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Forlgl <1, (¢:q)e:=(1-q)(1-qg*)(1—¢% -
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Forlgl <1, (¢:q)e:=(1-q)(1-qg*)(1—¢% -
fi:=(9 9)
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Forlgl <1, (¢:q)e:=(1-q)(1-qg*)(1—¢% -
A=(00)x =07 ¢)
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Forlgl <1, (¢:q)e:=(1-q)(1-qg*)(1—¢% -
A=(00)x =07 ¢)

The series expansion for fi:

i=(@qe=1-9-6¢+¢ +q —¢? ~q°+¢? + ¢
g g Pl T — g0 g7 4 g% 4 g0

_gllT _ 126 4 145 | 155 _ o176 _ 187
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Forlgl <1, (¢:q)e:=(1-q)(1-qg*)(1—¢% -
A=(00)x =07 ¢)

The series expansion for fi:

i=(@qe=1-9-6¢+¢ +q —¢? ~q°+¢? + ¢
g g Pl T — g0 g7 4 g% 4 g0

_gllT _ 126 4 145 | 155 _ o176 _ 187

Notice that the coefficients of most powers of g are zero.
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g-products Continued
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g-products Continued

The list of coefficients:
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g-products Continued

The list of coefficients:

1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,1,0,0,0,1, 0,0,
0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0,
0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,
0,0,0,0,0,0,0,-1,...
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g-products Continued

The list of coefficients:

1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,1,0,0,0,1, 0,0,
0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0,
0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,
0,0,0,0,0,0,0,-1,...

The series Y72 4 c(n)q" is lacunary
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g-products Continued

The list of coefficients:

1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,1,0,0,0,1, 0,0,
0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0,
0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,
0,0,0,0,0,0,0,-1,...

The series Y02, c(n)q" is lacunary if

i {n|0<n<x,c(n) =0} _

X—>00 X

1.
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g-products Continued
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g-products Continued

Fact: fi is lacunary, as the previous slide suggests.
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g-products Continued

Fact: fi is lacunary, as the previous slide suggests.

Q. For which positive integers s is f;° lacunary?
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g-products Continued

Fact: fi is lacunary, as the previous slide suggests.
Q. For which positive integers s is f° lacunary?

Serre:
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g-products Continued

Fact: fi is lacunary, as the previous slide suggests.
Q. For which positive integers s is f° lacunary?

Serre: for even positive integers s, 7 is lacunary if and only if

s €{2,4,6,8,10,14,26}.
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g-products Continued

Fact: fi is lacunary, as the previous slide suggests.
Q. For which positive integers s is f° lacunary?

Serre: for even positive integers s, 7 is lacunary if and only if

s €{2,4,6,8,10,14,26}.

For odd positive integers s it is known that £ lacunary for s = 1 and
s = 3, but nothing that is conclusive is known otherwise.
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g-products Continued

Fact: fi is lacunary, as the previous slide suggests.
Q. For which positive integers s is f° lacunary?

Serre: for even positive integers s, 7 is lacunary if and only if

s €{2,4,6,8,10,14,26}.

For odd positive integers s it is known that £ lacunary for s = 1 and
s = 3, but nothing that is conclusive is known otherwise.

Definition: An eta quotient is a finite product of the form
I G"j, for some integers j € N and nj € Z.
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g-products Continued

Fact: fi is lacunary, as the previous slide suggests.
Q. For which positive integers s is f° lacunary?

Serre: for even positive integers s, f° is lacunary if and only if

s €{2,4,6,8,10,14,26}.

For odd positive integers s it is known that £ lacunary for s = 1 and
s = 3, but nothing that is conclusive is known otherwise.

Definition: An eta quotient is a finite product of the form
I G"j, for some integers j € N and nj € Z.

One could also ask about more general eta quotients that are
lacunary.
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A Result of Han and Ono

Define the sequences {a(n)} and {b(n)} by
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A Result of Han and Ono

Define the sequences {a(n)} and {b(n)} by

8 __. n 3 . n
P = a(n)q", = > b(n)q (1)
n=0 1 n=0
y
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A Result of Han and Ono

Define the sequences {a(n)} and {b(n)} by

S n f3 S n
P = a(n)q", 7 =2 bln)a". (1)
n=0 n=0

(Han and Ono, 2011)
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A Result of Han and Ono

Define the sequences {a(n)} and {b(n)} by

S n f3 S n
P = a(n)q", 7 =2 bln)a". (1)
n=0 n=0

(Han and Ono, 2011) Assuming the notation above, we have that

a(n) =0 <= b(n) =0. (2)
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A Result of Han and Ono

Define the sequences {a(n)} and {b(n)} by

S n f3 S n
P = a(n)q", 7 =2 bln)a". (1)
n=0 n=0

(Han and Ono, 2011) Assuming the notation above, we have that
a(n) =0<= b(n) =0. (2)

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which 3n + 1 has a prime factor p of the form p = 3k + 2 for some
integer k, with odd exponent.

James Mc Laughlin (WCUPA) January 5, 2024 7/111



The Result of Han and Ono in More Detail




The Result of Han and Ono in More Detail

f8 =1—8q+20g° — 70¢* + 64q° + 564° — 125¢% — 160¢° + 308¢*°
+110¢* — 520¢** 4 57¢*® + 560¢*" + 182¢*° + .. .,
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The Result of Han and Ono in More Detail

f8 =1—8q+20g° — 70¢* + 64q° + 564° — 125¢% — 160¢° + 308¢*°
+110¢* — 520¢** 4 57¢*® + 560¢*" + 182¢*° + .. .,

f3
%:1+q+2q2+2q4+q5+2q6+q8+2q9+2q10+2q12
1

4+ 2g% +3¢1 £ 217 + 2420 4 ...
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The Result of Han and Ono in More Detail

f8 =1—8q+20g° — 70¢* + 64q° + 564° — 125¢% — 160¢° + 308¢*°
+110¢* — 520¢** 4 57¢*® + 560¢*" + 182¢*° + .. .,

f3
fi:1+q+2q2+2q4+q5+2q6+q8+2q9+2q10+2q12
1
+2q14+3q16+2q17+2q20+”“

Notice that the two series vanish for the same powers of g, namely g" with
n=3,7,11,13,15,18,19....
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The Result of Han and Ono in More Detail

f8 =1—8q+20g° — 70¢* + 64q° + 564° — 125¢% — 160¢° + 308¢*°
+110¢* — 520¢** 4 57¢*® + 560¢*" + 182¢*° + .. .,
f3
fi:1+q+2q2+2q4+q5+2q6+q8+2q9+2q10+2q12
1

4+ 2g% +3¢1 £ 217 + 2420 4 ...

Notice that the two series vanish for the same powers of g, namely g" with
n=3,7,11,13,15,18,19....

Further, for any n in this list, 3n 4+ 1 has a prime factor p of the
form p = 3k + 2 with odd exponent.
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The Result of Han and Ono in More Detail

f8 =1—8q+20g° — 70¢* + 64q° + 564° — 125¢% — 160¢° + 308¢*°
+110¢* — 520¢** 4 57¢*® + 560¢*" + 182¢*° + .. .,

f3
fi:1+q+2q2+2q4+q5+2q6+q8+2q9+2q10+2q12
1

4+ 2g% +3¢1 £ 217 + 2420 4 ...

Notice that the two series vanish for the same powers of g, namely g" with
n=3,7,11,13,15,18,19....

Further, for any n in this list, 3n 4+ 1 has a prime factor p of the

form p = 3k + 2 with odd exponent.

(For example, for n =11, 3n+1 = 3(11) + 1 = 34 = 2(17') and
17=3(5) +2.)
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Series with identically vanishing coefficients
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Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was 2, one of
the powers of fi that Serre showed was lacunary.
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Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was 2, one of
the powers of fi that Serre showed was lacunary.

Do similar situations exist for the other powers of f; that are lacunary?
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Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was 2, one of
the powers of fi that Serre showed was lacunary.

Do similar situations exist for the other powers of f; that are lacunary?

We first introduce some additional notation.
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Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was 2, one of
the powers of fi that Serre showed was lacunary.

Do similar situations exist for the other powers of f; that are lacunary?
We first introduce some additional notation.

If A(g) and B(q) are two functions for which the coefficients in the series
expansions satisfy the condition (2) in the theorem
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Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was 2, one of
the powers of fi that Serre showed was lacunary.

Do similar situations exist for the other powers of f; that are lacunary?
We first introduce some additional notation.
If A(g) and B(q) are two functions for which the coefficients in the series

expansions satisfy the condition (2) in the theorem

a(n) =0<= b(n) =0,

James Mc Laughlin (WCUPA) January 5, 2024 9/111



Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was 2, one of
the powers of fi that Serre showed was lacunary.

Do similar situations exist for the other powers of f; that are lacunary?
We first introduce some additional notation.

If A(g) and B(q) are two functions for which the coefficients in the series
expansions satisfy the condition (2) in the theorem

a(n) =0<= b(n) =0,

then for ease of discussion, we say that the coefficients vanish
identically,
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Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was 2, one of
the powers of fi that Serre showed was lacunary.

Do similar situations exist for the other powers of f; that are lacunary?
We first introduce some additional notation.

If A(g) and B(q) are two functions for which the coefficients in the series
expansions satisfy the condition (2) in the theorem

a(n) =0<= b(n) =0,

then for ease of discussion, we say that the coefficients vanish
identically,or that A(q) and B(q) have identically vanishing
coefficients.
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Series with identically vanishing coefficients I
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Series with identically vanishing coefficients I

Theorem 1 motivated the speaker to investigate experimentally if similar
results held for other pairs of eta quotients.
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Series with identically vanishing coefficients I

Theorem 1 motivated the speaker to investigate experimentally if similar
results held for other pairs of eta quotients.

This was done using some simple Mathematica programs.
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Series with identically vanishing coefficients I

Theorem 1 motivated the speaker to investigate experimentally if similar
results held for other pairs of eta quotients.

This was done using some simple Mathematica programs.

What was discovered as a result of these computer algebra experiments is
summarized as follows.
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Other eta quotients with identically vanishing coefficients |
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Other eta quotients with identically vanishing coefficients |

Let (A(q), B(g)) be any of the pairs

f8 flO f4 f14
L) (%) (1) (%)
f f f
10 1
(%) (#2) (= 3)} o
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Other eta quotients with identically vanishing coefficients |

Let (A(q), B(g)) be any of the pairs

f8 flO f4 f14
L) (%) (1) (%)
f £ f
10 14 13 14
(%) (#2) (= 3)} o

For any such pair (A(q), B(q)), define the sequences {a(n)} and {b(n)} by

=Y a(n)q", B(q) =Y b(n)q".
n=0 n=0
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Other eta quotients with identically vanishing coefficients |

Let (A(q), B(g)) be any of the pairs

(45 (+5) (2 5) (5)
(D D) (w5} o

For any such pair (A(q), B(q)), define the sequences {a(n)} and {b(n)} by
=: ga(n)q”, B(q) = gob(n)q”-

Then, for each pair, a(n) = 0 <= b(n) = 0, with criteria for
when exactly this happens (Serre's criteria).
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Other eta quotients with identically vanishing coefficients Il

James Mc Laughlin (WCUPA) January 5, 2024 12 /111



Other eta quotients with identically vanishing coefficients Il

For the pairs

(@) o
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Other eta quotients with identically vanishing coefficients Il

For the pairs

(@) o

a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0.
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Other eta quotients with identically vanishing coefficients Il

For the pairs

(=) (%)} 2

a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0.

The proofs needed the theory of modular forms (enter Tim Huber and
later Dongxi Ye).
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Other eta quotients with identically vanishing coefficients Il

For the pairs

{(=2) (%)} 2

a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0.

The proofs needed the theory of modular forms (enter Tim Huber and
later Dongxi Ye).

Later: The results above on identically vanishing coefficients
appear to be just “the tip of the iceberg”.
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Brief Comment on the method of proof
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Brief Comment on the method of proof

Brief outline of method of proof
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.

James Mc Laughlin (WCUPA) January 5, 2024 13 /111



Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear

combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear

combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
. 2 2
theta series of the form 3" (m+ ny/—D)kq™ +Pm,
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.

- Use the LMFDB to express the resulting modular form as a linear

combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
theta series of the form 3°_(m+ ny/—D)kq™*+P7  where D is a
positive integer and the m and n run over all the integers or certain
arithmetic progressions
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.

- Use the LMFDB to express the resulting modular form as a linear
combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
theta series of the form 3°_(m+ ny/—D)kq™*+P7  where D is a
positive integer and the m and n run over all the integers or certain
arithmetic progressions (allows the coefficient by, of gP to be

computed explicitly in terms of the m and n in p = m? + Dn?).
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear

combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
theta series of the form 3°_(m+ ny/—D)kq™*+P7  where D is a
positive integer and the m and n run over all the integers or certain
arithmetic progressions (allows the coefficient by, of gP to be

computed explicitly in terms of the m and n in p = m? + Dn?).

