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Abstract. This paper is an intensive study of the convergence of the
Rogers-Ramanujan continued fraction.

Let the continued fraction expansion of any irrational number t ∈
(0, 1) be denoted by [0, a1(t), a2(t), · · · ] and let the i-th convergent of
this continued fraction expansion be denoted by ci(t)/di(t). Let

S = {t ∈ (0, 1) : ai+1(t) ≥ φdi(t) infinitely often},
where φ = (

√
5+1)/2. Let YS = {exp(2πit) : t ∈ S}. It is shown that if

y ∈ YS then the Rogers-Ramanujan continued fraction, R(y), diverges
at y. S is an uncountable set of measure zero. It is also shown that
there is an uncountable set of points, G ⊂ YS , such that if y ∈ G, then
R(y) does not converge generally.

It is further shown that R(y) does not converge generally for |y| > 1.
However we show that R(y) does converge generally if y is a primitive
5m-th root of unity, some m ∈ N so that using a theorem of I. Schur, it
converges generally at all roots of unity.

1. Introduction

An infinite continued fraction has the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

.

The ai’s and bi’s can be real or complex numbers or functions of one or more
variables. To save space, this continued fraction is sometimes written as

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·
and as b0+K∞

n=1an/bn. Let fn denote the n-th approximant of this continued
fraction, namely,

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · · +
an

bn
.
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If the sequence {fn}∞n=1 has a limit, then the continued fraction is said to
converge. Otherwise, it is said to diverge.

We also consider fn as a rational function in the variables a1, . . . , an,
b0, . . . , bn. Let Pn denote the numerator and Qn denote the denominator
(so that Pn is the n-th numerator convergent of the continued fraction b0 +
K∞

n=1an/bn and Qn is its n-th denominator convergent). It is well known
(see, for example, [7], p.9) that the Pn’s and Qn’s satisfy the following
recurrence relations.

Pn = bnPn−1 + anPn−2,(1.1)

Qn = bnQn−1 + anQn−2.

It is also well known (see also [7], p.9) that, for n ≥ 1,

PnQn−1 − Pn−1Qn−1 = (−1)n−1
n∏

i=1

an.(1.2)

This paper makes a detailed study of the convergence behaviour of the cel-
ebrated Rogers-Ramanujan continued fractions, R(x), which is defined for
|x| < 1 by

(1.3) R(x) :=
x1/5

1 +
x

1 +
x2

1 +
x3

1 + · · · .

Put K(x) = x1/5/R(x).

1.1. History. This continued fraction is probably best known through its
connection with the famous Rogers-Ramanujan identities:

∞∑
n=0

qn2

(q; q)n
=

∞∏
j=0

1
(1− q5j+1)(1− q5j+4)

,

∞∑
n=0

qn2+n

(q; q)n
=

∞∏
j=0

1
(1− q5j+2)(1− q5j+3)

,

where

(a; q)0 := 1, (a; q)n =
n−1∏
j=0

(1− aqj), |q| < 1.

The connection of these identities with the Rogers-Ramanujan continued
fraction is that

K(q) =

∑∞
n=0

qn2

(q;q)n∑∞
n=0

qn2+n

(q;q)n

, |q| < 1.

These identities have a curious history ([4], p. 28). They were first proved
by L.J. Rogers in 1894 ([12]) in a paper that was completely ignored. They
were rediscovered (without proof) by Ramanujan sometime before 1913. In
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1917, Ramanujan rediscovered Roger’s paper while browsing a journal. Also
in 1917, these identities were rediscovered and proved independently by Issai
Schur ([13]). There are now many different proofs.

Some of the theorems and results in Ramanujan’s historic letter to the
English mathematician, G.H. Hardy, in 1913 ([9], p. xxviii) concerned this
continued fraction. One of the results from this letter is the following:

R(e−2π) =

√
5 +

√
5

2
−
√

5 + 1
2

.

One area of research has been to try to evaluate R(q) for various q inside the
unit circle and indeed many explicit evaluations of R(e−π

√
n) and R(−e−π

√
n)

have been given for n ∈ Q+, some of which were asserted by Ramanujan
without proof (see, for example, [2], [3], [10] and [14]).

In the same letter, Ramanujan states that if f := R(q) and φ = R(q5),
then

f = φ
1− 2φ + 4φ2 − 3φ3 + φ4

1 + 3φ + 4φ2 + 2φ3 + φ4
.

Similar modular equations between R(q) and R(qn) exist for all n ∈ N, but
not many have been stated explicitly. (Jinhee Yi recently found and proved
one in [14], for n = 7)

The easiest results on convergence are obtained via the important theorem
of Worpitzky (see [7], pp. 35–36), which gives that R(x) converges to a value
in Ĉ for any x inside the unit circle.

Theorem 1. (Worpitzky) Let the continued fraction K∞
n=1an/1 be such that

|an| ≤ 1/4 for n ≥ 1. Then K∞
n=1an/1 converges. All approximants of the

continued fraction lie in the disc |w| < 1/2 and the value of the continued
fraction is in the disk |w| ≤ 1/2.

Suppose |q| > 1. For n ≥ 1, define

Kn(q) := 1 +
q

1 +
q2

1 +
q3

1 + · · · +
qn

1
.

Then

lim
j→∞

K2j+1(q) =
1

K(−1/q)
,

lim
j→∞

K2j(q) =
K(1/q4)

q
.

This was stated by Ramanujan without proof and proved by Andrews,
Berndt, Jacobson and Lamphere in 1992 ([1]).

This leaves the question of convergence on the unit circle. Schur showed
in [13] that if x is a primitive m-th root of unity, where m ≡ 0 (mod 5),
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then K(x) diverges and if x is a primitive m-th root of unity, m 6≡ 0(mod 5),
then K(x) converges and

(1.4) K(x) = λ x(1−λσm)/5K(λ),

where λ =
(

m
5

)
(the Legendre symbol) and σ is the least positive residue of

m (mod 5). Note that K(1) = φ = (
√

5+1)/2, and K(−1) = 1/φ. It follows
that R(x) takes only ten possible values at roots of unity. For later use we
define these ten values, {Rj}10

j=1, by

(1.5) Rj =

−φ exp (2πij/5), 1 ≤ j ≤ 5,
exp(2πij/5)

φ
, 6 ≤ j ≤ 10.

Remark: Schur’s result was essentially proved by Ramanujan, probably ear-
lier than Schur (see [8], p.383). However, he made a calculational error (see
[5], p.56).

Summary: The question of convergence for the Rogers-Ramanujan con-
tinued fraction has been settled inside the unit circle, outside the unit circle
and at roots of unity on the unit circle.

