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ABSTRACT. If the odd and even parts of a continued fraction converge
to different values, the continued fraction may or may not converge in
the general sense. We prove a theorem which settles the question of
general convergence for a wide class of such continued fractions.

We apply this theorem to two general classes of ¢ continued fraction
to show, that if G(¢) is one of these continued fractions and |g| > 1,
then either G(g) converges or does not converge in the general sense.

We also show that if the odd and even parts of the continued fraction
K72 1an/1 converge to different values, then lim, .o |an| = 0.

1. INTRODUCTION

In [7], Jacobsen revolutionised the subject of the convergence of contin-
ued fractions by introducing the concept of general convergence. General
convergence is defined in [9] as follows.

Let the n-th approximant of the continued fraction

ai

(1.1) M = by +
ag
b1 +

b a3

+
2 b3 —I_ ...

be denoted by A, /B, (A, is the n-th numerator convergent and B, is the
n-th denominator convergent) and let

o Ap +wA,

Sn(w)= 3= 8 L

Define the chordal metric d on C by

d(w, 2)

|2 — wl

- \/1 + |w|2\/1 + |2]?
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when w and z are both finite, and

d(w,o0) = !

V14 |wf?

Definition: The continued fraction M is said to converge generally to
f € Cif there exist sequences {v,}, {w,} C C such that lim inf d(v,,, w,) > 0
and

lim S, (v,) = lim S, (w,) = f.

n—oo n—oo
Remark: Jacobson shows in [7] that, if a continued fraction converges in the
general sense, then the limit is unique.

The idea of general convergence is of great significance because classical
convergence implies general convergence (take v, = 0 and w, = oo, for
all n), but the converse does not necessarily hold. General convergence is
a natural extension of the concept of classical convergence for continued
fractions.

The even part of the continued fraction M at (1.1) is the continued frac-
tion whose n-th numerator (denominator) convergent equals Ag, (Ba,), for
n > 0. The odd part of M is the continued fraction whose zero-th numer-
ator convergent is A;/Bj, whose zero-th denominator convergent is 1, and
whose n-th numerator (respectively denominator) convergent equals Ag;, 41
(respectively Baj41), for n > 1.

In this present paper we investigate the general convergence of continued
fractions whose odd and even parts each converge, but to different values.
Such continued fractions may or may not converge in the general sense as
the following examples show.

Example 1. Let

2 3 n

¢ ¢ 4 q
1.2 K =1+1 .
(12) = T+ T+ + T+

If |q| > 1 then the odd and even parts of K(q) converge but K(q) does not
converge generally.

The continued fraction K (q) is the famous Rogers-Ramanujan continued
fraction. It was stated without proof by Ramanujan that, if |¢| > 1, then the
odd part of K(q) converges to 1/K(—1/q) and the even part converges to
qK(1/¢*) (See Entry 59 of [1] for a proof of Ramanujan’s claim). However,
K(q) is easily seen to be equivalent to the following continued fraction:

f(( ) =1+ L L 1 71 1 1
V= T g+ g+ 1@ + 1@+ + 1)q" + g + -

It is an easy consequence of the Stern-Stolz Theorem below, as extended by
Lorentzen and Waadeland, that this continued fraction does not converge

in the general sense for any g outside the unit circle.

Example 2. Let

-1 s Qn

G147y 4 Moy

=)
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where
1 1 -1
a2n+1:1+ﬁ+57 an-‘rl:ﬁv
o 204w’ T
2n+2 — 2n+2 —

n(1+2n+2n2)’ 1+2n+2n?
Then the odd and even parts of G tend to different values and G converges
in the general sense.
Proof. It is easy to check that the numerators A, and denominators B,
satisfy
Agp1=n+1, Az = n + 3n?,
Bop—1=mn, Ba, = n?.
Thus the odd approximants tend to 1 and the even approximants tend to 3.
Observe that
Agy, + wonAzn—1 _n+ 3n? + (1+n) wa,
Ban + wan Ban—1 n? + nwsy

)

Aspy1 + Wonp1don 240+ (n43n?) wani
Bapy1 + wont1Boy, 1 +n+n?wapp '

Each of these expressions converges to 3, when, for example, {w,} is the
constant sequence with value 1 and when it is the constant sequence with
value 2. Thus the continued fraction converges generally to 3. (]

It is therefore desirable to have criteria, based on the partial quotients
of a continued fraction, for determining whether a continued fraction whose
odd and even parts converge diverges in the general sense.

An example of a theorem on divergence in the general sense is the Stern-
Stolz Theorem, as extended by Lorentzen and Waadeland.

Theorem 1. (The Stern-Stolz Theorem (9], p.94)) The continued frac-
tion by + K2 11/by, diverges generally if > |by| < 0o. In fact,

lim Agpip = Py # 00, lim Bonyp = @p # 00,
n—oo n—oo

forp=0,1, where
PQo— P = 1.

However, if a continued fraction is not already of the form K32 ,1/b,,
these b,, may become quite complicated once an equivalence transformation
is applied to the continued fraction to bring it to this form and it may not
be so easy to determine if the series > |b,| converges.