- Use the multiplicativity of the coefficients in the CM forms,
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.

- Use the LMFDB to express the resulting modular form as a linear

combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
theta series of the form 3°_(m+ ny/—D)kq™*+P7  where D is a
positive integer and the m and n run over all the integers or certain
arithmetic progressions (allows the coefficient by, of gP to be

computed explicitly in terms of the m and n in p = m? + Dn?).

- Use the multiplicativity of the coefficients in the CM forms, and the
recursive formula for prime powers
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.

- Use the LMFDB to express the resulting modular form as a linear

combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
theta series of the form 3°_(m+ ny/—D)kq™*+P7  where D is a
positive integer and the m and n run over all the integers or certain
arithmetic progressions (allows the coefficient by, of gP to be

computed explicitly in terms of the m and n in p = m? + Dn?).

- Use the multiplicativity of the coefficients in the CM forms, and the
recursive formula for prime powers (more on these later)
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.

- Use the LMFDB to express the resulting modular form as a linear
combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
theta series of the form 3°_(m+ ny/—D)kq™*+P7  where D is a
positive integer and the m and n run over all the integers or certain
arithmetic progressions (allows the coefficient by, of gP to be

computed explicitly in terms of the m and n in p = m? + Dn?).

- Use the multiplicativity of the coefficients in the CM forms, and the
recursive formula for prime powers (more on these later) to determine
information about a general coefficient b, (and in particular, when b, = 0).
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The last product on the right is a modular form. So what?
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Why Modular Forms?

From the previous slide:

- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.

Example:
ff=(0:9)% — (6% )% — a(d® ).
The last product on the right is a modular form. So what?

Martin Eichler: “There are five fundamental operations of mathematics:
addition, subtraction, multiplication, division, and modular forms.”

Q: Why use the dilation g — g3 above?
Why not ¢ — q*? ¢ — ¢°? q — ¢°7 ...
The fact that (3)(8) = 24 is important.
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Why Modular Forms?

From the previous slide:
- Apply a dilation g — g™ and multiply by ¢/ (some integers m and j) to
turn the second eta quotient into a modular form.
Example:
ff=(0:9)% — (6% )% — a(d® ).
The last product on the right is a modular form. So what?

Martin Eichler: “There are five fundamental operations of mathematics:
addition, subtraction, multiplication, division, and modular forms.”

Q: Why use the dilation g — g3 above?
Why not ¢ — q*? ¢ — ¢°? q — ¢°7 ...

The fact that (3)(8) = 24 is important.
Also, the transformation above takes g" to g , and partly
explains the relevance of 3n 4 1 in the vanishing coefficient

criterion.
James Mc Laughlin (WCUPA) January 5, 2024 15 /111
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The Ramanujan 7 Function

The Ramanujan 7 function is defined by

o o
g [J(1-a™* = r(n)g" = q - 24¢* + 252¢> — 1472q" + 48304
n=1

— 6048q° — 16744q" + 844804 — 113643¢° — 1159204 + 534612q*!
— 370944q*% — 577738¢*3 + 401856¢** + 1217160g"° + 9871364'° —
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The Ramanujan 7 function is defined by

(o] o
g [J(1-a™* = r(n)g" = q - 24¢* + 252¢> — 1472q" + 48304
n=1

— 6048q° — 16744q" + 844804 — 113643¢° — 1159204 + 534612q*!

— 370944q*% — 577738¢*3 + 401856¢** + 1217160g"° + 9871364'° —

Facts: (1) 7(m)7(n) = 7(mn) if gcd(m, n) = 1.
For example, 7(3)7(5) = 252 x 4830 = 1217160 = 7(15).

(2) For any prime p and any integer r > 1,

(P = 7(p)r(p") — PHr(p ).
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The Ramanujan 7 Function

The Ramanujan 7 function is defined by

(o] o
g [J(1-a™* = r(n)g" = q - 24¢* + 252¢> — 1472q" + 48304
n=1

— 6048¢% — 16744q" + 84480q° — 113643q° — 115920¢'° + 534612¢"*
— 370944q*% — 577738¢*3 + 401856¢** + 1217160g"° + 9871364'° —
Facts: (1) 7(m)7(n) = 7(mn) if gcd(m, n) = 1.

For example, 7(3)7(5) = 252 x 4830 = 1217160 = 7(15).
(2) For any prime p and any integer r > 1,

T(p™™) =7(p)r(p") — p*T(p" ).
For example, with p =2 and r = 3,
7(2)7(23) — 2117(22) = (—24)84480 — 211(—1472)
= 087136 = 7(2%).
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(2) For any prime p and any integer r > 1,

m(p™h) = 7(p)r(p") — pHT(p"Y),

mean that the value of 7(n) for any integer n is determined entirely by the
values of 7(p) for each prime p such that p|n.
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The Values Taken by 7 Determined Completely by its

Value at the Primes

Observe that the two conditions
(1) 7(m)7(n) = 7(mn) if gcd(m, n) =1
(2) For any prime p and any integer r > 1,

m(p™Y) = 7(p)7(p") — PHT(P)

mean that the value of 7(n) for any integer n is determined entirely by the
values of 7(p) for each prime p such that p|n.

(If n has prime factorization n = piqu2 ... pk then

7(n) = 7(py*)7(p82) ... T(pk") by (1),
and then (2) implies each T(pf"') is a polynomial in 7(p;).
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Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the
prime powers similar to (2) on the previous slides.
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level N, and Nebentypus x.
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There are a class of modular forms that satisfy a recurrence formula at the
prime powers similar to (2) on the previous slides.

Let f(q) = g+ Y25 anq" be a normalized Hecke eigenform of weight k,
level N, and Nebentypus x.

Let pt N be a prime, then the following recurrence formula holds

apnt1 = apnap — X(p)pk_lapnfl. (6)
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Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the
prime powers similar to (2) on the previous slides.

Let f(q) = g+ Y25 anq" be a normalized Hecke eigenform of weight k,
level N, and Nebentypus x.

Let pt N be a prime, then the following recurrence formula holds
_ k—1
apnt1 = apnap — X(P)P" " "apn-1. (6)

As with 7(n), if gcd(m, n) = 1, then apmp, = aman.
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A Proof involving Triangular numbers |

Define the sequences {a(n)} and {b(n)} as follows:

oo f4 0
P =Y a(n)q", ﬁ =) b(n)q".
n=0 1 n=0
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Define the sequences {a(n)} and {b(n)} as follows:

- n A E n
P =Y a(n)q", ﬁ =) b(n)q".
n=0 1 n=0
Then
a(n) =0 <= b(n) =0. (7)

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ordy,(4n + 1) is odd for some prime p = 3 (mod 4).
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n=0 1 n=0
Then
a(n) =0 <= b(n) =0. (7)

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ordy,(4n + 1) is odd for some prime p = 3 (mod 4).

The proof of this theorem does not involve CM forms and theta
series (so different from most other proofs).
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for which ordy,(4n + 1) is odd for some prime p = 3 (mod 4).

The proof of this theorem does not involve CM forms and theta
series (so different from most other proofs).

Serre: a(n) = 0 if and only if 4n+ 1 has a prime factor

p =3 (mod 4) with odd exponent,
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- n A E n
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n=0 1 n=0
Then
a(n) =0 <= b(n) =0. (7)

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ordy,(4n + 1) is odd for some prime p = 3 (mod 4).

The proof of this theorem does not involve CM forms and theta
series (so different from most other proofs).

Serre: a(n) = 0 if and only if 4n+ 1 has a prime factor

p =3 (mod 4) with odd exponent, so it suffices to show

b(n) = 0 under the same conditions.
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flz _ i n(n+1)/2
fl - q 9
n=0
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A Proof involving Triangular numbers [l

Fact:

= n(nt1)/2 B = m(mi1)/24n(nt1)/2
?1 = Z q , —> )?12 = Z q
n=0

m,n=0
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A Proof involving Triangular numbers [l

Fact:

f2 > n(n f4 > mm n(n >
%1 :Zq ( +1)/2’ — ?22 _ Z q (m+41)/24n(n+1)/2 Zzb(k)qk.
n=0 1 m,n=0 k=0
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A Proof involving Triangular numbers [l

Fact:
7 i i)z L B f Z m(m+1)/24n(n+1)/2 _ Zb
n=0 m,n=0
Let .
t(n):”(”;), n=0,1,2,3,...,

denote the n-th triangular number.
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Let .
t(n):”(”;), n=0,1,2,3,...,

denote the n-th triangular number. Let
Ty = {t(m) + t(n)|m,n > 0},

the set of non-negative integers representable as a sum of two
triangular numbers.
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A Proof involving Triangular numbers [l

Fact:
7 i i)z L B A Z m(m+1)/24n(n+1)/2 _ Zb
n q ) fl q
n=0 m,n=0
Let .
t(n):”(”;), n=0,1,2,3,...,

denote the n-th triangular number. Let
Ty = {t(m) + t(n)|m,n > 0},

the set of non-negative integers representable as a sum of two
triangular numbers. Thus b(k) = 0 if and only if k € T».
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A Proof involving Triangular numbers Il

There is the following criterion of Ewell (1992):

Proposition

A positive integer n can be written as a sum of two triangular numbers if
and only if when 4n+ 1 is expressed as a product of prime-powers, every
prime factor p = 3 (mod 4) occurs with even exponent.
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Proposition

A positive integer n can be written as a sum of two triangular numbers if
and only if when 4n+ 1 is expressed as a product of prime-powers, every
prime factor p = 3 (mod 4) occurs with even exponent.

Thus b(n) # 0 if and only if when 4n 4 1 is expressed as a product of
prime-powers, every prime factor p = 3 (mod 4) occurs with even
exponent.

Alternatively, b(n) = 0 if and only if when 4n + 1 is expressed as
a product of prime-powers, some prime factor p =3 (mod 4)
occurs with odd exponent.
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A Proof involving Triangular numbers Il

There is the following criterion of Ewell (1992):

Proposition

A positive integer n can be written as a sum of two triangular numbers if
and only if when 4n+ 1 is expressed as a product of prime-powers, every
prime factor p = 3 (mod 4) occurs with even exponent.

Thus b(n) # 0 if and only if when 4n 4 1 is expressed as a product of
prime-powers, every prime factor p = 3 (mod 4) occurs with even
exponent.

Alternatively, b(n) = 0 if and only if when 4n + 1 is expressed as
a product of prime-powers, some prime factor p =3 (mod 4)
occurs with odd exponent.

However, this is exactly Serre's criterion for a(n) = 0.
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Define the sequences {a(n)} and {b(n)} by

> n f8 > n
FoSane =Y b
2 n=0

n=0
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An Example of the More Usual Kind of Proof |

Define the sequences {a(n)} and {b(n)} by

> n f8 > n
FoSane =Y b
2 n=0

n=0

Then a(n) = 0 < b(n) = 0.
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An Example of the More Usual Kind of Proof |

Define the sequences {a(n)} and {b(n)} by

- n f8 - n
FoYane LY e
n=0 2 n=0

Then a(n) = 0 < b(n) = 0.
Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ord,(6n + 1) is odd for some prime p =2 (mod 3).
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Define the sequences {a(n)} and {b(n)} by

- n fs - n
FoYane LY e
n=0 2 n=0

Then a(n) = 0 < b(n) = 0.
Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ord,(6n + 1) is odd for some prime p =2 (mod 3).

Serre: a(n) = 0 precisely for those non-negative n for
which ord,(6n+ 1) is odd for some prime p =2 (mod 3),
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n=0 2 n=0

Then a(n) = 0 < b(n) = 0.
Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ord,(6n + 1) is odd for some prime p =2 (mod 3).

Serre: a(n) = 0 precisely for those non-negative n for
which ord,(6n+ 1) is odd for some prime p =2 (mod 3), so it is
sufficient to show b(n) = 0 under the same conditions.
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An Example of the More Usual Kind of Proof |

Define the sequences {a(n)} and {b(n)} by

- n f8 - n
FoYane LY e
n=0 2 n=0

Then a(n) = 0 < b(n) = 0.
Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ord,(6n + 1) is odd for some prime p =2 (mod 3).

Serre: a(n) = 0 precisely for those non-negative n for

which ord,(6n+ 1) is odd for some prime p =2 (mod 3), so it is
sufficient to show b(n) = 0 under the same conditions.