Question: Does the Rogers-Ramanujan continued fraction converge or
diverge at a point on the unit circle which is not a root of unity? This has
been open since Schur’s 1917 paper.

One difficulty: By Schur’s result, the unit circle contains a dense set at
which K(q) converges and another dense set at which K(q) diverges. Most
convergence/divergence criteria depend on either certain inequalities involv-
ing the absolute value of the partial quotients or on the partial quotients
lying in certain open sets. Obviously neither type of criteria is applicable
here.

1.2. Divergence of the Rogers-Ramanujan Continued fraction on
the Unit Circle. Here we prove a theorem which shows the existence of
an uncountable set of points on the unit circle at which R(q) diverges. We
also give explicit examples of such points.

Before stating our theorem, we need to introduce some more notation.
Let the regular continued fraction expansion of an irrational t ∈ (0, 1) be
denoted [0; e1(t), e2(t), e3(t), . . . ] and let the i-th approximant of this con-
tinued fraction be denoted ci(t)/di(t).

We prove the following theorem.

Theorem 2. Let

(1.6) S = {t ∈ (0, 1) : ei+1(t) ≥ φdi(t) infinitely often}.

If t ∈ S and y = exp(2πit), then K(y) diverges.

An example of a point in S is contained in the following corollary of
Theorem 2.
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Corollary 1. Let t be the number with continued fraction expansion equal
to [0, e1, e2, · · · ], where ei is the integer consisting of a tower of i twos with
an i an top. For example,

t = [0, 2, 222
, 2223

, · · · ] =
0.484848484848484848484848484848484848484848484848484848484

84848484848484848484849277885083112437522992318812011 · · ·
If y = exp(2πit) then K(y) diverges.

The key idea here is to construct real numbers t in the interval (0, 1),
each of which has the property that the sequence of approximants to its
continued fraction expansion contains a subsequence of approximants which
are “sufficiently close” to t in a certain precise sense. (Recall that is possible
to construct a real number t for which the m-th approximant, cm/dm, in its
continued fraction expansion, is as close to t as desired by making the m+1-
st partial quotient, em+1, sufficiently large.) If y := exp(2πit) and xm :=
exp(2πicm/dm), then y and xm are close enough to keep Qdm−1(y)Qdm−2(y)
close to Qdm−1(xm)Qdm−2(xm) for the infinite sequence {dm}∞m=1. A result
from Schur’s paper ([13]) gives that |Qdm−1(xm)Qdm−2(xm)| ≤ 4. However,
it will be shown that if K(y) converges, then limn→∞ |Qn(y)Qn−1(y)| =
∞. The fact that Qdm−1(y)Qdm−2(y) stays close to Qdm−1(xm)Qdm−2(xm)
(which lies in the disc of radius 4 about the origin) for the infinite sequence
{dm}∞m=1 means that limn→∞ |Qn(y)Qn−1(y)| 6= ∞. Thus K(y) does not
converge.

1.3. Forms of Non-Convergence. An interesting question is what forms
can divergence take. In fact there are uncountably many points y on the
unit circle such that R(y) has subsequences of approximants tending to all
ten of the Rj ’s defined by (1.5). We prove the following proposition.

Proposition 1. There exists an uncountable set of points on the unit circle,
G∗, such that if y ∈ G∗ then there exist ten sequences of positive integers,{
ni,j

}∞
i=1

, 1 ≤ j ≤ 10, such that limi→∞Rni,j (y) = Rj.

Here {Rj}10
j=1 is the set of ten values taken by the Rogers-Ramanujan

continued fraction at roots of unity, as defined by (1.5), and Ri(y) is the
i-th approximant of R(y). This proposition is not strictly necessary for the
proof of any of our theorems, but we find the existence of the set G∗ to be
of interest. It is possible to give explicit examples of such points in G∗. We
have the following corollary to Proposition 1.

Corollary 2. Let the sequence of integers {ai}∞i=1 be defined by

{a1, a2, · · · } = {0, 2, 1, 2, 1, 0, 0, 1, 2, 1, 0, 2, 2, 4},
where the bar indicates that the sequence under it repeats infinitely often.
Let t be the number with regular continued fraction expansion given by

t = [0, g1 + a1, g2 + a2, g3 + a3, · · · ],
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where gi is the integer consisting of a tower of i sixteens with an i an top
and the ai’s are as above, i.e.,

t = [0, 16, 16162
+ 2, 1616163

+ 1, · · · ] =
0.06249999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999
9999999782707631005156114932594461198007415603592189407975407

1725266194446089419127033011861051603999 · · · .

If y = exp(2πit) then R(y) has subsequences of approximants tending to
all ten values taken by the Rogers-Ramanujan continued fraction at roots of
unity.

1.4. General Convergence. In [6], Jacobsen revolutionised the subject of
the convergence of continued fractions by introducing the concept of general
convergence. General convergence is defined, see [7], as follows.

Let the n-th approximant of the continued fraction

M = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·
be denoted by An/Bn and let

Sn(w) =
An + wAn−1

Bn + wBn−1
.

Define the chordal metric d on Ĉ by

(1.7) d(w, z) =
|z − w|√

1 + |w|2
√

1 + |z|2

when w and z are both finite, and

d(w,∞) =
1√

1 + |w|2
.

(The chordal distance, d(w, z), between two points, w and z, in the complex
plane, is simply half the length of the chord joining their images on the unit
sphere centred at the origin, via stereographic projection to the north pole.
This metric is used in cases where the point at infinity is not supposed to
be singled out as different from other points in the complex plane, as is the
case for general convergence.)
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Definition: The continued fraction M is said to converge generally to
f ∈ Ĉ if there exist sequences {vn}, {wn} ⊂ Ĉ such that lim inf d(vn, wn) > 0
and

lim
n→∞

Sn(vn) = lim
n→∞

Sn(wn) = f.

Remark: Jacobson shows in [6] that, if a continued fraction converges in the
general sense, then the limit is unique.

The idea of general convergence is of great significance because classical
convergence implies general convergence (take vn = 0 and wn = ∞, for all
n), but the converse does not necessarily hold. If a continued fraction con-
verges in the general sense, but not in the classical sense, computing the
limit in the general sense is just as easy as computing the limit for contin-
ued fractions that converge in the classical sense, i.e., it is computationally
effective. Moreover, general convergence is a useful method of accelerating
the convergence of continued fractions which converge already in the clas-
sical sense. In summary, general convergence is a natural extension of the
concept of classical convergence for continued fractions.