In the present paper, we prove a theorem which gives a simple criterion,
based on the partial quotients, for deciding if a continued fraction diverges
in the general sense, provided it is known that the odd- and even parts
converge and whether these limits are equal.
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We then apply our theorem to two classes of g-continued fraction de-
scribed in our paper [6] to show that if |¢1| > 1 and H(q) is a continued
fraction in either class, then either H(q;) converges or does not converge
generally.

2. A THEOREM ON DIVERGENCE IN THE GENERAL SENSE
We now prove the following theorem.

Theorem 2. Let the odd and even parts of the continued fraction C =
bo+ K22 an /by converge to different limits. Further suppose that there exist
positive constants c1, co and cg such that, for i > 1,

(2.1) C1 § |bz| S (&)

and

(2.2) a2i+1 <ec
a2;

Then C' does not converge generally.

Remark: It might seem that Condition 2.1 prevents the application of
this theorem to continued fractions K°° ;ay /b, in which the b,, become un-
bounded but a similarity transformation to put the continued fraction in the
form by + K2 ¢p/1 removes this difficulty.

Proof of Theorem 2. Let the i-th approximant of C' = by + K2 a, /by, be
denoted by A;/B;. Suppose the odd approximants tend to f; and that the
even approximants tend to fo. Further suppose that C' converges generally
to f € C and that {v,}, {w,} C C are two sequences such that

. Ap +vpAn_q . Ap +wpAp_q
lim =" = lim ——— " = f
n—oo By, + vpBp1 n—oo By + wnBr—1

and

lim inf d(v,,, wy,) > 0.

n—oo

It will be shown that these two conditions lead to a contradiction. Suppose
first that |f| < oo and, without loss of generality, that f # f1. (If f = fi,
then f # fo and we proceed similarly). We write

An + wnAn—l An + 'UnAn—l

= + s = + ' s
Bn + wan—l f n Bn + 'Uan—l f Tn

where v, — 0 and ’y,; — 0 as n — oo. By assumption it follows that
Agy, = Bon(fo + agp) and Agnyy1 = Bopt1(f1 + @2nt1), where oy — 0 as
1 — 00. Then
Aop +wonAan—1  Bon(fo + a2n) + wonBan—1(f1 + a2n-1)
Bon + wopBon—1 Bop + wopBan-—1
= f + Yon-
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By simple algebra we have

_ B2n (_f+f2+042n_72n)
Bop_1 (f - fl — 2p—1 +'72n)'

Wan,

Similarly,

Bay, <_f+f2+042n _’Yén>
© Bono1 (f—fi—asn_1+7,)

Note that Bs,, Ban—1 # 0 for n sufficiently large, since the odd and even
parts of the continued fraction converge. If f # fo, then

V2n

‘UZn - w2n‘ .

lim d(vep,ws,) < lim ———— = 0.
n—oo n— o0 |w2n|
Hence f = fo,
. B2n (042n_72n)
Won =
Bon1 (f = fi —2n—1+72n)
and
Ban (20 — 79,
V2an

Ban—1 (f - fl —Q2p—1 + P}én) '
Now we show that
B2n
Ban—1
For if not, then there is a sequence {n;} and a positive constant M such
that |Bap,/Ban,—1| < M for all n;, and then

lim
n—oo

lim d(vay,, wap,) < lm |va,, — wap,|
71— 00

1—00
!
> 7 =
imoo | f = fi—a2n—1+ Ve, 1 a2n—1+ 2n,

Similarly, after substituting fo for f, we have that
Bont1 <f1 — fo+ Qony1 — 72n+1>

Won+1 =
Ba, Yon+1 — G2n
and
/
Bont1 [ f1— fo+ @2nt1 — Vo4
Voan+1 = B 7 .
2n Yon4+1 — %2n

We now show that

lim =0.

Bant1
n—oo

2n
If not, then there is a sequence {n;} and some M > 0 such that | Bay,+1/Ban, |
> M for all n;. Then lim; .o wop,+1 = lim;_o0 Vo, +1 = 00 and lim;
d(v2ni+17 w2ni+1) - 0
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Finally, we show that it is impossible to have both lim, .« | Bop+1/Ban| =
0 and lim,, oo |B2n/Bon—1| = oo. For ease of notation let B, /B,_1 be
denoted by 7,, so that re, — oo and ropy1 — 0, as n — oo. From the
recurrence relations for the B;’s, namely, B; = b;B;_1 + a;B;_2, we have

Ton(ron+1 — bant1) = Gont1

and

Ton—1(r2n — b2n) = agn.
Thus
T2n _ A2n+172n—1
ron —ban  a2n(r2nt1 — bant1)’
and by (2.1) and (2.2) the left side tends to 1 and the right side tends to 0,

as n — 00, giving the required contradiction.
If f = oo, then we write

A, +wpAn—1 . 1

B, +wp, B, - Tn

)

An + 'UnAn—l o i
Bn + Uan—l '77/17
where lim;, o ¥, = limy, o y;, = 0. With the a;’s as above we find that
_ B27L (_1+f2'72n+042n’72n)
Bon_1 (=14 fiven + 02ns1720)

Wan =

and
By, (_1 + f?'}’én + a2n75n>
Bon—1 (—1 + fi Wén + Q2n41 7§n)

In this case it follows easily that lim, s d(way,, va,) = 0.