Remark: For an odd prime p, p =2 (mod 3) is equivalent to

p =5 (mod 6).
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Next, apply a dilation ¢ — g° to each eta quotient, and then multiply by g:
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Next, apply a dilation ¢ — g° to each eta quotient, and then multiply by g:

qfy =D _a(ma®™* g =3 b(me™t =3 brg"
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Next, apply a dilation ¢ — g° to each eta quotient, and then multiply by g:

qfy =D _a(ma®™* g =3 b(me™t =3 brg"
n=0 12 n=0 n=0

The form g f68/f122 is a lacunary form of weight 3 and level 144,
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Next, apply a dilation ¢ — g° to each eta quotient, and then multiply by g:

qfy =D _a(ma®™* g =3 b(me™t =3 brg"
n=0 12 n=0 n=0

The form g f68/f122 is a lacunary form of weight 3 and level 144, and hence
by a criterion of Serre is a linear combination of CM forms of the same

weight and level.
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An Example of the More Usual Kind of Proof Il

Next, apply a dilation ¢ — g° to each eta quotient, and then multiply by g:

qfy =D _a(ma®™* g =3 b(me™t =3 brg"
n=0 12 n=0 n=0

The form g f68/f122 is a lacunary form of weight 3 and level 144, and hence
by a criterion of Serre is a linear combination of CM forms of the same
weight and level.

The next step is to head to the LMFDB (The L-functions and
modular forms database (LMFDB)) to look for these CM forms.
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If we write g = e“™#, with z in the upper half of the complex plane,
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An Example of the More Usual Kind of Proof Ill

2miz

If we write g = e“™#, with z in the upper half of the complex plane,

’%8 "78(62) 7 13 19 25 31 37
q—> = =q—8q' +22qg° — 16q~° — 25q*° + 24q°" + 26q
5 n*(12z)

+48¢™ — 143" 4 74¢°" +32¢°" +46q" — 40¢"° — 176¢”" —2¢°" + . ..
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An Example of the More Usual Kind of Proof Ill

If we write g = €®™2, with z in the upper half of the complex plane,

2 n(62) 7 13 19 25 31 37
g% = =q—8q' +22qg° — 16q~° — 25q*° + 24q°" + 26q
5 n*(12z)

+48¢™ — 143" 4 74¢°" +32¢°" +46q" — 40¢"° — 176¢”" —2¢°" + . ..

Next, let S(q) denote the CM form of weight 3 and level 144 labelled
144 3.g.c in the LMFDB.
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An Example of the More Usual Kind of Proof Ill

If we write g = €®™2, with z in the upper half of the complex plane,
g n’(62)
5 n?(12z)
+48¢™ — 143" 4 74¢°" +32¢°" +46q" — 40¢"° — 176¢”" —2¢°" + . ..

:q_8q7+22q13_16q19_25q25+24q31+26q37

q

Next, let S(q) denote the CM form of weight 3 and level 144 labelled
144.3.g.c in the LMFDB. Then S(q) has g-series expansion

S(q) = q— 8iV3q" +22q" — 16/v/3¢"° — 25¢®° + 24iv/3¢™
+ 26q37 + 48[\/§q43 — ]_43q49 + 74q61 + 321\/§q67
+ 4697 — 40iv/3q"™° — 176/7/3¢% — 2¢% + ...
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Let S(q) denote the conjugate form (i — —i).
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Let S(q) denote the conjugate form (i — —i). By comparing coefficients
up to the Sturm bound, one gets that
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An Example of the More Usual Kind of Proof IV

Let S(q) denote the conjugate form (i — —i). By comparing coefficients
up to the Sturm bound, one gets that

(1 - \/1_73> S(q) + (1 — \/1_73> §(q)] .

Let the sequences {s,} and {5,} be defined by

n°(6z) _ 1
2(12z) 2

S(q) = anqnv g(q) = Z-‘:’nqn- (9)
n=0 n=0
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An Example of the More Usual Kind of Proof IV

Let S(q) denote the conjugate form (i — —i). By comparing coefficients
up to the Sturm bound, one gets that

(1 - \/1_73> S(q) + (1 — \/1_73> §(q)] .

Let the sequences {s,} and {5,} be defined by

n°(6z) _ 1
2(12z) 2

o0 o0
S(q) = anqnv g(q) = Z-‘:’nqn- (9)
n=0 n=0
Observe that
b — Soni1 = Fiamiy b _ S12n4+7 _ _ S12n47 (10)
12n+1 n+ n+1, 12n+7 i3 i3
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An Example of the More Usual Kind of Proof IV

Let S(q) denote the conjugate form (i — —i). By comparing coefficients
up to the Sturm bound, one gets that

(1 - \/1_73> S(q) + (1 — \/1_73> §(q)] .

Let the sequences {s,} and {5,} be defined by

n°(6z) _ 1
2(12z) 2

o0 o0
S(q) = anqnv g(q) = Z-‘:’nqn- (9)
n=0 n=0
Observe that
b — Soni1 = Fiamiy b _ S12n4+7 _ _ S12n47 (10)
12n+1 n+ n+1, 12n+7 i3 i3

Note that s, = s3 = 0,
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An Example of the More Usual Kind of Proof IV

Let S(q) denote the conjugate form (i — —i). By comparing coefficients
up to the Sturm bound, one gets that

(1 - \/1_73> S(q) + (1 — é) §(q)] .

Let the sequences {s,} and {5,} be defined by

n°(6z) _ 1
2(12z) 2

o0 o0
S(q) = anqnv g(q) = Z-‘:’nqn- (9)
n=0 n=0
Observe that
b — Soni1 = Fiamiy b _ S12n4+7 _ _ S12n47 (10)
12n+1 n+ n+1, 12n+7 i3 i3

Note that s, = s3 =0, and if p is a prime, p=2 (mod 3) (or p=5
(mod 6)), then s, = 0.
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An Example of the More Usual Kind of Proof V

The recurrence formula for s, at prime powers is
2
Spk = SpSpk—1 — X(P) P~ Spk-2, (11)

where x(p) = (—1)(P~1)/2,
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An Example of the More Usual Kind of Proof V

The recurrence formula for s, at prime powers is

Spk = SpSpk-1 — X(p)pzspk_z, (11)

where x(p) = (—1)(P~1)/2,
This gives that if p=2 (mod 3) (or p =5 (mod 6)) is prime (and so
sp = 0), then s, | = p* # 0 and spxt1 = 0 for all integers k > 0.
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The recurrence formula for s, at prime powers is

Spk = SpSpk-1 — X(p)pzspk_z, (11)

where x(p) = (—1)(P~1)/2,

This gives that if p=2 (mod 3) (or p =5 (mod 6)) is prime (and so
sp = 0), then s, | = p* # 0 and spxt1 = 0 for all integers k > 0.
The multiplicative property, s,, = s,s, if gcd(u,v) =1,
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An Example of the More Usual Kind of Proof V

The recurrence formula for s, at prime powers is

Spk = SpSpk-1 — X(p)pzspk_z, (11)

where x(p) = (—1)(P~1)/2,

This gives that if p=2 (mod 3) (or p =5 (mod 6)) is prime (and so
sp = 0), then s, | = p* # 0 and spxt1 = 0 for all integers k > 0.
The multiplicative property, s,, = s,s, if gcd(u, v) = 1, gives that if
6n+1=p'py?...pr,
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An Example of the More Usual Kind of Proof V

The recurrence formula for s, at prime powers is

Spk = SpSpk-1 — X(p)pzspk_z, (11)

where x(p) = (—1)(P~1)/2,

This gives that if p=2 (mod 3) (or p =5 (mod 6)) is prime (and so
sp = 0), then s, | = p* # 0 and spxt1 = 0 for all integers k > 0.
The multiplicative property, s,, = s,s, if gcd(u, v) = 1, gives that if
6n+1=pi*py?...pJr, then

56n+1 = Spfl Sp;z v Sp;’r,
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An Example of the More Usual Kind of Proof V

The recurrence formula for s, at prime powers is

Spk = SpSpk-1 — X(p)pzspk_z, (11)

where x(p) = (—1)(P~1)/2,
This gives that if p=2 (mod 3) (or p =5 (mod 6)) is prime (and so
sp = 0), then s, | = p* # 0 and spxt1 = 0 for all integers k > 0.
The multiplicative property, s,, = s,s, if gcd(u, v) = 1, gives that if
6n+1=pi*py?...pJr, then

Sen+1 — Sp;q SPSZ A Sp;'r,

and hence if some p; =5 (mod 6) and the corresponding n; is
odd, then sgp+1 = 0 and hence b, =0
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An Example of the More Usual Kind of Proof V

The recurrence formula for s, at prime powers is

Spk = SpSpk-1 — X(p)pzspk_z, (11)

where x(p) = (—1)(P~1)/2,

This gives that if p=2 (mod 3) (or p =5 (mod 6)) is prime (and so
sp = 0), then s, | = p* # 0 and spxt1 = 0 for all integers k > 0.
The multiplicative property, s,, = s,s, if gcd(u, v) = 1, gives that if
6n+1=pi*py?...pJr, then

56n+1 = Spfl Sp;z v Sp;’r,

and hence if some p; =5 (mod 6) and the corresponding n; is
odd, then sgn+1 = 0 and hence b, = 0 (so giving half the proof).
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An Example of the More Usual Kind of Proof V

The recurrence formula for s, at prime powers is
2
Spk = SpSpk—1 — X(P) P~ Spk-2, (11)

where x(p) = (—1)(P~1)/2,
This gives that if p=2 (mod 3) (or p =5 (mod 6)) is prime (and so
sp = 0), then s, | = p* # 0 and spxt1 = 0 for all integers k > 0.
The multiplicative property, s,, = s,s, if gcd(u, v) = 1, gives that if
6n+1=pi*py?...pJr, then

Sen+1 = Spfl Sp;z . Sp;’m
and hence if some p; =5 (mod 6) and the corresponding n; is
odd, then sgn+1 = 0 and hence b, = 0 (so giving half the proof).

The remainder of the proof is to show that if the factorization of
6n + 1 is otherwise, then sg,11 # 0, and hence b, # 0.
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An Example of the More Usual Kind of Proof VI

For any Dirichlet character ¢ of conductor m, a newform f(z) is said to
have CM by ¢ if a(p) ¢ (p) = a(p) for all p{ Nm.
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An Example of the More Usual Kind of Proof VI

For any Dirichlet character ¢ of conductor m, a newform f(z) is said to
have CM by ¢ if a(p) ¢ (p) = a(p) for all p{ Nm.

Such an f(z) is also called a CM newform by ¢.

It is known that a CM newform of weight k > 2 exists only if ¢ is a
quadratic character associated to some quadratic field K.
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An Example of the More Usual Kind of Proof VI

For any Dirichlet character ¢ of conductor m, a newform f(z) is said to
have CM by ¢ if a(p) ¢ (p) = a(p) for all p{ Nm.
Such an f(z) is also called a CM newform by ¢.

It is known that a CM newform of weight k > 2 exists only if ¢ is a
quadratic character associated to some quadratic field K.

In such case, f(z) is also called a CM newform by K.

Ribet gives a full characterization of such newforms and justifies that any
CM newform of weight k > 2 by a quadratic field K must come from a
Hecke character 1k associated to K
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An Example of the More Usual Kind of Proof VI

For any Dirichlet character ¢ of conductor m, a newform f(z) is said to
have CM by ¢ if a(p) ¢ (p) = a(p) for all p{ Nm.
Such an f(z) is also called a CM newform by ¢.

It is known that a CM newform of weight k > 2 exists only if ¢ is a
quadratic character associated to some quadratic field K.

In such case, f(z) is also called a CM newform by K.

Ribet gives a full characterization of such newforms and justifies that any
CM newform of weight k > 2 by a quadratic field K must come from a
Hecke character ¢k associated to K and be of the form

f(2)= > vk(@N (@) VO,
CIQOK
integral
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An Example of the More Usual Kind of Proof VI

For any Dirichlet character ¢ of conductor m, a newform f(z) is said to
have CM by ¢ if a(p) ¢ (p) = a(p) for all p{ Nm.
Such an f(z) is also called a CM newform by ¢.

It is known that a CM newform of weight k > 2 exists only if ¢ is a
quadratic character associated to some quadratic field K.

In such case, f(z) is also called a CM newform by K.