In regard to the Rogers-Ramanujan continued fraction, some natural ques-
tions are the following:

1) Does K(q) converge generally if q is an m-th root of unity and 5|m?
2) Does K(q) converge generally if |q| > 1?
3) Does K(q) converge generally if |q| = 1 and q is not a root of unity?
We will show that the Rogers-Ramanujan continued fraction converges

generally at primitive 5m-th roots of unity, for each m ∈ N. This is in
contrast to classical convergence, where the Rogers-Ramanujan continued
fraction diverges at primitive 5m-th roots of unity. We further show that the
Rogers-Ramanujan continued fraction does not converge generally outside
the unit circle. We also have the following theorem on divergence in the
general sense on the unit circle. (For details see Theorem 4 in Section 5.)

Theorem 4´. There is an uncountable constructable set of points on the
unit circle, G, such that if y ∈ G, then K(y) does not converge generallly.

We also show that when y is the point in Corollary 1 above, the Rogers-
Ramanujan continued fraction does not converge in the general sense either.

Corollary 3. Let y be as in Corollary 1. Then K(y) does not converge
generally.

2. Divergence in the Classical Sense on the Unit Circle

Before proving Theorem 2 we needs some preliminary results. For n ≥ 1,
let

Kn(x) := 1 + Kn
j=1

xj

1
=

Pn(x)
Qn(x)

denote the n-th approximant of K(x). It follows from (1.2) that if |x| = 1,
then, for n ≥ 1,

|Pn(x)Qn−1(x)−Qn(x)Pn−1(x)| = 1.(2.1)
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Suppose K(q) converges to L ∈ C at q = y, so that limn→∞ Pn(y)/Qn(y) =
L. Then ∣∣∣∣ Pn(y)

Qn(y)
− Pn−1(y)

Qn−1(y)

∣∣∣∣ ≤ ∣∣∣∣ Pn(y)
Qn(y)

− L

∣∣∣∣ +
∣∣∣∣ Pn−1(y)
Qn−1(y)

− L

∣∣∣∣ .

It follows that

0 = lim
n→∞

∣∣∣∣ Pn(y)
Qn(y)

− Pn−1(y)
Qn−1(y)

∣∣∣∣ = lim
n→∞

∣∣∣∣Pn(y)Qn−1(y)− Pn−1(y)Qn(y)
Qn(y)Qn−1(y)

∣∣∣∣ .

(2.2)

Thus by (2.1)and (2.2) it follows that if K(y) converges, then limn→∞ Qn(y)
Qn−1(y) =∞. We will exhibit an uncountable set of points on the unit circle
for which this fails to happen.

It follows from the recurrence relations at (1.1) that

Qn+1(x) = Qn(x) + xn+1Qn−1(x).(2.3)

It follows easily from (2.3), the triangle inequality and a simple induction,
that, for n ≥ 2,

|Qn(x)| ≤ Fn+1,(2.4)

where {Fi}∞i=1 denotes the Fibonacci sequence defined by F1 = F2 = 1
and Fi+1 = Fi + Fi−1. For the following lemma, we recall that the regular
continued fraction expansion of an irrational number t ∈ (0, 1) is denoted
[0; e1(t), e2(t), e3(t), . . . ] and that the i-th approximant of this continued
fraction is denoted ci(t)/di(t).

Lemma 1. With the notation of Theorem 2, for t ∈ S, we have∣∣∣∣t− ci(t)
di(t)

∣∣∣∣ <
1

di(t)2φdi(t)

for infinitely many i.

Proof. Let i be one of the infinitely many integers for which ei+1(t) ≥ φdi(t),
and let ti+1 = [ei+1(t), ei+2(t), . . . ] denote the i-th tail of the continued
fraction expansion for t. Then∣∣∣∣t− ci(t)

di(t)

∣∣∣∣ =
∣∣∣∣ ti+1ci(t) + ci−1(t)
ti+1di(t) + di−1(t)

− ci(t)
di(t)

∣∣∣∣
=

1
di(t)(ti+1di(t) + di−1(t))

<
1

di(t)(ei+1(t)di(t) + di−1(t))
<

1
di(t)2φdi(t)

.

�
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Lemma 2. Let x and y be two points on the unit circle. Then, for all
integers n ≥ 0,

|Qn(x)−Qn(y)| ≤ n2φn|x− y|(2.5)

and

|Pn(x)− Pn(y)| ≤ (n + 1)2φn+1|x− y|.(2.6)

Proof. The assertions of the lemma can easily be checked for n = 0, 1.
Let βi = |Qi(x) −Qi(y)| and δi = (i + 1)Fi|x − y|. From (2.3) and (2.4)

it easily follows that

(2.7) βn ≤ βn−1 + βn−2 + δn−1.

We now claim that, for r = 2, . . . , n− 1,

(2.8) βn ≤ Frβn−r+1 + Fr−1βn−r +
r−1∑
i=1

Fiδn−i.

The claim is true for r = 2 by (2.7). Suppose it is true for r = 2, . . . , s.
Then

βn ≤ Fsβn−s+1 + Fs−1βn−s +
s−1∑
i=1

Fiδn−i

≤ Fs(βn−s + βn−s−1 + δn−s) + Fs−1βn−s +
s−1∑
i=1

Fiδn−i

= Fs+1βn−s + Fsβn−s−1 +
s∑

i=1

Fiδn−i,

and (2.8) is true by induction for 2 ≤ r ≤ n− 1 .

Recall that β1 = 0 and β2 = |(1 + x2)− (1 + y2)| ≤ 2|x− y|. Now in (2.8)
let r = n− 1. This gives

βn ≤ 2Fn−1|x− y|+
n−2∑
i=1

Fiδn−i =
n−1∑
i=1

Fi(n− i + 1)Fn−i|x− y|

≤
n−1∑
i=1

φn(n− i + 1)|x− y|.

The last inequality uses the bound Fj ≤ φj . This last expression simplifies
to give

βn ≤ φn|x− y|
n∑

i=2

i < n2φn|x− y|.

Statement (2.6) follows similarly.

�
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We now prove the existence of uncountably many points on the unit circle
at which K(q) diverges.

Theorem 2. Let

(2.9) S = {t ∈ (0, 1) : ei+1(t) ≥ φdi(t) infinitely often}.
If t ∈ S and y = exp(2πit), then K(y) diverges.

