ =

(q2; q2)2∞{(−q2z3,−q4/z3, q6; q6)∞ − z(−q4z3,−q2/z3, q6; q6)∞}.

However, this follows from (4.6) upon setting a = −1, b = −1/q and c = 1,
after some elementary infinite product manipulations.

The septuple product identity also follows from Theorem 2.1, but the
proof is less direct, as it also needs Schröter’s identity. We will prove the
septuple product identity in the following form.

Corollary 4.4. (Septuple Product Identity) Let z and q be complex numbers,
with z 6= 0 and |q| < 1. Then〈

z; q2
〉
∞

〈
−z; q2

〉
∞

〈
z; q4

〉
∞

=
〈
q2; q4

〉
∞

〈
q8; q20

〉
∞

{〈
q4z5; q20

〉
∞ + z3

〈
q16z5; q20

〉
∞

}
−
〈
q2; q4

〉
∞

〈
q4; q20

〉
∞

{
z
〈
q8z5; q20

〉
∞ + z2

〈
q12z5; q20

〉
∞

}
. (4.7)

Proof. In (2.3), set k = 2, n1 = n2 = 1 and N = 2 (so that u1 = u2 = 2,
u3 = 1, v1 = 2, v2 = 4, w1 = 3 and w2 = 5), z = 1, a1 = −z/q, a2 = z/q and
a3 = −z/q2. Then the left side of (2.3) becomes the left side of (4.7), and
the right side of (2.3) becomes

4∑
j2=0

qj
2
2−j2zj2〈q4+4j2z5; q20〉

×
2∑

j1=0

q2j
2
1−2j1j2(−1)j1〈−q4+2j1 ; q6〉〈q14−6j2+10j1 ; q30〉

It is easy to show that the inner sum is zero in the case j2 = 4 and that
proving (4.7) then comes down to proving the pair of identities

〈q2; q4〉〈q8;q20〉 = 〈−q4; q6〉〈q14; q30〉 (4.8)

− q2〈−1; q6〉〈q24; q30〉 − q2〈−q2; q6〉〈q4; q30〉,
〈q2; q4〉〈q4;q20〉 = 〈−1; q6〉〈q18; q30〉 (4.9)

− 〈−q2; q6〉〈q8; q30〉 − q2〈−q2; q6〉〈q28; q30〉.
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Let g(m,n) := q2n
2+10m2+2m(−1)m+n. We use the Jacobi triple product

identity to write the infinite product on the left side of identity (4.8) as an
infinite series. We next use a method similar to that of Hirschhorn in [8] to
first sum diagonally, and then divide the diagonal sums into six congruence
classes. This gives

〈q2; q4〉〈q8;q20〉 =

∞∑
m=−∞

∞∑
n=−∞

g(m,n) =

∞∑
k=−∞

∑
m+n=k

g(m,n)

=

5∑
j=0

∞∑
r=−∞

∞∑
s=−∞

g(s− r, 5s+ r + j)

=

5∑
j=0

(−1)6s+jq2j
2
∞∑

r=−∞

∞∑
s=−∞

q12r
2+(4j−2)r+60s2+(20j+2)s.

(4.10)

We similarly expand the right side of identity (4.8) to get

∞∑
u,v=−∞

q3u
2+u+15v2+v(−1)v

− q2
∞∑

u,v=−∞
q3u

2+3u+15v2+9v(−1)v − q2
∞∑

u,v=−∞
q3u

2+u+15v2+11v(−1)v.

We next expand each the three sums into four sums by setting u = 2r and
2r + 1 and v = 2s and 2s+ 1. By comparing the resulting twelve sums with
the expression (4.10) (after possibly replacing r with r ± 1 and/or s with
s± 1 in some cases), it can be seen that proving identity (4.8) now depends
on proving that

q6〈−q10; q24〉〈−q22; q120〉 − q4〈−q2; q24〉〈−q38; q120〉
+ q8〈−q6; q24〉〈−q18; q120〉 − q2〈−q6; q24〉〈−q42; q120〉

− q14〈−q10; q24〉〈−q2; q120〉+ q2〈−q2; q24〉〈−q58; q120〉 = 0.

However, this follows from Schröter’s identity (3.1), by setting n1 = 1, n2 = 5,
a = −1/q and b = −q4, and then replacing q with q2.

The proof of the second identity (4.9) proceeds similarly, except at the
end it depends on proving the identity

− 〈−q10; q24〉〈−q46; q120〉 − q12〈−q6; q24〉〈−q6; q120〉
+ q10〈−q2; q24〉〈−q24; q120〉+ q4〈−q10; q24〉〈−q26; q120〉
+ 〈−q6; q24〉〈−q54; q120〉 − q4〈−q2; q24〉〈−q34; q120〉 = 0.

This also follows from Schröter’s identity (3.1), the only difference being that
this time we set b = −q2, before replacing q with q2. �
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Winquist’s identity may also be derived from Theorem 2.1. As with the
proof of the septuple product identity, our proof needs several applications
of Schröter’s identity (3.1), rather than following directly from the theorem.
We prove Winquist’s identity in the following form.