Ribet gives a full characterization of such newforms and justifies that any
CM newform of weight k > 2 by a quadratic field K must come from a
Hecke character ¢k associated to K and be of the form

f(2)= > vk(@N (@) VO,
CIQOK
integral

where A (-) denotes the norm of an ideal.
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An Example of the More Usual Kind of Proof VII

In particular, when K is imaginary of discriminant —d < 0 and class
number 1,
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An Example of the More Usual Kind of Proof VII

In particular, when K is imaginary of discriminant —d < 0 and class
number 1, one has that f(z) must be a linear combination of the
generalized theta series

Z o gV over B € (Ok/m)*

aEf+m
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An Example of the More Usual Kind of Proof VII

In particular, when K is imaginary of discriminant —d < 0 and class
number 1, one has that f(z) must be a linear combination of the
generalized theta series

Z o gV over B € (Ok/m)*

aEf+m

for some integral ideal m with A" (m) = N/d.
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Next, following on from the material on the previous slides,
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Next, following on from the material on the previous slides, define the
theta series




An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the
theta series

H, = Z(_6” +14(4m— 2n)\/_73)2q((—6n—|—1)2—i-3(4m—2n)2)7

m,n

James Mc Laughlin (WCUPA) January 5, 2024 31/111



An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the
theta series

Hi = (=6n+ 1+ (4m — 2n)y/=3)2q((Z6n1)*+3(4m=20)%) (12)

Hy = (=6n+5 + (4m — 2n)y/=3)2q((Z6n+8)+3(4m=20)%)

m,n
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An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the
theta series

Hi = (=6n+ 1+ (4m — 2n)y/=3)2q((Z6n1)*+3(4m=20)%) (12)

Hy = (=6n+5 + (4m — 2n)y/=3)2q((Z6n+8)+3(4m=20)%)

m,n

Hs = (~6n—2+ (4m — 2n + 3)y/~3)2q(-On=27+3(4m=2n+3)),

m,n
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An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the
theta series

Hi = (=6n+ 1+ (4m — 2n)y/=3)2q((Z6n1)*+3(4m=20)%) (12)

m,n

Hy = (=6n+5 + (4m — 2n)y/=3)2q((Z6n+8)+3(4m=20)%)

Hs = (~6n—2+ (4m — 2n + 3)y/~3)2q(-On=27+3(4m=2n+3)),
H, = Z(_6n +24 (4m—2n+ 3)\/j3)2q((—6n+2)2+3(4m—2n+3)2)'
m,n
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An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the
theta series

Hi = (=6n+ 1+ (4m — 2n)y/=3)2q((Z6n1)*+3(4m=20)%) (12)

m,n

Hy = (=6n+5 + (4m — 2n)y/=3)2q((Z6n+8)+3(4m=20)%)

Hs = (~6n—2+ (4m — 2n + 3)y/~3)2q(-On=27+3(4m=2n+3)),
H, = Z(_6n +24 (4m—2n+ 3)\/j3)2q((—6n+2)2+3(4m—2n+3)2)'
m,n

One has that

S(q) = Hi— Hy — H3+ Ha,  5(q) = Hi — Ha + H3 — Ha.
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An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s,, when
p=1 (mod 6).
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These theta series will be used to get explicit expressions for s,, when
p =1 (mod 6). For what purpose?
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An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s,, when
p =1 (mod 6). For what purpose?
Recall

Spk = SpSpk—1 — X(p)p25 k—2

P P=p pk=2>
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An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s,, when
p =1 (mod 6). For what purpose?
Recall
Spk = SpSpk—1 — X(p)p25 k—2
P P=p pk=25
From this one has, for any positive integer k, that

Spk = SpSpk-1 =+ = (sp)*  (mod p).
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These theta series will be used to get explicit expressions for s,, when
p =1 (mod 6). For what purpose?
Recall

Spk = SpSpk—l - X(p)pzspk—2,
From this one has, for any positive integer k, that
Spk = SpSpk-1 =+ = (sp)*  (mod p).

Thus, if it can be shown that s, # 0 (mod p), then
spk Z0 (mod p),
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Recall
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From this one has, for any positive integer k, that
Spk = SpSpk-1 =+ = (sp)*  (mod p).

Thus, if it can be shown that s, # 0 (mod p), then
spk Z0 (mod p), and hence s« # 0.

James Mc Laughlin (WCUPA) January 5, 2024 32/111



An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s,, when
p =1 (mod 6). For what purpose?
Recall
Spk = SpSpk—1 — X(p)p25 k—2
P P=p pk=25
From this one has, for any positive integer k, that

Spk = SpSpk-1 =+ = (sp)*  (mod p).

Thus, if it can be shown that s, # 0 (mod p), then
spk Z0 (mod p), and hence s« # 0.

This would complete the proof that sgp1 1 =0 <= 6n+1 has a
prime factor p =5 (mod 6) with odd exponent.
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An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s,, when
p =1 (mod 6). For what purpose?
Recall

Spk = SpSpk—l - X(p)pzspk—2,
From this one has, for any positive integer k, that
Spk = SpSpk-1 =+ = (sp)*  (mod p).
Thus, if it can be shown that s, # 0 (mod p), then
spk Z0 (mod p), and hence s« # 0.

This would complete the proof that sgp1 1 =0 <= 6n+1 has a
prime factor p =5 (mod 6) with odd exponent.

This in turn gives that b(n) =0 <= 6n+1 has a
prime factor p =5 (mod 6) with odd exponent.
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An Example of the More Usual Kind of Proof X

Define the sequences {h;j(n)}, i=1,...,4 by

H;:Zh;(n)q", iZl,...,4,
n=0

where H; are defined several slides back.
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An Example of the More Usual Kind of Proof X

Define the sequences {h;j(n)}, i=1,...,4 by

H;:Zh;(n)q", iZl,...,4,
n=0
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An Example of the More Usual Kind of Proof X

Define the sequences {h;j(n)}, i=1,...,4 by

H;:Zh;(n)q", iZl,...,4,
n=0

where H; are defined several slides back.
Consider primes p =1 (mod 12) and p =7 (mod 12) separately.

If p=1 (mod 12), then p = x2 + 3y?, for unique positive integers x and
y with x odd and y even.
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An Example of the More Usual Kind of Proof X

Define the sequences {h;j(n)}, i=1,...,4 by
H;:Zh;(n)q", iZl,...,4,
n=0

where H; are defined several slides back.
Consider primes p =1 (mod 12) and p =7 (mod 12) separately.

If p=1 (mod 12), then p = x2 + 3y?, for unique positive integers x and
y with x odd and y even.

Thus h3(p) = ha(p) = 0.
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An Example of the More Usual Kind of Proof X

Define the sequences {h;j(n)}, i=1,...,4 by
H;:Zh;(n)q", iZl,...,4,
n=0

where H; are defined several slides back.

Consider primes p =1 (mod 12) and p =7 (mod 12) separately.
If p=1 (mod 12), then p = x2 + 3y?, for unique positive integers x and
y with x odd and y even.

Thus h3(p) = ha(p) = 0.

It will be shown that only one of H; and H» contributes to

s(p)gP, and whichever contributes, it contributes exactly two
terms.
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An Example of the More Usual Kind of Proof XI
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An Example of the More Usual Kind of Proof XI

If 4]y, then it can be seen from the exponent of g in the formulae for both
H; and H,, that n must be even, since 4m —2n=y or 4m —2n = —y.
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If 4]y, then it can be seen from the exponent of g in the formulae for both
H; and H,, that n must be even, since 4m —2n=y or 4m —2n = —y.

If Hy contributes to s(p)gP, then —6n + 1 = £x for some even n so
x = +£1 (mod 12).
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If 4]y, then it can be seen from the exponent of g in the formulae for both
H; and H,, that n must be even, since 4m —2n=y or 4m —2n = —y.

If Hy contributes to s(p)gP, then —6n + 1 = £x for some even n so
x = +£1 (mod 12).
If H, contributes to s(p)gP, then —6n + 5 = +x for some even n so
x =45 (mod 12).
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If 4]y, then it can be seen from the exponent of g in the formulae for both
H; and H,, that n must be even, since 4m —2n=y or 4m —2n = —y.
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x = +£1 (mod 12).

If H, contributes to s(p)gP, then —6n + 5 = +x for some even n so
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An Example of the More Usual Kind of Proof XI

If 4]y, then it can be seen from the exponent of g in the formulae for both
H; and H,, that n must be even, since 4m —2n=y or 4m —2n = —y.

If Hy contributes to s(p)gP, then —6n + 1 = £x for some even n so
x = +£1 (mod 12).

If H, contributes to s(p)gP, then —6n + 5 = +x for some even n so
x =45 (mod 12).

Since these are incompatible, only one of H; or Hy contributes to s(p)g®.

If Ho contributes, then there are exactly two pairs of integers
(m1, n), (my, n) that contribute to s(p)qP,
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An Example of the More Usual Kind of Proof XI

If 4]y, then it can be seen from the exponent of g in the formulae for both
H; and H,, that n must be even, since 4m —2n=y or 4m —2n = —y.

If Hy contributes to s(p)gP, then —6n + 1 = £x for some even n so

x = +£1 (mod 12).

If H, contributes to s(p)gP, then —6n + 5 = +x for some even n so

x =45 (mod 12).

Since these are incompatible, only one of H; or Hy contributes to s(p)g®.
If Ho contributes, then there are exactly two pairs of integers
(m1, n), (my, n) that contribute to s(p)gP, where n is even and

either —6n+5 = x or —6n+ 5 = —x (only one of the two
equations is solvable for n even)
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An Example of the More Usual Kind of Proof XI

If 4]y, then it can be seen from the exponent of g in the formulae for both
H; and H,, that n must be even, since 4m —2n=y or 4m —2n = —y.

If Hy contributes to s(p)gP, then —6n + 1 = £x for some even n so
x = +£1 (mod 12).

If H, contributes to s(p)gP, then —6n + 5 = +x for some even n so
x =45 (mod 12).

Since these are incompatible, only one of H; or Hy contributes to s(p)g®.

If Ho contributes, then there are exactly two pairs of integers
(m1, n), (my, n) that contribute to s(p)gP, where n is even and
either —6n+5 = x or —6n+ 5 = —x (only one of the two
equations is solvable for n even) and 4m; — 2n =y and

4my —2n = —y (so mp = n— my).
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An Example of the More Usual Kind of Proof XII
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An Example of the More Usual Kind of Proof XII

Thus, after simplifying,

ha(p) = (—6n 454 (4my — 2n) \/T3) 2
+ (—6n+5+(4(n— my) —2n)\/—73)2
=2 ((—6n+5)>—3(4my —2n)?) = 2(x* — 3y?).
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An Example of the More Usual Kind of Proof XII

Thus, after simplifying,

ha(p) = (—6n + 5+ (4my — 2n) ¢f3> 2
+ (—6n+5+(4(n— my) —2n)\/—73)2
=2 ((—6n+5)>—3(4my —2n)?) = 2(x* — 3y?).
Thus from the expression S(q) = Hy — Ha — H3 + Ha, one has that

s(p) = 20 — 3y2).
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An Example of the More Usual Kind of Proof XII

Thus, after simplifying,

ha(p) = (—6n + 5+ (4my — 2n) \/?3) 2
n (—6n+5+(4(n— m) —2n)\/j3) 2
=2 ((—6n+5)% - 3(4my — 2n)?) = 2(x* — 3y?).
Thus from the expression S(q) = Hy — Ha — H3 + Ha, one has that
s(p) = 2% — 3y%).

A similar analysis of the case where H; contributes to s(p)g®
when 4|y, and also of the situation where 4 [y (whichever of H;
or H, contribute), gives that if p =1 (mod 12) is prime, then

s(p) = 2(x* — 3y%) or s(p) = —2(x* = 3y%).
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An Example of the More Usual Kind of Proof XIlI
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An Example of the More Usual Kind of Proof XIlI

For our calculations, the key implication in this case (p =1 (mod 12)) is
that,

s(p) = £2(x*> — 3y%) = +2(x® — (p — x?)) = £4x> (mod p)
= s(p) Z0 (mod p).
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For our calculations, the key implication in this case (p =1 (mod 12)) is
that,

s(p) = £2(x*> — 3y%) = +2(x® — (p — x?)) = £4x> (mod p)
= s(p) Z0 (mod p).

Similarly, if p =7 (mod 12), then p = x? 4 3y2, for unique positive
integers x and y with x even and y odd.
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An Example of the More Usual Kind of Proof XIlI

For our calculations, the key implication in this case (p =1 (mod 12)) is
that,

s(p) = £2(x*> — 3y%) = +2(x® — (p — x?)) = £4x> (mod p)
= s(p) Z0 (mod p).

Similarly, if p =7 (mod 12), then p = x? 4 3y2, for unique positive
integers x and y with x even and y odd.

This time H; and Hy contribute nothing to s(p)gP, but Hz and Ha
contribute exactly one term each to s(p)x”.
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An Example of the More Usual Kind of Proof XIlI

For our calculations, the key implication in this case (p =1 (mod 12)) is
that,

s(p) = £2(x*> — 3y%) = +2(x® — (p — x?)) = £4x> (mod p)
= s(p) Z0 (mod p).

Similarly, if p =7 (mod 12), then p = x? 4 3y2, for unique positive
integers x and y with x even and y odd.

This time H; and Hy contribute nothing to s(p)gP, but Hz and Ha
contribute exactly one term each to s(p)x”.

An analysis similar to that carried out in the case p =1 (mod 12)
gives in this case, p =7 (mod 12), that

s(p) = t4xyvV/—3 = s(p)k 0 (mod p),Vk € N.