Proof. Let t ∈ S with approximants {cn/dn}∞n=0. Let y = exp(2πit) and
let xn = exp(2πi cn/dn). Schur showed in [13], that if x is a primitive m-
th root of unity, then, depending on the congruence class of m( mod 5),
Qm−1(x) and Qm−2(x) are each either 0, 1, a root of unity or the sum of
two roots of unity (see Table 1). It follows that

m Pm−2 Pm−1 Qm−2 Qm−1

5µ 0 −x2m/5 − x−2m/5 −x2m/5 − x−2m/5 0

5µ + 1 x(1−m)/5 1 0 x(−1+m)/5

5µ− 1 x(1+m)/5 1 0 x(−1−m)/5

5µ + 2 −x(1+2m)/5 0 1 −x(−1−2m)/5

5µ− 2 −x(1−2m)/5 0 1 −x(−1+2m)/5

Table 1

max{ |Qdn−1(xn)|, |Qdn−2(xn)| } ≤ 2.(2.10)

We use in turn, Lemma 2, the fact that chord length is shorter than arc
length, and Lemma 1, to get that, for infinitely many n,

|Qdn−1(xn)−Qdn−1(y)| ≤ (dn − 1)2φdn−1|xn − y|(2.11)

< (dn − 1)2φdn−12π

∣∣∣∣ cn

dn
− t

∣∣∣∣
<

(
dn − 1

dn

)2 2π

φ
< 4.

Similarly,

|Qdn−2(xn)−Qdn−2(y)| <
(

dn − 2
dn

)2 2π

φ2
< 4.(2.12)

We apply the triangle inequality to (2.11) and (2.12) and use (2.10) to get
that |Qdn−1(y)| < 6 and |Qdn−2(y)| < 6. Finally, we deduce that

|Qdn−1(y)Qdn−2(y)| < 36.
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Since this holds for infinitely many terms of the sequence {dn}∞n=0, it follows
that

lim
n→∞

Qn(y)Qn−1(y) 6= ∞

and thus K(y) does not converge.
2

For later use, we define YS = {exp(2πit) : t ∈ S}, where S is the set
defined in Theorem 2.

Corollary 1. Let t be the number with continued fraction expansion
equal to [0, e1, e2, · · · ], where ei is the integer consisting of a tower of i twos
with an i an top. For example,

t = [0, 2, 222
, 2223

, · · · ].
If y = exp(2πit) then K(y) diverges.

Proof. Denote the i-th approximant of the continued fraction expansion
of t by ci/di. We will show that, for i = 1, 2, . . . ,

ei+1 ≥ 2di > φdi .(2.13)

Then K(y) diverges by Theorem 2. By the definition of the ei’s, we have
that

2di ≤ ei+1 if and only if di ≤ 2
..
.2

i + 1

︸ ︷︷ ︸
i twos

,(2.14)

where the notation indicates that the last integer consists of a tower of i twos
with an i + 1 on top. It can be easily checked that the second inequality
holds for i = 1, 2. Suppose it holds for i = 1, 2, . . . , r − 1. Then

dr = erdr−1 + dr−2 ≤ 2
..
.2

r

︸ ︷︷ ︸
r twos

× 2
..
.2

r

︸ ︷︷ ︸
(r−1) twos

+2
..
.2

r − 1

︸ ︷︷ ︸
(r−2) twos

≤ 2
..
.2

r + 1

︸ ︷︷ ︸
r twos

.

Thus the first inequality in (2.14) holds for all positive integers i and the
result follows.

2

3. General Convergence at 5mth Roots of Unity

We next consider the question of general convergence for the Rogers -
Ramanujan continued fraction when q is a primitive m-th root of unity,
where m ≡ 0(mod 5). As Schur showed in [13], K(x) does not converge in
the classical sense in this case. We have the following proposition.
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Proposition 2. If x is an m-th root of unity, where m ≡ 0(mod 5), then
K(x) converges generally.

Proposition 2 along with Schur’s theorem shows that K(x) converges
generally at any root of unity.

Proof of Proposition 2. From [13], for 0 ≤ r < m,

(3.1) Pqm+r = PrP
q
m−1, Qqm+r = QrQ

q
m−2.

Also from [13] (see Table 1),

Pm−1 = −x2m/5 − x−2m/5, Qm−2 = −xm/5 − x−m/5.

Let {un}∞n=1 be a sequence in Ĉ. It is convenient to separate n ∈ Z+ into
residue classes modulo m. We put n = qm + r. From (3.1),
(3.2)

Sn(un) =
Pn + unPn−1

Qn + unQn−1
=



(
Pm−1

Qm−2

)q Pr + unPr−1

Qr + unQr−1
, 1 ≤ r ≤ m− 1,

(
Pm−1

Qm−2

)q Pm−1 + unPm−1

Qm−2 + unQm−1
, r = m.

Suppose that xm/5 is in the second or third quadrants. Then

|Pm−1| = 2 cos
(

2π

5

)
=
√

5− 1
2

< |Qm−2| = 2 cos
(π

5

)
=
√

5 + 1
2

.

Hence

(3.3)
∣∣∣∣ Pm−1

Qm−2

∣∣∣∣ < 1.

We now construct two sequences {vn} and {wn} which satisfy the conditions
for general convergence at x. Let

M = max
1≤r≤m

{∣∣∣∣ Qr

Qr−1

∣∣∣∣ : Qr−1 6= 0
}

.

Put vn = M +1 and wn = M +2, for n = 1, 2, . . . . Hence lim inf d(vn, wn) >
0, and by (3.2) and (3.3),

lim
n→∞

Pn + vnPn−1

Qn + vnQn−1
= lim

n→∞

Pn + wnPn−1

Qn + wnQn−1
= 0.

Thus K(x) converges generally to 0 in this case.
Next suppose that xm/5 is in the first or fourth quadrants, so that

|Pm−1| = 2 cos
(π

5

)
> |Qm−2| = 2 cos

(
2π

5

)
.

Then

(3.4)
∣∣∣∣ Pm−1

Qm−2

∣∣∣∣ > 1.
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In this case let

M = max
1≤r≤m

{∣∣∣∣ Pr

Pr−1

∣∣∣∣ : Pr−1 6= 0
}

.

As before, let vn = M + 1 and wn = M + 2, for n = 1, 2, . . . . Hence
lim inf d(vn, wn) > 0, and by (3.2) and (3.4),

lim
n→∞

Pn + vnPn−1

Qn + vnQn−1
= lim

n→∞

Pn + wnPn−1

Qn + wnQn−1
= ∞.

Thus K(x) converges generally to ∞ in the second case.