Corollary 4.5. (Winquist’s Identity) Let a and b be non-zero complex numbers
and q a complex number with |q| < 1. Then〈

a; q2
〉
∞

〈
b; q2

〉
∞

〈
ab; q2

〉
∞

〈a
b

; q2
〉
∞

= (q2, q2; q2)∞

[ 〈
a3; q6

〉
∞

{〈
b3q2; q6

〉
∞ − b

〈
b3q4; q6

〉
∞

}
− a

b

〈
b3; q6

〉
∞

{〈
a3q2; q6

〉
∞ − a

〈
a3q4; q6

〉
∞

} ]
. (4.11)

Proof. In (2.3), set k = 3, n1 = n2 = 1 = n3 = N = 1 (so that u1 = u2 =
u3 = 1, v1 = 1, v2 = 2, v3 = 3, w1 = 2, w2 = 3 and w3 = 4), z = 1,
a1 = −a/q, a2 = −ab/q, a3 = −b/q and a = −a/(bq). Then the left side
of (2.3) becomes the left side of (4.11), and the right side of (2.3) becomes,
after some slight manipulation,

1∑
j1=0

2∑
j2=0

q2j
2
1+2j22−2j1j2

(
1

b

)j1

aj2
〈
−bq2+2j1 ; q4

〉
∞

〈
−q6+6j1−4j2

b3
; q12

〉
∞

×
3∑

j3=0

(
−b

q2j2+1

)j3

qj
2
3

〈
−q12+6j3

b3

q8j2a3
; q24

〉
∞

〈
−q2j3a3b; q8

〉
∞ .

Next, we apply Schröter’s identity (3.1), with n1 = 1, n2 = 3, a replaced
with −b/q2j2+1 and b with −q3−2j2/a3 to get that the inner sum over j3 is〈
b/q2j2 ; q2

〉
∞

〈
q6−2j2/a3; q6

〉
∞. Thus the sum above is equal to

1∑
j1=0

2∑
j2=0

q2j
2
1+2j22−2j1j2

(
1

b

)j1

aj2
〈
−bq2+2j1 ; q4

〉
∞

〈
−q6+6j1−4j2

b3
; q12

〉
∞

×
〈
q2j2a3; q6

〉
∞

〈
bq−2j2 ; q2

〉
∞ .

By comparison with the right side of (4.11), the result will follow if the next
three identities hold:

(q2, q2; q2)∞{
〈
b3q2; q6

〉
− b

〈
b3q4; q6

〉
} (4.12)

=
〈
b; q2

〉{〈
−bq2; q4

〉 〈
−b3q6; q12

〉
+
q2

b

〈
−bq4; q4

〉 〈
−b3; q12

〉}
,

(q2, q2; q2)∞
〈
b3; q6

〉
=
〈
b; q2

〉 {
b2
〈
−bq2; q4

〉 〈
−b3q10; q12

〉
+ b

〈
−bq4; q4

〉 〈
−b3q4; q12

〉}
,

=
〈
b; q2

〉 {〈
−bq2; q4

〉 〈
−b3q2; q12

〉
+ b2

〈
−bq4; q4

〉 〈
−b3q8; q12

〉}
.
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We apply Schröter’s identity (3.1) again, with n1 = 1, n2 = 2, a replaced
with −b/q and, respectively, b kept as b and replaced with bq2, to get that〈

b; q2
〉 〈
−bq2; q4

〉
= (q2; q2)∞

{〈
−b3q4; q12

〉
− b

〈
−b3q8; q12

〉}
,〈

b; q2
〉 〈
−bq4; q4

〉
= (q2; q2)∞

{
b−1

〈
−b3q2; q12

〉
− b

〈
−b3q10; q12

〉}
.

After inserting the expressions on the right above in equation (4.11), the
proof of Winquist’s identity will follow if it can be shown that the next three
identities hold:

(q2; q2)∞
〈
b3; q6

〉
=
〈
−b3q4; q12

〉 〈
−b3q2; q12

〉
− b3

〈
−b3q8; q12

〉 〈
−b3q10; q12

〉
,

(4.13)

(q2; q2)∞
〈
b3q2; q6

〉
=
〈
−b3q4; q12

〉 〈
−b3q6; q12

〉
− q2

〈
−b3q10; q12

〉 〈
−b3; q12

〉
,

(4.14)

(q2; q2)∞
〈
b3q4; q6

〉
=
〈
−b3q8; q12

〉 〈
−b3q6; q12

〉
− q2

b3
〈
−b3q2; q12

〉 〈
−b3; q12

〉
.