James Mc Laughlin (WCUPA) January 5, 2024 36/111



An Example of the More Usual Kind of Proof XIlI

For our calculations, the key implication in this case (p =1 (mod 12)) is
that,

s(p) = £2(x*> — 3y%) = +2(x® — (p — x?)) = £4x> (mod p)
= s(p) Z0 (mod p).

Similarly, if p =7 (mod 12), then p = x? 4 3y2, for unique positive
integers x and y with x even and y odd.

This time H; and Hy contribute nothing to s(p)gP, but Hz and Ha
contribute exactly one term each to s(p)x”.

An analysis similar to that carried out in the case p =1 (mod 12)
gives in this case, p =7 (mod 12), that

s(p) = t4xyvV/—3 = s(p)k 0 (mod p),Vk € N.

Given what was said earlier, this completes the proof.
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Let (A(q), B(g)) be any of the pairs
f8 flO f4 f14
L) (%) () ()
f f f
(#2) (%) (#5) ) wo
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Let (A(q), B(g)) be any of the pairs

f8 flO f4 f14
L) (%) () ()
f £ f
10 1
@ D)D) (D) o

For any such pair (A(q), B(q)), define the sequences {a(n)} and {b(n)} by

=Y a(n)q", B(q) =Y b(n)q".
n=0 n=0
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Let (A(q), B(g)) be any of the pairs

[(+5) (+5) (e 5) (5)
(5 (5) (D) o

For any such pair (A(q), B(q)), define the sequences {a(n)} and {b(n)} by
= ga(n)q”, B(q) =: gob(n)q”-

Then, for each pair, a(n) = 0 <= b(n) = 0, with criteria for
when exactly this happens (Serre's criteria).
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Recap I
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Recap I

For the pairs

w

(8 (=5) o

|
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Recap I

For the pairs

(#5)(=5) o

a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0.
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How Extensive is this Phenomenon?
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How Extensive is this Phenomenon?

Notice that each of the triples

4 Lls LIO £o fi LM Fl4 fis fls £26 fig f2716 (17)
17f227f32 ) l?f-lzaf24 3 lafl:flz 3 17f—17f16

have identically vanishing coefficients.
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Notice that each of the triples

4 Lls LIO £o fi fﬁ Fl4 fis fls £26 fg f216 (17)
l?f-227f32 3 17f-127f24 3 1af—1>f12 9 17f f16

have identically vanishing coefficients.

Q. How extensive is this phenomenon of eta quotients with identically
vanishing coefficients?
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How Extensive is this Phenomenon?

Notice that each of the triples

4 Lls LIO £o fi fﬁ Fl4 fis fls £26 fg f216 (17)
l?f-227f32 3 17f-127f24 3 1af—1>f12 9 17f f16

have identically vanishing coefficients.

Q. How extensive is this phenomenon of eta quotients with identically
vanishing coefficients?

A. Quite extensive.
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Further Investigations
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Further Investigations
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Further Investigations
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Further Investigations

Motivated by what we discovered (described in the previous section) we
extended the search for the phenomenon described.
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For ease of notation, for a function E(q) =, -, enq" we write

E(o)::{neN:en:0}
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It was found that if A(q) is any one of f{", r =4,6,8,10,14 and 26
(lacunary eta quotients whose vanishing coefficient behaviour was
described by Serre)
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It was found that if A(q) is any one of f{", r =4,6,8,10,14 and 26
(lacunary eta quotients whose vanishing coefficient behaviour was
described by Serre)or f3f3 (the simplest case of an infinite family of
lacunary eta quotients stated by Ono and Robins), then in each case there
were a large numbers of eta quotients B(q) such that Ay = B(g).
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Further Investigations

Motivated by what we discovered (described in the previous section) we
extended the search for the phenomenon described.

For ease of notation, for a function E(q) =}, enq" we write
Eg):={neN:e, =0}

It was found that if A(q) is any one of f{", r =4,6,8,10,14 and 26
(lacunary eta quotients whose vanishing coefficient behaviour was
described by Serre)or f3f3 (the simplest case of an infinite family of
lacunary eta quotients stated by Ono and Robins), then in each case there
were a large numbers of eta quotients B(q) such that Ay = B(g).

Further, in each case there were also many other eta quotients
C(q) such that Ay & Clo).

James Mc Laughlin (WCUPA) January 5, 2024 41/111



Further Investigations

Motivated by what we discovered (described in the previous section) we
extended the search for the phenomenon described.

For ease of notation, for a function E(q) =}, enq" we write
Eg):={neN:e, =0}

It was found that if A(q) is any one of f{", r =4,6,8,10,14 and 26
(lacunary eta quotients whose vanishing coefficient behaviour was
described by Serre)or f3f3 (the simplest case of an infinite family of
lacunary eta quotients stated by Ono and Robins), then in each case there
were a large numbers of eta quotients B(q) such that Ay = B(g).

Further, in each case there were also many other eta quotients
C(q) such that Ay & Clo).

We describe what was found in some detail in the case of f;*
and £2.
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The Case of f* |
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The Case of f* |

Our limited search in the case of f;* found a total of 72 eta quotients B(q)
for which it appeared 1‘14(0) = B(p).-
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The Case of f* |

Our limited search in the case of f;* found a total of 72 eta quotients B(q)
for which it appeared 1‘14(0) = B(p).-

In addition, this search found 78 additional eta quotients with the property
that for each such eta quotient C(q), it seemed ff(o) S Co)-
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The Case of f* |

Our limited search in the case of f;* found a total of 72 eta quotients B(q)
for which it appeared 1‘14(0) = B(p).-

In addition, this search found 78 additional eta quotients with the property
that for each such eta quotient C(q), it seemed 1‘14(0) S Co)-

Moreover, it appears that all 150 eta quotients B(q) may be organized
into 19 collections (labelled I - XIX in what follows) in a tree-like structure
by partially ordering the corresponding By by inclusion.
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The Case of £ Il

James Mc Laughlin (WCUPA) January 5, 2024 43/111



The Case of £ Il

Table 1: Eta quotients with vanishing behaviour similar to £

Collection  # of eta quotients || Collection # of eta quotients
I 72 I 4
It 2 v 6
Al 2 VI * 4
VIl * 6 VI * 8
IX * 4 X 4
XI 14 XII T 2
Xt 2 XIV 2
XV 4 XvI 2
XVII 4 XV 2
XIX 6
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The Case of £* Il
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The Case of £* Il

Thus, for example, all 14 eta quotients in the collection labelled XI,
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The Case of £* Il

Thus, for example, all 14 eta quotients in the collection labelled XI, where

0o (B G0 GA% 4 B0
Bhofishe BRPRafy Pha By Fhbn (05 B
280 b dh 0 a6 1)

A A AT

appeared to have identically vanishing coefficients.
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The Case of £* Il

Thus, for example, all 14 eta quotients in the collection labelled XI, where

0o (B G0 GA% 4 B0
Bhofishe BRPRafy Pha By Fhbn (05 B
g 6% A A6 0 A6 in)

A A AT

appeared to have identically vanishing coefficients.

Collection | is the collection containing f;*.
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The Case of £* Il

Thus, for example, all 14 eta quotients in the collection labelled XI, where

0o (B G0 GA% 4 B0
Bhofishe BRPRafy Pha By Fhbn (05 B
g 6% A A6 0 A6 in)

A A AT

appeared to have identically vanishing coefficients.

Collection | is the collection containing f;*.

* - has been proven that all eta quotients in the corresponding group have
identically vanishing coefficients.
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The Case of £* Il

Thus, for example, all 14 eta quotients in the collection labelled XI, where

0o (B G0 GA% 4 B0
Bhofishe BRPRafy Pha By Fhbn (05 B
280 b dh 0 a6 1)

A A AT

appeared to have identically vanishing coefficients.
Collection | is the collection containing f;*.

* - has been proven that all eta quotients in the corresponding group have
identically vanishing coefficients.

- group members trivially have identically vanishing coefficients
or it was shown previously.
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The Case of £* Il

Thus, for example, all 14 eta quotients in the collection labelled XI, where

0o (B G0 GA% 4 B0
Bhofishe BRPRafy Pha By Fhbn (05 B
280 b dh 0 a6 1)

A A AT

appeared to have identically vanishing coefficients.
Collection | is the collection containing f;*.

* - has been proven that all eta quotients in the corresponding group have
identically vanishing coefficients.

- group members trivially have identically vanishing coefficients
or it was shown previously.

The relationships between eta quotients in different collections is
illustrated in Figure 1.
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The Case of f* IV

James Mc Laughlin (WCUPA) January 5, 2024 45/111



The Case of f* IV

Figure: The grouping of the 150 eta-quotients in Table 1, which have vanishing
coefficient behaviour similar to f*
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The Case of f* V
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The Case of f* V

Thus the arrow from VIII to XIV indicates that if A(q) is any of the 8 eta
quotients in collection VIII
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The Case of f* V

Thus the arrow from VIII to XIV indicates that if A(q) is any of the 8 eta

quotients in collection VIII and B(q) is either of the 2 eta quotients in
collection XIV,
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The Case of f* V

Thus the arrow from VIII to XIV indicates that if A(q) is any of the 8 eta

quotients in collection VIII and B(q) is either of the 2 eta quotients in
collection XIV, where

V,,,:{éfe,fsfl% Affl ARfRh K] fa

RRRE BIR, BARPR ALER
Affs fhfe AR HAER
hfs AR AR Aifio }

XIV = {@2’(3’%3'(12 AR }
hfifsfa hfsfafa |’
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The Case of f* V

Thus the arrow from VIII to XIV indicates that if A(q) is any of the 8 eta

quotients in collection VIII and B(q) is either of the 2 eta quotients in
collection XIV, where

V,,,:{éfe,fsfl% Affl ARfRh K] fa

RRRE BIR, BARPR ALER
Affs fhfe AR HAER
hfs AR AR Aifio }

XIV = {@2’(3’%3'(12 AR }
hfifsfa hfsfafa |’

then A(O) ; B(O)
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The Case of f* V

Thus the arrow from VIII to XIV indicates that if A(q) is any of the 8 eta
quotients in collection VIII and B(q) is either of the 2 eta quotients in
collection XIV, where
Vil — { RPhigfh  fifkfh AR B F
RRRE BIR, BARPR ALER
hfffs ffifiy AR 1‘27%1‘62}
Rfs AR 2615 fifis |
XIV = {@2’(3’%3'(12 AR }
A foha” hfsfafa |’

then A(O) ; B(O)

A similar meaning for any other arrow in this figure is to be understood.
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The Case of f* V

Thus the arrow from VIII to XIV indicates that if A(q) is any of the 8 eta
quotients in collection VIII and B(q) is either of the 2 eta quotients in
collection XIV, where
Vil — { RPhigfh  fifkfh AR B F
RRRE BIR, BARPR ALER
hfffs ffifiy AR 1‘27%1%2}
Rfs AR 2615 fifis |
XIV = {@2’(3’%3'(12 AR }
A foha” hfsfafa |’

then A(O) ; B(O)
A similar meaning for any other arrow in this figure is to be understood.

The inclusion just mentioned, between groups VIII and XIV, is one of
several such inclusion results indicated by the arrows in Figure 1 that have
been proven.
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The Case of £ |
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The Case of £ |

Table 2: Eta quotients with vanishing behaviour similar to £

Collection  # of eta quotients || Collection # of eta quotients
I 42 m= )
1" * 4 \Y 16
vi 2 vl f 2
VIl * 4 VI * 4
IX * 4 X 10
XI 2 X1l * 4
Xl = 8 XIV * 4
XV 8 XVI T 2
XVII 8 XVIII T 2
Xix 2 XXt 2
XX * 4 XXII * 6
XXt 2 XXIV * 4
XXV * 4 XXVI 4
XXVII 2 XXVII T 6

XXIX 6
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The Case of £ II
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The Case of £ II

XXVII

Figure: The grouping of eta-quotients in Table 2, which have vanishing coefficient
behaviour similar to £?
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The Case of 2 |
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The Case of 2 |

Table 3: Eta quotients with vanishing behaviour similar to £

Collection  # of eta quotients || Collection # of eta quotients
I 24 In 2
 t 2 v 60
YAl 2 VI 6
vl f 2 VIII 4
IX f 2 Xt 2
Xl * 4 Xl * 4
Xl * 4 XIV 4
Xv 1 2 XVI T 2
xvi 2 Xvii 2
XIX 6 xx t 2
XX T 2 XXt 4
XX * 2 XXIV 4
XXV 6
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The Case of 2 II
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The Case of 2 II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient
behaviour similar to 2
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The Case of 2 II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient
behaviour similar to 2

Remark: If the tables and graphs represent the true situation for f;* and
f8,
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The Case of 2 II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient
behaviour similar to 2

Remark: If the tables and graphs represent the true situation for f;* and
f8, then the entire table and graph for f;* is embedded in those for £ via
a g — g2 dilation.