2

4. General Convergence outside the Unit Circle

We next consider the question of general convergence for K(q) outside the
unit circle. It was proved in [1] that if 0 < |x| < 1 then the odd approximants
of 1/K(1/x) tend to

1− x

1 +
x2

1 −
x3

1 + · · · := F1(x)(4.1)

while the even approximants tend to

x

1 +
x4

1 +
x8

1 +
x12

1 + · · · := F2(x).(4.2)

By Worpitzky’s theorem each continued fraction does converge inside the
unit circle to values in Ĉ. It is not clear from (4.1) and (4.2) that F1(x) 6=
F2(x) for all x inside the unit circle. However, it is an easy consequence of
the Stern-Stolz Theorem that K(q) diverges in the general sense for |q| > 1.

Theorem 3. (The Stern-Stolz Theorem ([7], p. 94)) The continued
fraction b0 + K∞

n=1(1/bn) diverges generally if
∑
|bn| < ∞. In fact,

lim
n→∞

A2n+p = Pp 6= ∞, lim
n→∞

B2n+p = Qp 6= ∞,

for p = 0, 1, where

P1Q0 − P0Q1 = 1.

After an equivalence transformation to put K(q) in the form in the statement
of Theorem 3, we get that

K(q) = 1 +
1

1/q +
1

1/q +
1

1/q2 +
1

1/q2 +
1

1/q3 +
1

1/q3 + · · · .

It is clear that if |q| > 1, then
∑
|bn| < ∞, giving that K(q) does not

converge in the general sense.
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5. General Convergence on the Unit Circle

In this section we prove the following theorem.

Theorem 4. Let t be any irrational in (0, 1) for which there exist two
subsequences of approximants {cfn/dfn} and {cgn/dgn}, integers r, u ∈
{0, 1, 2, 3, 4}, and integers s, v ∈ {1, 2, 3, 4} such that

cfn ≡ r(mod 5), cgn ≡ u(mod 5),(5.1)

dfn ≡ s(mod 5), dgn ≡ v(mod 5).

and

ehn+1(t) > 2π(dhn + 1)2φd2
hn

+2dhn ,(5.2)

for all n, where hn = fn or gn.
Suppose further that

R(exp(2πir/s)) = Ra 6= Rb = R(exp(2πiu/v)),(5.3)

for some a, b ∈ {1, 2, · · · , 10}. Let S� denote the set of all t ∈ (0, 1) satisfy-
ing (5.1), (5.2) and (5.3) and set

G = {exp(2πit) : t ∈ S�}.(5.4)

Then G is an uncountable set such that if y ∈ G, then K(y) does not
converge generally.

Before proving Theorem 4, it is necessary to prove some technical lemmas.
In what follows, x is a primitive m-th root of unity, where m 6≡ 0(mod 5),
φ̄ = (−

√
5 + 1)/2, Kj = Kj(x), Pj = Pj(x) and Qj = Qj(x), for j =

0, 1, 2, . . . . Frequent use will be made of Binet’s formula for Fk, namely,

(5.5) Fk =
φk − φ̄k

√
5

.

Note that limk→∞ Fk+1/Fk = φ.
We also use the following facts, some of which can be found in [13] and

some of which can be deduced from Table 1 (also from [13]). For n ≥ m,
q ≥ 1 and 0 ≤ r < m, we have the following equalities:

Pn = Pm−1Pn−m + Pm−2Qn−m,(5.6)

Qn = Qm−1Pn−m + Qm−2Qn−m,

Pqm+r = P(q−1)m+r + P(q−2)m+r,(5.7)

Qqm+r = Q(q−1)m+r + Q(q−2)m+r.

For 0 ≤ r < m, there exist constants br and b
′
r such that

Qqm+r = brφ
q + b

′
rφ̄

q,(5.8)
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Q2m−1 = Qm−1, P2m−1 = Pm−1 + 1,(5.9)

P2m−2 = Pm−2, Q2m−2 = 1 + Qm−2.

Lemma 3. For q ≥ 2,

φq−1 ≤ |Qqm+m−1| ≤ φq,(5.10)

If m ≡ 1,−1(mod 5), then φq−2 ≤ |Qqm+m−2| ≤ φq−1,(5.11)

m ≡ 2,−2(mod 5), then φq ≤ |Qqm+m−2| ≤ φq+1,(5.12)

1
φ2

≤
∣∣∣∣Qqm+m−1

Qqm+m−2

∣∣∣∣ ≤ φ2.(5.13)

Proof. From (5.8) and (5.9) it follows that

Qqm+m−1 =
Qm−1√

5
(φq+1 − φ̄q+1) = φq+1 Qm−1√

5

(
1− (−1)q+1

φ2q+2

)
.

From Table 1, |Qm−1| = 1, and since q ≥ 2, it follows that

φq+1

√
5

(
1− 1

φ6

)
≤ |Qqm+m−1| ≤

φq+1

√
5

(
1 +

1
φ2

)
,

and (5.10) follows easily.
Now apply (5.8) with r = 2m − 2 and use the values from (5.9) to get

that that

Qqm+m−2 =


1√
5
(φq − φ̄q), m ≡ 1,−1(mod 5),

1√
5
(φq+2 − φ̄q+2), m ≡ 2,−2(mod 5).

If m ≡ 1,−1(mod 5), then

φq

√
5

(
1− 1

φ4

)
≤ |Qqm+m−2| ≤

φq

√
5

(
1 +

1
φ4

)

and (5.11) follows. If m ≡ 2,−2(mod 5), then

φq+2

√
5

(
1− 1

φ8

)
≤ |Qqm+m−2| ≤

φq+2

√
5

(
1 +

1
φ8

)

and (5.12) follows. Inequality (5.13) is an immediate consequence of the
preceding inequalities. �
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Lemma 4. For q ≥ 2,
1

φ2q+1
≤ |Kqm+m−1(x)−K(x)| ≤ 1

φ2q
,(5.14)

1
φ2q−1

≤ |Kqm+m−2(x)−K(x)| ≤ 1
φ2q−2

,(5.15)

max{|Rqm+m−1(x)−R(x)|, |Rqm+m−2(x)−R(x)|} ≤ 1
φ2q−6

.(5.16)

Proof. Equation (5.7) implies that

Pqm+r = FqPm+r + Fq−1Pr

and
Qqm+r = FqQm+r + Fq−1Qr.

From (5.9) it follows that

Kqm+m−1 =
Pqm+m−1

Qqm+m−1
=

Fq+1Pm−1 + Fq

Fq+1Qm−1
.

Let q →∞ to deduce

K(x) =
Pm−1φ + 1

Qm−1φ
.