(4.15)

Once again appealing to Schröter’s identity (3.1), with n1 = 1, n2 = 1 and
q replaced with q3, we get that〈
−aq3; q6

〉 〈
−bq3; q6

〉
=
〈
−a
b
q6; q12

〉 〈
−abq6; q12

〉
+ aq3

〈
−a
b
q12; q12

〉 〈
−abq12; q12

〉
. (4.16)

Identities (4.13), (4.14) and (4.15) follow upon replacing (a, b) in identity
(4.16) by, respectively, (−b3/q3,−q), (−1/q,−b3/q) and (−1/(b3q),−q). This
completes the proof of Winquist’s identity. �

It is also possible to use identity (2.3) to derive an expression for (q; q)k∞
that is different from that given in Corollary 4.2.

Corollary 4.6. Let k ≥ 3 be an integer, let ω = exp(2πi/k) and suppose
|q| < 1. Then

(q; q)
k
∞ =(

qk; qk
)
∞

1∑
j1=0

2∑
j2=0

· · ·
k−2∑

jk−2=0

q(j
2
1+j22+···+j2k−2)−(j1j2+j2j3+···+jk−3jk−2)

× ω−j1−j2−j3−···−jk−2
〈
−q1+j1ω; q2

〉
∞

〈
(−1)kqk(k−1)/2+kjk−2 ; qk(k−1)

〉
∞

×
k−2∏
i=2

〈
−qi(i+1)/2+(i+1)ji−1−ijiω−i(i+1)/2; qi(i+1)

〉
∞
. (4.17)

Proof. In (4.3) replace z with −z and set ai = ωi, 1 ≤ i ≤ k, so that the left

side becomes (qkzk, qk/zk; q2k)∞
(
q2; q2

)k
∞. Since all the powers of z on the

left side have exponent ≡ 0(mod k), each of the multiple sums on the right
side with jk−1 fixed, 1 ≤ jk−1 ≤ k − 1, are identically zero, so that the only
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non-zero sum is the one with jk−1 = 0. With the given values for the ai, it is
clear that a1/ak = ω, each ai/ai+1 = 1/ω, a1a2 . . . ak = (−1)k−1 and

aka1a2 . . . ai−1
aii

= ω−i(i+1)/2.

The result follows after cancelling the (qkzk, qk/zk; q2k)∞ factor on each side,
separating off the k − 1 term in the sum on the right side of the equation
that follows from (4.3), and finally replacing q2 with q. �

It is also possible to derive expressions for (q; q)∞ as combinations of
Jacobi triple products from (2.3).

Corollary 4.7. Let k ≥ 3 be an integer, suppose |q| < 1. Then

(q; q)∞ =
1

(q2k+1; q2k+1)
k−1
∞

1∑
j1=0

2∑
j2=0

· · ·
k−1∑

jk−1=0

(−1)jk−1

× q(2k+1)(j21+(j2−j1)2+···+(jk−1−jk−2)
2)/2−j1−j2−···−jk−2+(k−3/2)jk−1

×
〈
−q(2k+1)(1+j1)−k+1; q2(2k+1)

〉
∞

〈
(−1)k+1qk(3k+1)/2+(2k+1)jk−1 ; q(2k+1)k

〉
∞

×
k−1∏
i=2

〈
−qk(i(i+1)+1)+(2k+1)((i+1)ji−1−iji); q(2k+1)i(i+1)

〉
∞
. (4.18)

Proof. In (4.3), replace q with q(2k+1)/2 and set z = −1, a1 = q1/2, a2 =
q3/2, . . . , ak = qk−1/2. The left side of the identity then becomes (q; q)∞
(q2k+1; q2k+1)k−1∞ , and after some simple algebra on the resulting right side
of (4.3), the result follows after dividing both sides of this new expression by
the factor (q2k+1; q2k+1)k−1∞ . �

In a similar vein the following identity holds.

Corollary 4.8. Let k ≥ 3 be an integer, suppose |q| < 1. Then

(q; q)∞ =
1

(qk; qk)∞ (q2k; q2k)
k−2
∞

1∑
j1=0

2∑
j2=0

· · ·
k−1∑

jk−1=0

(−1)jk−1

× qk(j
2
1+(j2−j1)2+···+(jk−1−jk−2)

2)−j1−j2−···−jk−2+(k−1)jk−1

×
〈
−q2k(1+j1)+1; q4k

〉
∞

〈
(−1)k+1qk(3k−1)/2+2kjk−1 ; q2k

2
〉
∞

×
k−1∏
i=2

〈
−q(2k−1)i(i+1)/2+2k((i+1)ji−1−iji); q2ki(i+1)

〉
∞
. (4.19)

Proof. This time in (4.3), replace q with qk and set z = −1, a1 = q, a2 = q2,
. . . , ak−1 = qk−1, ak = 1. The left side of the identity then becomes (q; q)∞
(qk; qk)∞ (q2k; q2k)k−2∞ , and the result follows after dividing both sides by
(qk; qk)∞(q2k; q2k)k−2∞ . �
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5. Concluding Remarks

Theorem 2.1 has the restriction that each ni satisfies ni|N . By using Theorem
2.1 in Cao’s paper [3], it is possible to drop this restriction and derive an
expansion of a product of an arbitrary number of Jacobi triple products in
terms of sums of products of other Jacobi triple products. However, it would
be hard to find a general formula such as (2.3) above.
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