James Mc Laughlin (WCUPA) January 5, 2024 50/111



The Case of 2 II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient
behaviour similar to 2

Remark: If the tables and graphs represent the true situation for f;* and
f8, then the entire table and graph for f;* is embedded in those for £ via
a g — g2 dilation.
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The Case of 10|

Table 4: Eta quotients with vanishing behaviour similar to £°

Collection  # of eta quotients || Collection # of eta quotients
I 38 m= 4
i f 2 2 4
\Y; 4 vt 2
VI 6 Vit 2
X * 4 Xt 2
X| * 4 Xt 2
Xt 2 XIv 1 2
Xxv i 2 XVI T 2
XVII 8 XVIIIF 2
XIX * 4 XX T 2
XX| 2 XXII f 2
XX 4 XXIV T 4
XXv 6
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The Case of A1 II
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The Case of A1 II

XX

Figure: The grouping of eta-quotients in Table 4, which have vanishing coefficient
behaviour similar to £°
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The Case of f!* |
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The Case of f!* |

Table 5: Eta quotients with vanishing behaviour similar to

Collection  # of eta quotients || Collection # of eta quotients

I 32 I 4

" * 4 vV * 4

Al 2 VI 12

VII* 4 VIl 8

IX T 2 X T 2

XI 2 XII 2

Xt 2 XIV T 4

XV T 6
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The Case of A4 II
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The Case of A4 II

Xl

Figure: The grouping of eta-quotients in Table 5, which have vanishing coefficient
behaviour similar to £}
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The Case of £ |
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The Case of £ |

Table 6: Eta quotients with vanishing behaviour similar to £7°

Collection  # of eta quotients || Collection # of eta quotients

I 12 [l 4

" * 4 \Al 2

v i 2 ‘R 2

VIl T 2 VIl 4

IX 8 X 2

Xl 8 Xl T 2

X 12 XIV 10
XV 1 2 XV f

XVl f 4 XV T 6
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The Case of £2° II
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The Case of £2° II

Figure: The grouping of eta-quotients in Table 6, which have vanishing coefficient
behaviour similar to £
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The Case of 35 |
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The Case of 35 |

Table 7: Eta quotients with vanishing behaviour similar to 3£

Collection  # of eta quotients || Collection # of eta quotients

[ 40 I* 6

[ f 2 A 2

v i 2 VI f 2
VIl T 2 VI 8
IX 14 X T 2

Xl * 4 XII* 4
X1 10 XIV 1 2
XV T 2 XVI 1 2
Xvil 6 XV f 6
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The Case of 3£ Il

XViil

pLtd

Figure: The grouping of eta-quotients in Table 7, which have vanishing coefficient
behaviour similar to 3£
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Recall the amount of work necessary to show that if A(q) = f;* and
B(q) = f8/£?, then
Ao = B
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Recall the amount of work necessary to show that if A(q) = f;* and
B(q) = f8/£?, then

Ao) = B(o)-
Clearly this method is not practical to prove the many hundreds of cases of
identically vanishing coefficients in the various tables and graphs that are
suggested by experiment.
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B(q) = f8/£?, then

Ao) = B(o)-
Clearly this method is not practical to prove the many hundreds of cases of
identically vanishing coefficients in the various tables and graphs that are
suggested by experiment.
Even if someone did decide to attempt this, the LMFDB (The L-functions
and modular forms database (LMFDB)) is incomplete, and many of the

CM forms needed to express a particular eta quotient are likely to be
absent.
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Recall the amount of work necessary to show that if A(q) = f;* and
B(q) = f8/£?, then
Ao = B

Clearly this method is not practical to prove the many hundreds of cases of
identically vanishing coefficients in the various tables and graphs that are
suggested by experiment.

Even if someone did decide to attempt this, the LMFDB (The L-functions
and modular forms database (LMFDB)) is incomplete, and many of the
CM forms needed to express a particular eta quotient are likely to be
absent.

In the paper that describes this deeper investigation (the paper
that has all the various tables and figures shown earlier in the
presentation) we do give some proofs,
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General Inclusion Results |

Recall the amount of work necessary to show that if A(q) = f;* and
B(q) = f8/£?, then
Ao = B

Clearly this method is not practical to prove the many hundreds of cases of
identically vanishing coefficients in the various tables and graphs that are
suggested by experiment.

Even if someone did decide to attempt this, the LMFDB (The L-functions
and modular forms database (LMFDB)) is incomplete, and many of the
CM forms needed to express a particular eta quotient are likely to be
absent.

In the paper that describes this deeper investigation (the paper
that has all the various tables and figures shown earlier in the
presentation) we do give some proofs, mostly to illustrate

the various methods that may be used.
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General Inclusion Results Il

However, we were able to prove some quite general inclusion results.
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However, we were able to prove some quite general inclusion results.
To describe those, recall the figure for the collection related to £
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General Inclusion Results Il

However, we were able to prove some quite general inclusion results.
To describe those, recall the figure for the collection related to £

XXV

Figure: The grouping of the 172 eta-quotients in Table 2, which have vanishing
coefficient behaviour similar to £
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General Inclusion Results IlI

Recall that f16 is in collection I,
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if
A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections,
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if
A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections, then

Ao € Bo)-
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if
A(q) = 2, and B(q) is any one of the 172 eta quotients in the various

collections, then
Aoy € Boy-

We were in fact able to prove the above statement.

James Mc Laughlin (WCUPA) January 5, 2024 62 /111



General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if

A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections, then

Aw) < Bo)-
We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, f,
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We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, f*, £,
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if

A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections, then

Aw) < Bo)-
We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, f*, 8, f10,
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if

A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections, then

Aw) < Bo)-
We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, fi*, £, f10, f14,
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if

A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections, then

Aw) < Bo)-
We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, f;*, 8, 10, fl4, £2°
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if

A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections, then

Aw) < Bo)-
We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, £, f8, f110, f114, f126 and f13f23.
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if

A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections, then

Aw) < Bo)-
We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, £, f8, f110, f114, f126 and f13f23.

In each case, two general approaches gave us most of the results,
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General Inclusion Results IlI

Recall that £2 is in collection I, so that the figure suggests that if
A(q) = 2, and B(q) is any one of the 172 eta quotients in the various
collections, then

Ao € Bo)-

We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, £, f8, f110, f114, f126 and f13f23.

In each case, two general approaches gave us most of the results,
and a small number of sporadic cases had to be treated separately.
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General Inclusion Results IV

We illustrate one of the methods by an example for the A(q) := f table.
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General Inclusion Results IV

We illustrate one of the methods by an example for the A(q) := f table.
Recall:

The equation x> + y? = n, n > 0 has integral solutions if and only if
ord, n is even for every prime p = 3 (mod 4).
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The equation x> + y? = n, n > 0 has integral solutions if and only if
ord, n is even for every prime p = 3 (mod 4). When that is the case, the
number of solutions is
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James Mc Laughlin (WCUPA) January 5, 2024 63 /111



General Inclusion Results IV

We illustrate one of the methods by an example for the A(q) := f table.
Recall:

The equation x> + y? = n, n > 0 has integral solutions if and only if
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Serre's criterion:
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General Inclusion Results IV

We illustrate one of the methods by an example for the A(q) := f table.
Recall:

The equation x> + y? = n, n > 0 has integral solutions if and only if
ord, n is even for every prime p = 3 (mod 4). When that is the case, the
number of solutions is

H (14 ordp n).

p=1 (mod 4)

Serre's criterion: If

00
6
f1 = § anqna
n=0

one has that a, = 0 if and only if 4n 4 1 has a prime factor
p = —1 (mod 4) with odd exponent.
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General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta
series.
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There are various eta quotients which have expressions as single-sum theta
series. For our present purposes,
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General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta
series. For our present purposes,

1 n n? f;l-183_oo —6 m?
D NG - v D Dl Gl KOS

5 £5
n=—o0 f24f96 m=1

Consider the following eta quotient in collection XXI

TG =
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General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta
series. For our present purposes,

1 n n? f;l-183 _OO —6 m?
7= 2 (Ve —mz mq™.

5 £5
sl Foatos

Consider the following eta quotient in collection XXI

TG =

After applying the dilation g — g* and multiplying by g:
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General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta
series. For our present purposes,

1 n n? f;l-183 _OO —6 m?
7= 2 (Ve —mz mq™.

5 £5
sl Foatos

Consider the following eta quotient in collection XXI

TG =

After applying the dilation g — g* and multiplying by g:

oo f2 f13
b.gtntl — 16 48
R

n=0 32 24796
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General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta
series. For our present purposes,

1 n n? f;l-183 _OO —6 m?
7= 2 (Ve —mz mq™.

5 £5
sl Foatos

Consider the following eta quotient in collection XXI

TG =

After applying the dilation g — g* and multiplying by g:

— ,  4n 3 fig G n(—6\ m2iien
Z bnq4 +1 _ é X q 48 Z m(—l) <> q +16n°
n=0

5 (5
f3a 16 m
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General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta
series. For our present purposes,

1 n n? f;l-183 _OO —6 m?
7= 2 (Ve —mz mq™.

5 £5
sl Foatos

Consider the following eta quotient in collection XXI

TG =

After applying the dilation g — g* and multiplying by g:

— ,  4n 3 fig G n(—6\ m2iien
Z bnq4 +1 _ é X q 48 Z m(—l) <> q +16n°
n=0

5 (5
f3a 16 m

We can now show Ay C B
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General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta
series. For our present purposes,

f2 i > f i —6 >
1 _ (_1)nqn , q — ( > mqm .
f2 n=—o0 f254f;956 m=1 m

Consider the following eta quotient in collection XXI

TG =

After applying the dilation g — g* and multiplying by g:

— ,  4n 3 fig G n(—6\ m2iien
Z bnq4 +1 _ é X q 48 Z m(—l) <> q +16n°
n=0

5 (5
f3a 16 m

=
We can now show Ay C B (equivalently, a, = 0 = b, = 0).
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General Inclusion Results VI

Suppose ay = 0, for some integer N.
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Suppose ay = 0, for some integer N.

Then, by Serre's criterion, 4N + 1 has a prime factor p = 3 (mod 4) with
odd exponent.
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James Mc Laughlin (WCUPA) January 5, 2024 65/111



General Inclusion Results VI

Suppose ay = 0, for some integer N.

Then, by Serre's criterion, 4N + 1 has a prime factor p = 3 (mod 4) with
odd exponent.

By the lemma, 4N + 1 is not representable as a sum of two squares, and in
particular not by m? + 16n? = m? + (4n)?.
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General Inclusion Results VI

Suppose ay = 0, for some integer N.

Then, by Serre's criterion, 4N + 1 has a prime factor p = 3 (mod 4) with
odd exponent.

By the lemma, 4N + 1 is not representable as a sum of two squares, and in
particular not by m? + 16n? = m? + (4n)?.

Thus the coefficient of g*N*1 in
= 6\ 2i16m
_1)" - m*+16n
> -1 (20 g

is zero.
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Suppose ay = 0, for some integer N.

Then, by Serre's criterion, 4N + 1 has a prime factor p = 3 (mod 4) with
odd exponent.

By the lemma, 4N + 1 is not representable as a sum of two squares, and in
particular not by m? + 16n? = m? + (4n)?.

Thus the coefficient of g*N*1 in
> 6\ 211672
_1)" - m*+16n
> e () s
ne—oo
is zero.

Hence by = 0, and thus A(O) - B(O)
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General Inclusion Results VI

Suppose ay = 0, for some integer N.

Then, by Serre's criterion, 4N + 1 has a prime factor p = 3 (mod 4) with
odd exponent.

By the lemma, 4N + 1 is not representable as a sum of two squares, and in
particular not by m? + 16n? = m? + (4n)?.