Since |Qm−1| = 1,

|Kqm+m−1 −K(x)| =
∣∣∣∣ Fq

Fq+1
− 1

φ

∣∣∣∣ =
√

5

φ2q+2
(
1− (−1)q+1

φ2q+2

) .

The last equality follows from Binet’s formula (5.5). Thus for q ≥ 2,
√

5

φ2q+2
(
1 + 1

φ6

) ≤ |Kqm+m−1 −K(x)| ≤
√

5

φ2q+2
(
1− 1

φ6

) .

Inequality (5.14) now follows.
Similarly,

Pqm+m−2

Qqm+m−2
=

Pm−2Fq+1

Qm−2Fq+1 + Fq

and it follows that

K(x) =
Pm−2φ

Qm−2φ + 1
.

We consider the cases m ≡ 1,−1(mod 5) and m ≡ 2,−2(mod 5) sepa-
rately. In the first case it can be seen from Table 1 that Qm−2 = 0 and
|Pm−2| = 1. In this case,

|Kqm+m−2 −K(x)| =
∣∣∣∣Fq+1

Fq
− φ

∣∣∣∣ =
√

5

φ2q
(
1− (−1)q

φ2q

) .
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Inequality (5.15) follows. For the second case, it can be seen from Table 1
that Qm−2 = 1 and again |Pm−2| = 1. In this case

|Kqm+m−2 −K(x)| =
∣∣∣∣Fq+1

Fq+2
− 1

φ

∣∣∣∣ =
√

5

φ2q+4
(
1− (−1)q+2

φ2q+4

) ,

and (5.15) again follows. Inequality (5.16) follows from (5.14) and (5.15). �

Lemma 5. Let q ≥ 2 and let n = qm+m−1 or qm+m−2. Let y be another
point on the unit circle. Suppose Pn(y) = Pn(x) + ε1, Qn(y) = Qn(x) + ε2,
with ε = max{|ε1|, |ε2|} < 1/2. Then

(5.17) |Kn(y)−Kn(x)| ≤ 10ε

φq−2
.

If q ≥ 3 and the angle between x and y (measured from the origin) is less
than 5π/3 and ε ≤ 1/(20φ2), then

(5.18) |Rn(y)−Rn(x)| < 3φ|x− y|+ 60ε

φq−4

and

(5.19) |Rn(y)−R(x)| ≤ 3φ|x− y|+ 60ε

φq−4
+

1
φ2q−3

.

Proof. From the statement of the conditions in the lemma, we have that

|Kn(y)−Kn(x)| =
∣∣∣∣ Pn(y)
Qn(y)

− Pn(x)
Qn(x)

∣∣∣∣ =
∣∣∣∣ ε1Qn(x)− ε2Pn(x)
Qn(x)(Qn(x) + ε2)

∣∣∣∣
≤ |ε1 − ε2|
|Qn(x) + ε2|

+
|ε2||Pn(x)−Qn(x)|
|Qn(x)||Qn(x) + ε2|

=
|ε1 − ε2|

|Qn(x) + ε2|
+
|ε2||Kn(x)− 1|
|Qn(x) + ε2|

≤ 2ε

||Qn(x)| − ε|
+

ε
∣∣|K(x)|+ 1/φ2q−2 + 1

∣∣
||Qn(x)| − ε|

.
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Here we have used (5.14), (5.15) and the bounds on ε1 and ε2 given in the
statement of the lemma. Since |K(x)| ≤ φ and ε < 1/2, it follows that

|Kn(y)−Kn(x)| ≤ 2ε

||Qn(x)| − 1/2|
+

3ε

||Qn(x)| − 1/2|

=
5ε

||Qn(x)| − 1/2|

≤ 10ε

φq−2
.

The last inequality follows from (5.10), (5.11), (5.12). Similarly,

|Rn(y)−Rn(x)| =

∣∣∣∣∣ y1/5

Kn(y)
− x1/5

Kn(x)

∣∣∣∣∣
=

∣∣∣∣∣Kn(x)(y1/5 − x1/5) + x1/5(Kn(x)−Kn(y))
Kn(x)Kn(y)

∣∣∣∣∣
≤ |x− y|
|Kn(y)|

+
|Kn(x)−Kn(y)|
|Kn(x)||Kn(y)|

≤ |x− y|∣∣|Kn(x)| − 10ε/φq−2
∣∣ +

10ε/φq−2

|Kn(x)|
∣∣|Kn(x)| − 10ε/φq−2

∣∣ .
Here we have used (5.17) and the fact that the bound on the angle between
x and y implies that |y1/5 − x1/5| ≤ |x − y| (since this bound implies |1 −
(y/x)1/5| ≤ |1 − y/x|). From (5.14), (5.15) and the bound on ε, it follows
that

|Rn(y)−Rn(x)| ≤ |x− y|∣∣|K(x)| − 1/φ2q−2 − 1/(2φq)
∣∣

+
10ε

φq−2
∣∣|K(x)| − 1/φ2q−2

∣∣ ∣∣|K(x)| − 1/φ2q − 1/2φq
∣∣ .
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Since |K(x)| = φ or 1/φ, it follows that

|Rn(y)−Rn(x)| ≤ |x− y|φ
1− 1/φ2q−3 − 1/(2φq−1)

+
10ε

φq−4
(
1− 1/φ2q−3

) (
1− 1/φ2q−1 − 1/(2φq−1)

)
≤ |x− y|φ

1− 1/φ3 − 1/(2φ2)

+
10ε

φq−4
(
1− 1/φ3

) (
1− 1/φ3 − 1/(2φ2)

)
≤ 3φ|x− y|+ 60ε

φq−4
.

Finally, (5.19) follows from (5.16) and (5.18). �

Lemma 6. There exists an uncountable set of points on the unit circle such
that if y is one of these points, then there exists two increasing sequences of
integers, {ni}∞i=1 and {mi}∞i=1 say, such that

lim
i→∞

Rni(y) = lim
i→∞

Rni−1(y) = Ra,

lim
i→∞

Rmi(y) = lim
i→∞

Rmi−1(y) = Rb,

for some a, b ∈ {1, 2, . . . , 10}, where a 6= b.

Proof. With the notation of Theorem 4, let t ∈ S� and set y = exp(2πit).
Let cfn/dfn be one of the infinitely many approximants satisfying (5.1) and
(5.2) and set xn = exp(2πicfn/dfn). Then R(xn) = Ra and

(5.20) |xn − y| < 1

d2
fn

(dfn + 1)2φd2
fn

+2dfn

.

For the last inequality we have used the condition on the ehn+1’s in (5.2)

in the same way that the condition on the ei+1(t)’s in (2.9) was used in
Lemma 1, and the fact that chord length is shorter than arc length. Let
k = d2

fn
+ dfn − 1 or d2

fn
+ dfn − 2. By (2.5), (2.6) and (5.20) it follows that

|Pk(x)− Pk(y)| ≤ 1
φdfn

(5.21)

and

|Qk(x)−Qk(y)| ≤ 1
φdfn

.(5.22)
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By (5.19), with k as above, q = m = dfn and ε = 1/φdfn , it follows that

|Rk(y)−Ra| = |Rk(y)−R(xn)|(5.23)

≤ 3φ

d2
fn

(dfn + 1)2φd2
fn

+2dfn

+
60

φ2dfn−4
+

1
φ2dfn−3

≤ 500
φ2dfn

.

Thus

lim
n→∞

Rd2
fn

+dfn−1(y) = lim
n→∞

Rd2
fn

+dfn−2(y) = Ra.(5.24)

Similarly,

lim
n→∞

Rd2
gn+dgn−1(y) = lim

n→∞
Rd2

gn+dgn−2(y) = Rb.(5.25)

It is clear that S� is an uncountable set and thus G = {exp(2πit) : t ∈ S�}
is an uncountable set. �

Proof of Theorem 4. Let y be any point in G, where G is defined in the
proof of Lemma 6, and let t be the irrational in (0, 1) for which y = exp(2πit).

Suppose R(y) converges generally to f ∈ Ĉ and that {vn}, {wn} are two
sequences such that

lim
n→∞

Pn + vnPn−1

Qn + vnQn−1
= lim

n→∞

Pn + wnPn−1

Qn + wnQn−1
=

y
1
5

f
:= g.

Suppose first that |g| < ∞. By construction there exists two infinite strictly
increasing sequences of positive integers {ni}∞i=1, {mi}∞i=1 ⊂ N such that

La :=
y

1
5

Ra
= lim

i→∞

Pni(y)
Qni(y)

= lim
i→∞

Pni−1(y)
Qni−1(y)

and

Lb :=
y

1
5

Rb
= lim

i→∞

Pmi(y)
Qmi(y)

= lim
i→∞

Pmi−1(y)
Qmi−1(y)

,

for some a 6= b, a, b ∈ {1, 2, . . . , 10}. Also by construction each ni has
the form d2

ki
+ dki

− 1, where dki
is some denominator convergent in the

continued fraction expansion of t. Each mi has a similar form. It can be
further assumed that La 6= g, since La 6= Lb. For ease of notation write

Pni(y) = Pni , Qni(y) = Qni ,

Pni−1(y) = Pni−1, Qni−1(y) = Qni−1.

Write Pni = Qni(La + εni) and Pni−1 = Qni−1(La + δni), where εni → 0 and
δni → 0 as i →∞. Thus

(5.26)
Qni(La + εni) + wniQni−1(La + δni)

Qni + wniQni−1
= g + γni ,
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where γni → 0 as i →∞. This last equation implies that

(5.27) wni +
Qni

Qni−1
=

Qni

Qni−1
× εni − δni

g − La + γni − δni

.

Because of (5.13), the fact that each ni has the form d2
ki

+ dki
− 1, where

dki
is some denominator convergent in the continued fraction expansion of

t, and (5.22), it follows that Qni/Qni−1 is absolutely bounded. Therefore
the right hand side of the last equality tends to 0 as i → ∞, and thus, as
ni →∞,

wni + Qni/Qni−1 → 0.(5.28)

Note that |wni | < ∞ for all i sufficiently large, since |Qni/Qni−1| < ∞.
Similarly, as ni →∞,

vni + Qni/Qni−1 → 0.(5.29)

By (5.28), (5.29) and the triangle inequality, limi→∞ |vni − wni | = 0. Thus
lim inf d(vn, wn) = 0.

Therefore R(y) does not converge generally. If g = ∞, then replace g+γni

on the right side of (5.26) by 1/γni , and g−La + γni in the denominator of
the right side of (5.27) by −La + 1/γni , where γni → 0 as i → ∞, and the
remainder of the argument is the same.

Since G is uncountable, this proves the theorem.
2

Remark: G is clearly of measure 0 as it is a subset of the set {y : y =
exp(2πit), t ∈ S}, where S is the set from Theorem 2.

Corollary 3. Let y be as in Corollary 1. Then K(y) does not converge
generally.

Proof. Let t ∈ (0, 1) be such that y = exp(2πit). Recall that t = [0, a1, a2,
. . . ], where ai is the integer consisting of a tower of i twos with an i an top.
Modulo 5, the approximants in the continued fraction expansion of t are

(5.30)
{

0
1
,
1
2
,
1
3
,
2
0
,
3
3
,
0
3
,
3
1
,
3
4
,
1
0
,
4
4
,
0
4
,
4
3
,
4
2
,
3
0
,
2
2
,
0
2
,
2
4
,
2
1
,
4
0
,
1
1

}
,

where once again the bar indicates that the approximants repeat modulo 5
in this order. In particular, there are two fractions, r/s and u/v, say, such
that (5.1) and (5.3) holds. Thus it is sufficient to show that∣∣∣∣t− ci

di

∣∣∣∣ <
1

2πd2
i (di + 1)2φd2

i +2di
,(5.31)

for all i ≥ 3, where ci/di is the i-th approximant in the continued fraction
expansion of t. In particular (5.20) will hold, where {cfn/dfn} is the se-
quence of approximants corresponding to r/s. A similar inequality holds for
{cgn/dgn}, where {cgn/dgn} is the sequence of approximants corresponding
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to u/v. This in turn will ensure that y ∈ G so that K(y) will not converge
generally by Theorem 4. We will show that, for i ≥ 3,

ei+1 > 16d2
i .(5.32)

This will be sufficient to prove the result. Indeed, let ti+1 = [ei+1, ei+2, . . . ]
denote the i-th tail of the continued fraction expansion for t. Then

ei+1 ≥ 16d2
i = 42 · d2

i > 4(di + 1)2

= 2(di + 1)22(di + 1)2

> 2π(di + 1)2φd2
i + 2di

This implies that∣∣∣∣t− ci

di

∣∣∣∣ =
∣∣∣∣ ti+1ci + ci−1

ti+1di + di−1
− ci

di

∣∣∣∣
=

1
di(ti+1di + di−1)

<
1

di(ei+1di + di−1)

<
1

d2
i ei+1

<
1

2πd2
i (di + 1)2φd2

i + 2di

.