Thus the coefficient of g*N*1 in
= 6\ 2i16m
_1)" - m*+16n
> -1 (20 g

is zero.
Hence by = 0, and thus A(O) - B(O)

Remark: All the work in finding representations of eta quotients
in the tables as products of two eta quotients with theta series

expansions was performed by Mathematica.
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General Inclusion Results VI

The other general result involved expressing eta quotients of weight > 2

involved expressing the appropriate dilations of the eta quotients as certain
sums over ideals in various number fields
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General Inclusion Results VI

The other general result involved expressing eta quotients of weight > 2
involved expressing the appropriate dilations of the eta quotients as certain
sums over ideals in various number fields (recall earlier when expressing
the CM forms as linear combinations of theta series).
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General Inclusion Results VI

The 5 exceptional cases (let any one of them be denoted by B(q)) in the
172 eta quotients in the £ table were treated as follows.
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General Inclusion Results VI

The 5 exceptional cases (let any one of them be denoted by B(q)) in the
172 eta quotients in the £ table were treated as follows. Define

o0

. m 2 n 2
hi(gij k)= Y qBemHyHanth

m,n=0

q_/7k) Z Z (24m+j) +4(24n+k)2

m=0 n=—o0
0o

gl(q;j7 k) — Z q(20m+j)2+(20n+k)2’

m,n=0

82(q:J, k) = Z Z (20m-+)?+4(20n+K)?

m=0 n=—o0
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General Inclusion Results VI

The 5 exceptional cases (let any one of them be denoted by B(q)) in the
172 eta quotients in the £ table were treated as follows. Define

o0

. m 2 n 2
hi(gij k)= Y qBemHyHanth

m,n=0

q_/7k) Z Z (24m+j) +4(24n+k)2

m=0 n=—o0
0o

gl(q;j7 k) — Z q(20m+j)2+(20n+k)2’

m,n=0

82(q:J, k) = Z Z (20m-+)?+4(20n+K)?

m=0 n=—o0

Then gB(g*) is a linear combination of h;(q; j, k) for i € {1,2} and
0<j,k<23and gi(q;,j, k) fori € {1,2} and 0 < j, k < 19.
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General Inclusion Results VI

The 5 exceptional cases (let any one of them be denoted by B(q)) in the
172 eta quotients in the £ table were treated as follows. Define

o0

. m 2 n 2
hi(gij k)= Y qBemHyHanth

m,n=0

q_/7k) Z Z (24m+j) +4(24n+k)2

m=0 n=—o00
0o

gl(q;j7 k) — Z q(20m+j)2+(20n+k)2’

m,n=0

82(q:J, k) = Z Z (20m-+)?+4(20n+K)?

m=0 n=—o0

Then gB(g*) is a linear combination of h;(q; j, k) for i € {1,2} and
0<j,k <23and gi(q;,j, k) for i € {1,2} and 0 < j, k < 19. Since each
exponent is a sum of two squares, the same argument can be used.
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Recall:
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Recall:

Table 8: Eta quotients with vanishing behaviour similar to £

Collection  # of eta quotients || Collection # of eta quotients
I 72 T 4
1t 2 I\ 6
v i 2 VI * 4
VIl * 6 VI * 8
IX * 4 X 4
Xl 14 Xl T 2
Xt 2 XIv f 2
XV 4 XV f 2
XVII 4 XV f 2
XIX f 6
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Recap I

XIX

Figure: The grouping of the 150 eta-quotients in Table 1, which have vanishing
coefficient behaviour similar to f*
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Recap Il

As mentioned previously, we showed that if A(q) = f;* and B(q) is any one
of the 150 eta quotients in the table/graph, then

A0) € Bo)-
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A similar result was proved for each of the collections of eta quotients with
vanishing coefficient behaviour similar to, respectively, f*,
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Recap Il

As mentioned previously, we showed that if A(q) = f;* and B(q) is any one
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A similar result was proved for each of the collections of eta quotients with
vanishing coefficient behaviour similar to, respectively, &, f8, f110, f114, f126
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Recap Il

As mentioned previously, we showed that if A(q) = f;* and B(q) is any one
of the 150 eta quotients in the table/graph, then

A) & Bo)-
A similar result was proved for each of the collections of eta quotients with

vanishing coefficient behaviour similar to, respectively, f*, f2, f110, f114, f126
and 315
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Recap Il

As mentioned previously, we showed that if A(q) = f;* and B(q) is any one
of the 150 eta quotients in the table/graph, then

A < Boo)-

A similar result was proved for each of the collections of eta quotients with
vanishing coefficient behaviour similar to, respectively, &, f8, f110, f114, f126
and 315

In addition some scattered results of the form Bg) ; C(0) and By = (o)
were proven.
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(identical vanishing of coefficients for all eta quotients in each
collection,

James Mc Laughlin (WCUPA) January 5, 2024 71/111



Recap Il

As mentioned previously, we showed that if A(q) = f;* and B(q) is any one
of the 150 eta quotients in the table/graph, then

A < Boo)-

A similar result was proved for each of the collections of eta quotients with
vanishing coefficient behaviour similar to, respectively, &, f8, f110, f114, f126
and 315

In addition some scattered results of the form Bg) ; C(0) and By = (o)
were proven.

However most of the “fine structure” of the tables/graphs
(identical vanishing of coefficients for all eta quotients in each
collection, and strict inclusion between sets of vanishing
coefficients for any pair of eta quotients in two different
collections joined by a line segment in a graph)
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Recap Il

As mentioned previously, we showed that if A(q) = f;* and B(q) is any one
of the 150 eta quotients in the table/graph, then

A < Boo)-

A similar result was proved for each of the collections of eta quotients with
vanishing coefficient behaviour similar to, respectively, &, f8, f110, f114, f126
and 315

In addition some scattered results of the form Bg) ; C(0) and By = (o)
were proven.

However most of the “fine structure” of the tables/graphs
(identical vanishing of coefficients for all eta quotients in each
collection, and strict inclusion between sets of vanishing
coefficients for any pair of eta quotients in two different
collections joined by a line segment in a graph) was not proven.
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Recap Il

As mentioned previously, we showed that if A(q) = f;* and B(q) is any one
of the 150 eta quotients in the table/graph, then

A < Boo)-

A similar result was proved for each of the collections of eta quotients with
vanishing coefficient behaviour similar to, respectively, &, f8, f110, f114, f126
and 315

In addition some scattered results of the form Bg) ; C(0) and By = (o)
were proven.

However most of the “fine structure” of the tables/graphs
(identical vanishing of coefficients for all eta quotients in each
collection, and strict inclusion between sets of vanishing
coefficients for any pair of eta quotients in two different
collections joined by a line segment in a graph) was not proven.

to be proven.
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The m-Dissection of a Function,|

By the m-dissection of a function G(q) = >, gnq" we mean an
expansion of the form

G(9) = %6Go(q™) + 119G (q™) + - + Ym-1¢™  Gm_1(q™),

(19)

James Mc Laughlin (WCUPA) January 5, 2024

72 /111



The m-Dissection of a Function,|

By the m-dissection of a function G(q) = >, gnq" we mean an
expansion of the form

G(9) = %6Go(q™) + 119G (q™) + - + Ym-1¢™  Gm_1(q™),

where each dissection component G;(g™) is not identically zero (v; =0 is

allowed).

(19)
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The m-Dissection of a Function,|

By the m-dissection of a function G(q) = >, gnq" we mean an
expansion of the form

G(9) = %6Go(q™) + 119G (q™) + - + Ym-1¢™  Gm_1(q™),

where each dissection component G;(g™) is not identically zero (v; =0 is

allowed). In other words, for each /, 0 </ < m—1,

0 )
Vi ql Gi(qm) = ngn+iqmn+l = ql ngn—l—i(qm)n-
n=0 n=0

(19)
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Similar m-Dissections

Now suppose C(q) and D(q) are two functions whose m-dissections are
given by

C(q) = c0Go(q™) + c1gGL(q™) + -+ + Cm-19™ ' Gm-1(q™),  (20)
D(q) = doGo(q™) + d1gG1(q™) + -+ + dm-19" " Gm_1(q™).
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Similar m-Dissections

Now suppose C(q) and D(q) are two functions whose m-dissections are
given by
C(q) = @0Go(q™) + c1gGL(d™) + -+ + cm-19™ " Gm-1(q™),  (20)
D(q) = doGo(q™) + c1gGi(q™) + -+ + dm-14™ " Gm-1(q™).

There are two cases of interest.

1) Suppose that ; =0<=d; =0, i=0,1,...,m—1, and then it is
clear that Cig) = D(p).
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Similar m-Dissections
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given by
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There are two cases of interest.

1) Suppose that ; =0<=d; =0, i=0,1,...,m—1, and then it is
clear that Cig) = D(p).

If the ¢1, d; satisfy the condition just stated, we say that C(q)
and D(q) have similar m-dissections.
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Now suppose C(q) and D(q) are two functions whose m-dissections are
given by

C(q) = c0Go(q™) + c1gGL(q™) + -+ + Cm-19™ ' Gm-1(q™),  (20)
D(q) = doGo(q™) + d1gG1(q™) + -+ + dm-19" " Gm_1(q™).

There are two cases of interest.

1) Suppose that ; =0<=d; =0, i=0,1,...,m—1, and then it is
clear that Cig) = D(p).

If the ¢1, d; satisfy the condition just stated, we say that C(q)
and D(q) have similar m-dissections.

2) On the other hand, if ¢; # 0 and d; = 0 for one or more
j€40,1,...,m—1} and otherwise ¢; = 0 < d; =0,
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Similar m-Dissections

Now suppose C(q) and D(q) are two functions whose m-dissections are
given by

C(q) = c0Go(q™) + c1gGL(q™) + -+ + Cm-19™ ' Gm-1(q™),  (20)
D(q) = doGo(q™) + d1gG1(q™) + -+ + dm-19" " Gm_1(q™).

There are two cases of interest.

1) Suppose that ; =0<=d; =0, i=0,1,...,m—1, and then it is
clear that Cig) = D(p).

If the ¢1, d; satisfy the condition just stated, we say that C(q)
and D(q) have similar m-dissections.

2) On the other hand, if ¢; # 0 and d; = 0 for one or more

j€40,1,...,m—1} and otherwise ¢; = 0 < d; =0,
then C(O) ; D(O)
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Dissections and the Jacobi Triple Product Identity
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Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:
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Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

Z (-2) (24, 9/2, 4% G )oos (21)

n=—0oo
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Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

3 (-2)"¢" = (26.9/2, 6% ¢*)oo, (21)

n=—0oo

The next two identities are special cases of this identity.
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Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

Z (-2) (24, 9/2, 4% G )oos (21)

n=-—0oo
The next two identities are special cases of this identity.

fgfz = Z q" (22)

n=—0oo

_Z(l

n=—0oo
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Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

oo
2
> (-2)"¢" =(29,9/2,9% a°)oo,

n=—0oo

The next two identities are special cases of this identity.

SR S
e 2

f12 G n_n?
2 n=—oo

By splitting the series expansion of an eta quotient into sub-series

over arithmetic progression, it may be possible to derive an
m-dissection in terms of infinite products.
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The “g — —q" Partner of an Eta Quotient

We often make the substitution g — —g in an eta quotient but wish to
write the resulting product also as an eta quotient.
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The “g — —q" Partner of an Eta Quotient

We often make the substitution g — —g in an eta quotient but wish to
write the resulting product also as an eta quotient.

This leads to the following frequently employed identity:

2. .2\3 3
_ a—=q, o @59) 6
fi= (9 9) (=g =)o = (0:9)oc(q% ¢%)oe  fifa

(24)
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The “g — —q" Partner of an Eta Quotient

We often make the substitution g — —g in an eta quotient but wish to
write the resulting product also as an eta quotient.

This leads to the following frequently employed identity:

(%3,

Ly aoma, _
hi=(4:0) " (=0 ~0) = (4 D)o(d* Moo fifa

(24)

If g(q) = f(—q), for simplicity we will call g(g) the “g — —qg partner” of
f(q).
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The “g — —q" Partner of an Eta Quotient

We often make the substitution g — —g in an eta quotient but wish to
write the resulting product also as an eta quotient.

This leads to the following frequently employed identity:

(%3 B
(4:9)o(9% ¢*)oe  fifa

= (4 Qoo "~ (4 —q)oo = (24)

If g(q) = f(—q), for simplicity we will call g(g) the “g — —qg partner” of
f(q).

The relevance in the present context is that a function and its
g — —q partner have identically vanishing coefficients.
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Some 2-Dissections, |

The following 2-dissection identities are well known:



Some 2-Dissections, |

The following 2-dissection identities are well known:

f5 f5 f2
77 = e T2070
fife fifs

f8 Y
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Some 2-Dissections, |

The following 2-dissection identities are well known:

f25 f5 f
— 25
f12f42 f2f2 +29— f ’ ( )
ff_ R fis

hoRR TR
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Some 2-Dissections, |

The following 2-dissection identities are well known:

Bo_R R
— 2g-16 25
7R RG )
R
= = —2q-2, (26)
B Rm
£ _f L, BR
f3 o fafg’
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Some 2-Dissections, |

The following 2-dissection identities are well known:

ﬁ?