Thus all that remains is to prove (5.32). The proof of this inequality is
similar to that of (2.13). To that end,

16d2
i ≤ ei+1 if and only if 4 d2

i ≤ 2
..
.2

i + 1

︸ ︷︷ ︸
i twos

,(5.33)

where the notation indicates that the last integer consists of a tower of i twos
with an i + 1 on top. It can be easily checked that the second inequality
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holds for i = 3, 4. Suppose it holds for i = 3, 4, . . . , r − 1. Then

4 d2
r = 4 (erdr−1 + dr−2)2 ≤ 4 (4 erd

2
r−1 + 4 d2

r−2)
2

≤ 4

4× 2
..
.2

r

︸ ︷︷ ︸
r twos

× 2
..
.2

r

︸ ︷︷ ︸
(r−1) twos

+ 4× 2
..
.2

r − 1

︸ ︷︷ ︸
(r−2) twos


2

≤ 2
..
.2

r + 1

︸ ︷︷ ︸
r twos

.

Thus the first inequality in (5.33) holds for all positive integers i ≥ 3, and
the result follows. �

6. Forms of Non-Convergence on the Unit Circle

Proposition 1. There exists an uncountable set of points on the unit
circle, G∗, such that if y ∈ G∗ then there exist ten sequences of positive
integers,

{
ni,j

}∞
i=1

, 1 ≤ j ≤ 10, such that limi→∞Rni,j (y) = Rj.
Proof. The proof is similar to that of Lemma 6. Let

W = {Wi}12
i=1 = {R6, R7, R8, R9, R10, R2, R3, R4, R5, R1, R8, R7}.

Note that W contains all ten of the values taken by the Rogers-Ramanujan
continued fraction at roots of unity. Consider the continued fraction

α = [0, 1, 3, 2, 3, 2, 1, 1, 2, 3, 2, 1, 3, 3, 5] := [0, a1, a2, . . . ].(6.1)

Modulo 5, the approximants are{
0
1
,
1
1
,
3
4
,
2
4
,
4
1
,
0
1
,
4
2
,
4
3
,
2
3
,
0
2
,
2
2
,
2
4
,
3
4

}
,(6.2)

where the bar indicates that, modulo 5, the approximants repeat in this
order.

Let t be any irrational in (0, 1) such that, for i ≥ 1, the i-th partial quo-
tient, bi, and the i-th approximant, ci/di, in its continued fraction expansion,
[0, b1, b2, . . . ], satisfy the following conditions:

(i) bi ≡ ai(mod 5),(6.3)

(ii)
∣∣∣∣t− ci

di

∣∣∣∣ <
1

2πd2
i (di + 1)2φd2

i +2di
,

where the ai’s are as in (6.1).
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Set y = exp(2πit) and let xn = exp(2πicn/dn), so that

(6.4) |xn − y| < 1
d2

n(dn + 1)2φd2
n+2dn

.

Here we once again have used the fact that chord length is less than arc
length. Set r = n(mod 12), for n > 0. Then it can be easily checked, using
(1.4) and (6.2), that

(6.5) R(xn) =

{
Wr, r 6= 0,

W12 r = 0.

Let k = d2
n + dn− 1 or d2

n + dn− 2. By (2.5), (2.6) and (6.4), it follows that

|Pk(xn)− Pk(y)| ≤ 1
φdn

and

|Qk(xn)−Qk(y)| ≤ 1
φdn

.(6.6)

By (5.19), with k as above, q = m = dn and ε = 1/φdn , it follows that

|Rk(y)−R(xn)| ≤ 3φ

d2
n(dn + 1)2φd2

n+2dn
+

60
φ2dn−4

+
1

φ2dn−3
(6.7)

≤ 500
φ2dn

.

Next, for each j ∈ {1, 2, . . . , 12}, define a sequence of integers
{
si,j

}∞
i=1

, by
setting si,j = d2

12(i−1)+j + d12(i−1)+j . By (6.5), R(x12(i−1)+j) = Wj and so,
from (6.7),

|R(si,j−1)(y)−Wj | ≤
500

φ2d12(i−1)+j
,

|R(si,j−2)(y)−Wj | ≤
500

φ2d12(i−1)+j
.

It follows that

lim
i→∞

R(si,j−1)(y) = lim
i→∞

R(si,j−2)(y) = Wj .

Both results hold for 1 ≤ j ≤ 12. Since the set W contains all ten of the
Rj ’s, the result is proved for this particular t.

Let S
′
denote the set of all such t ∈ (0, 1) and set G∗ = {exp(2πit) : t ∈

S
′ }. Clearly G∗ ⊂ YS and is also uncountable.

2

Corollary 2. Let the sequence of integers {ai}∞i=1 be defined by

{a1, a2, · · · } = {0, 2, 1, 2, 1, 0, 0, 1, 2, 1, 0, 2, 2, 4},
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where the bar indicates that the sequence under it repeats infinitely often.
Let t be the number with regular continued fraction expansion given by

t = [0, g1 + a1, g2 + a2, g3 + a3, · · · ],
where gi is the integer consisting of a tower of i sixteens with an i an top
and the ai’s are as above, i.e.,

t = [0, 16, 16162
+ 2, 1616163

+ 1, · · · ].
If y = exp(2πit) then R(y) has subsequences of approximants tending to
all ten values taken by the Rogers-Ramanujan continued fraction at roots of
unity.

Proof. Showing that the i-th partial quotient, bi, and the i-th approxi-
mant, ci/di, of the continued fraction expansion of t satisfy the conditions
in (6.3), for i = 1, 2, · · · , will ensure that y ∈ G∗, where G∗ is defined in
Proposition 1.

The bi’s satisfy the first of these conditions by construction and so it
remains to prove the second. By the same reasoning as used in the proof of
Corollary 3, it is sufficient to show that

gi+1 ≥ 16d2
i ,

since bi+1 ≥ gi+1. The details are omitted since the proof is almost identical,
the only real difference being that

16d2
i ≤ gi+1 if and only if d2

i ≤ 16
..
.16i + 1

︸ ︷︷ ︸
i×16’s

.(6.8)

2

7. Concluding Remarks

The set of points on the unit circle for which the Rogers-Ramanujan
continued fraction has been shown to diverge has measure zero. This still
leaves open the question of convergence for the remaining points. We conjec-
ture that the Rogers-Ramanujan continued fraction diverges, in the classical
sense and the general sense, almost everywhere on the unit circle.

In later papers we will examine the question of convergence, on and off
the unit circle, of other q-continued fractions such as the Göllnitz-Gordon
continued fraction and certain q-continued fractions studied by Ramanujan
and Selberg.
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