ﬁ?ﬁf =

f

ﬁ?
7
ﬁ?

s
jgi

fi2
f3f3
o

763
fafg

B, 5,020
fa ' TR2)
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Some 2-Dissections, |

The following 2-dissection identities are well known:

5B
— 2g-16 25
7R RG )
f2 f5 f2
a _ 28 - — q-e, (26)
hORE h
i?’ — fi?’ _ f22flz2’ (27)
2 fafg
iR 212
P Hfo \fi2 fafs
f33 ﬁl3f62 @

A Bh fa
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Some 2-Dissections, |

The following 2-dissection identities are well known:

5B f
— 2g-16 25
f12f42 f2 f2 +2q f8 ’ ( )
f2 f5 f2
a1 _ 28 - — qQ’ (26)
hoORR Uk
f3 f3 f2 f3
a1 _ 4 q 2 122’ (27)
2 fafg
é — 613,(63 fi:; 3q f22f;|.32 (28)
2 Hho \fi2 faf2
L33 _ f43 f62 q@ . f43/% f3 f3 f3 f3 qf22 f132
fi 2o fa f fo A fzgf fio faf?
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Some 2-Dissections, |

The following 2-dissection identities are well known:

A A
— 2g-16 25
f12f42 f2 f2 +2q f8 ’ ( )
B f
a _ —2g-16 26
ERG T (20
f3 f3 f2 f3
1-4 32k (27)
i fo fafg
iR 212
% — 49 6 (4 3q 2 122> (28)
P Hfo \fi2 fafs
L33 _ ﬁl3f62 q@ . f43/% ﬁ f3f3 f3 qf22f132 (29)
fi 2o fa f fo A fzgf fio faf?
A _ B (R (30)
£ 6 \Fhe h
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Some 2-Dissections, Il

fh o DR 6,
Pht BER
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Some 2-Dissections, Il

fifs =

1 p—

fifs

James Mc Laughlin (WCUPA)

BREf,  fiE,

Thts, BER

o (BFEF A
SR \RZhfE B

January 5, 2024
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Some 2-Dissections, Il

hfif

f2fof2

fifs =

1 fafp

fifs 1S
A= 54710 _
1 fgzﬂf

James Mc Laughlin (WCUPA)

January 5, 2024

77 /111



Some 2-Dissections, Il

higfh  fifefy
flfé = —q ) 31
Tl RRR .
A (555 26 -
i GRS
flO f2f4
f14 = — - 2k ) (33)
f’221684 f42
1 f4 flO f2f4
e (fgf”' a7 ) ’
1 2 2 '8 4
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Some 2-Dissections, Il

hiReh  fihfh
flfé = —q ) 31
Tl RRR .
RN )
AN Y
flO f2f4
f14 = . - 28 3 (33)
f’221684 f42
1 f;14 ( f410 f22f84>
= (A +aatE), (34)
f14 f'212 f'22f'84 ﬂl2

A _ Hiets _ qufézﬂzﬁts
fs  f2fgfag faffiefos’
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Some 2-Dissections, Il

204 Y
A= Ge B - gl 8 (31)
L (505 16 -
R AN YA
10 214
e (33)
4 10 24
fi  hfiefy Hf$ fiafag
i Rhfe  hfZhohe (3)
6 6f <f2f16f224 qufgflgﬁls) -
R Bho \hfis | hf2hoha)
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Some 2-Dissections, Il

2R fPhfiab
2 g fafy
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Some 2-Dissections, Il

ff_ higRS 7 fafiafoa

7 Rk T Aff
BRI (B, Fhifif
oo g 0 0 )

(37)
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Some 2-Dissections, Il

2 hHRA 2 fafiof:

% _ 254 12 _2q 2 18 li 24’ (37)
f5  fofgfa fafg

R (AR 4 7 fofiafas

R \Bhbs A

(38)

The 2-dissections mentioned above, and their ¢ — —q partners, give the
vanishing coefficient result in the next theorem.
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A Theorem on Identical Vanishing of Coefficients

Let C(q?) be any even eta quotient.
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A Theorem on Identical Vanishing of Coefficients

Let C(q?) be any even eta quotient. Let F(q) and G(q) be any pair of eta
quotients in the following list:

B o), AR ey B 2y ARRS 2
—=C C = C —= C . 39
{f‘13 (q )’ f:zgf:’)’cl2 (q )7 fl f27f12 (q )7 f33 f210f142 (q ) ( )
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A Theorem on Identical Vanishing of Coefficients

Let C(q?) be any even eta quotient. Let F(q) and G(q) be any pair of eta
quotients in the following list:

B o), AR ey B 2y ARRS 2
—=C C = C —= C . 39
{f‘13 (q )’ f:zgf:’)’cl2 (q )7 fl f27f12 (q )7 f33 f210f142 (q ) ( )
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A Theorem on Identical Vanishing of Coefficients

Let C(q?) be any even eta quotient. Let F(q) and G(q) be any pair of eta
quotients in the following list:

B o BRR o A oy iR
—=C C = C C 39
{Bew), BEEaa), ThEa@). Sikad). @)

Then

Specializing C(g?) then shows that various collections of 4 eta
quotients in some of the tables have identically vanishing

coefficients.
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The following 3-dissections are also well known:



Some 3-Dissections, |

The following 3-dissections are also well known:

LA
i~ Bhs o
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Some 3-Dissections, |

The following 3-dissections are also well known:

g_6E
i~ Bhs o
@ f3f12f158 f9f36

b BEG fis

(41)
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Some 3-Dissections, |

The following 3-dissections are also well known:

ff_ffs | fig

2 =29 g8 41
h T Bhs Th Y
flﬁl _ ﬁﬂ2f158 _ f9f36 (42)
o R s

R_B 60
h  fg fefo
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Some 3-Dissections, |

The following 3-dissections are also well known:

g6 R

2 =29 4 g8 41
h T Bhs Th Y
fifi  Rfsfy  fof:

hfa _ 3212 18 _ ofs6 (42)
h  fofsfss fig

f_K , By fff  foff  fh

h hs kb  BH By f
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Some 3-Dissections, |

The following 3-dissections are also well known:

758,

= 41
f B T Y
fifi  Hffl
Aifa _ Bhohy  fofis (42)
o fofsfs  hs
A Y ST B S
b he TRk Bh Bhs h
fr _ Ay 2afiffe

12 f2f2 f3fiofig
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Some 3-Dissections, |

The following 3-dissections are also well known:

758,

= 41
i~ Bhs T h (1)
fifs  f3faf fof:
hfa _ 3212128_67936’ (42)
b fofgfis  fis
R_B 6 6R_ 6 B
fr  fig fofo ’ s ffig fo
£ _ fy | 2afffe
27 TR Bl (44)
174 9 /36 3112718
f; A0 f3r3 213
%: 6893+2C7679 _’_4q26618’
ff Rfg f fs
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Some 3-Dissections, |

The following 3-dissections are also well known:

g 6%, o

f  Bhs  f
@ _ f—3ﬂ2f158 _ f9f36

b eRh R

F_R LB _ R

fh s ffy  fih fRfg
20566
12 f2f2 fifiofig

1 3118 3 3
RE_BRES 20 ACRRA,
f; RO RO fo?

James Mc Laughlin (WCUPA)
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The Borwein Theta Functions

Recall that the Borwein theta functions a(q), b(q) and c(q) are defined by

e 5¢5 22
me4mnin® _ 13 1g 4 f i 4
m;ooq f2f2f2f2 +4q f2f6 ’ ( 7)
f3
Z Wwh=m m2+mn+n _ 1
m,n=—o0 f3
- m 24(m n n 2 f3
cla)= Y g 33T
m,n=—o00 1

where w = exp(2mi/3).
Aside: The functions above satisfy the identity

a(q)® = b(q)* + c(q)*.
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The following 3-dissections hold.

f13 = a(q3)f3 - 3qu3,
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Let C(q3) be any eta quotient whose series expansion contains only
powers of g3. Let F(q) and G(q) be any pair of eta quotients from one
the following lists:
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As with the previous theorem, here also Specializing C(q®) then shows
that various collections of 4 eta quotients in some of the tables have
identically vanishing coefficients.
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Recall
AR R
flO f2f4
1 f22fé4 q ﬂ12 ’ ( )

We will use the second identity with ¢ — g°.
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The following 4-dissections hold.
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The following 4-dissections hold.
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The following 4-dissections hold.
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5 R\ TR )\ G

For (56), write
f'
R = ()

and use (54) and (55), with g replaced with g2 in the latter identity.

——_— == - ~

James Mc Laughlin (WCUPA) January 5, 2024 86 /111



Some 4-Dissections, Il

The following 4-dissections hold.

£5 £2 £10 F2£4 2
f12f27 — < 8 _2qlﬁ> < 8 _4q2 4 16) , (56)
o ) \RE R
2
. —f88< o +2qf126) ( 5 4 2f2f1%) : (57)
5 R\ TR )\ G

For (56), write
f'
R = ()

and use (54) and (55), with g replaced with g2 in the latter identity.
The proof of (57) is similar. O
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Apart from the known dissections, the new dissection identities were
motivated by computer searches that went through the various tables of
eta quotients and looked for pairs of eta quotients that seemed to similar
m-dissections, for m =2, 3, 4, 5, 6, 7 and 8.

The aim of course was to prove that the pair of eta quotients had
identically vanishing coefficients, by determining the m-dissection of each
(with proof), and thus proving that the pair of eta quotients did indeed
have identically vanishing coefficients.

These experimental searches did indeed lead to a quite large
number of m-dissection identities, which in turned

allowed us to prove that certain collections of eta quotients
did indeed have identically vanishing coefficients.

All of the new dissection results in the paper were derived
to prove similar m-dissection results for pairs of eta
quotients that were found experimentally.
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All of the dissections in the next several lemmas were derived by
combining the "basic” (well known) 2- and 3- dissections in various ways.

In the case of any particular set of m dissections, multiplying each
m-dissection across by certain functions of g will result in eta quotients
that have similar m-dissections, so that these eta quotients will then have
identically vanishing coefficients.
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The following 4-dissections hold:
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The following 4-dissections hold:

H i i i i N
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The following 4-dissections hold:
S (o) (S0 B). o
- f% - Zﬁ—fi%z 4R+ 8q3f:‘§2f16", (62)
%Z: fzﬂ% —6qu:z2 + 12¢° @2’;16 -8 3';13. (63)

Notice that /12, f2£3(f3/f1%) and £2fy/£3£8 have similar 4-dissections,
so that if each of these is multiplied by any eta quotient C(g%), the
resulting eta quotients will have identically vanishing coefficients.

James Mc Laughlin (WCUPA) January 5, 2024 90 /111



More New m-Dissection Results, Il

James Mc Laughlin (WCUPA) January 5, 2024 91/111



More New m-Dissection Results, Il

James Mc Laughlin (WCUPA) January 5, 2024 91/111



More New m-Dissection Results, Il

Let C(q*) be any eta quotient whose series expansion contains only powers
of g*.

James Mc Laughlin (WCUPA) January 5, 2024 91/111



More New m-Dissection Results, Il

Let C(q*) be any eta quotient whose series expansion contains only powers
of g*. Let F(q) and G(q) be any pair of eta quotients in the following list:

James Mc Laughlin (WCUPA) January 5, 2024 91/111



More New m-Dissection Results, Il

Let C(q*) be any eta quotient whose series expansion contains only powers
of g*. Let F(q) and G(q) be any pair of eta quotients in the following list:
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Let C(q*) be any eta quotient whose series expansion contains only powers
of g*. Let F(q) and G(q) be any pair of eta quotients in the following list:

f2 f2f2 f2f3f4
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Remark: The claim for three of these eta quotients follow from the
remarks on the previous slide,
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Let C(q*) be any eta quotient whose series expansion contains only powers
of g*. Let F(q) and G(q) be any pair of eta quotients in the following list:
f2 4 f‘12 ﬁl2 4 f2 f3 f4
—C —C 8¢
{Bew). ). Satea,
f29 f4 f6 f4 4 f215 %4 "
Then

Remark: The claim for three of these eta quotients follow from the
remarks on the previous slide, and the claim for the other three follow,
since they are the ¢ — —q partners of the first three.
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There are several other collections of eta quotients in the paper which are
shown to have similar m-dissections, thus leading to results about
collections of eta quotients with identically vanishing coefficients.

However, we wish to consider a new type of dissection result, one in which
the components of the dissections are not just simple eta quotients. .

We need the lemma in the next slide.

We recall the notation, for a an integer and m a positive integer,

a m

Jam i =(—9°—-9"",9":9")oo-
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More New m-Dissection Results, V

The following 2-dissections hold.
£ - _
= h (Jo,16 — qJ2,16) (67)
11 (Jo.16 + )16 ) (68)
f = f22 6,16 T 4J2.16 ) -

The identity (68) was proven by Hirschhorn, and (67) is its ¢ — —¢q

partner. L]
The next long list of pairs of 4-dissections is derived by combining
the dissections above with the basic 2- and 3- dissections in ways
similar to what has been seen already.
January 5, 2024 93 /111
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The Table for £

Table 9: Eta quotients with vanishing behaviour similar to f*

Collection  # of eta quotients || Collection # of eta quotients
I 72 I 4
nf 2 v 6
Al 2 VI * 4
VIl * 6 VI * 8
IX * 4 X 4
XI 14 XII T 2
Xt 2 XIV 2
XV 4 XvI 2
XVII 4 XV 2
XIX 6
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The Graph for !
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The Graph for !

Figure: The grouping of the 150 eta-quotients in Table 9, which have vanishing
coefficient behaviour similar to f*
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Thank you for listening/watching.
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