V2n =

3. APPLICATION TO ¢-CONTINUED FRACTIONS

In [6], one type of continued fraction we considered was of the form

0 0
G@%=1+Kﬁﬂ%$ﬁ:1+ﬁ$)+“'+ﬁ$)

filq') Jrlqh) fi(q") fr(q")
+ 1 e+ 1 At 1 A1 A

where fs(z) € Z[q][z], for 1 < s < k. Thus, forn >0and 1 <s <k,

(3.1) ank+s(Q) = fs(qn)'
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Many well-known ¢-continued fractions, including the Rogers-Ramanujan
continued fraction at (1.2) and the three Ramanujan-Selberg continued frac-
tions studied by Zhang in [10], namely,

g 9+ ¢ ¢+t
=147 £
SUD =] T T T 4
4 2 4 3+ 6 8
Soq) =14 474 € LT 4
1 +1+ 1 +1+4--

and
e+ P+t P+ A+ P
1 + 1 + 1 4+ 1 4

are of this form, with k£ at most 2. Following the example of these four
continued fractions, we made the additional assumptions that, for ¢ > 1,

S3(q) =1+

(3.2) degree(a;11(q)) = degree(a;(q)) + Cs,

where Cj3 is a fixed positive integer, and that all of the polynomials a,(q)
had the same leading coefficient. The odd- and even parts of each of the
four continued fractions above converge for |¢| > 1, (see [1] and [10], where
the authors also determined the limits). In [6], we extended these results
on convergence outside the unit circle to the class of continued fractions
described above. We proved the following theorem [6]:

Theorem 3. [6] Suppose G(q) = 1+ K2 a,(q)/1 is such that the ay :=
an(q) satisfy (3.1) and (3.2). Suppose further that each an(q) has the same
leading coefficient. If |q| > 1 then the odd and even parts of G(q) both

converge.

It is now an easy matter to apply our Theorem 2 to the continued fractions
of Theorem 3 to conclude that for each ¢ outside the unit circle, either
the continued fraction converges or does not converge generally. As an
illustration we have the following example.

Example 3. Let

6¢g 3¢°+7¢ 3¢ +5¢> ¢*+7¢+3q+2
1+ 1 + 1 + 1 +
°+3¢" +2¢°  *+2°+7¢ ¢ +7¢° ¢ +7¢° +3¢° + 2
1 + 1 + 1 + 1 4.
q4n+1 + 3q3n+1 4 2q2n+1 q4n+2 4 2q3n+2 4 7q2n+1
e+ 1 + 1
q4n+3 4 5q3n+2 4 2q2n+3 q4n+4 4 7q3n+3 4 3q2n+1 4 2qn
+ 1 + 1 o
If |q| > 1, then the odd and even parts of G1(q) converge. If the odd and
even parts are not equal, then G1(q) does not converge generally.
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In [6] we also studied continued fractions of the form

Glq) = by(g)+ K, (D)

"bu(q)
-~ f1(d") fre1(@®)  fiuld®
= 90(@’)+ g1(¢°) + - + gr—1(¢°) + go(qt)
fl( D fre1(d')  feld")
+ g1(gt) + -+ gr1(qh) + go(¢?) +
frlg™™h) fl(q") fo—1(g")  fuld™)
“+ golg™) Tt ogi(g™) + o+ ge-1(q) + go(g" ) + o
where fs(z), gs—1(x) € Z|[q][z], for 1 < s < k. Thus, forn > 0and 1 < s <k,
(3'3) ank+s(Q) = fs(q ): bnchrsfl(Q) = gs—l(q )

An example of a continued fraction of this type is the Gollnitz-Gordon con-
tinued fraction (k = 1),

2 4 6

q q
GG(g) =1
@ +q+1+ P A1+ +1+q + -

We restricted the type of continued fraction examined as follows. We sup-
posed that degree (ai(q)) = 71, degree (bo(q)) = 72, and that, for ¢ > 1,

(3.4) degree(a;+1(q)) = degree(a;(q)) + a,
degree(b;(q)) = degree(b;—1(q)) + b,

where a and b are fixed positive integers and r; and ro are non-negative
integers. Condition 3.4 means that, for n > 1, a,(g) has degree equal to
(n—1)a+ r; and that b,(q) has degree equal to n b+ ry. We also supposed
that each a,(¢) has the same leading coefficient L, and that each b, (¢q) has
the same leading coefficient Ly.

For such continued fractions we had the following theorem [6]:

Theorem 4. [6] Suppose G(q) = bo+K 2 1an(q)/bn(q) is such that the ap, :=
an(q) and the by, := b,(q) satisfy (3.3) and (3.4). Suppose further that each
an(q) has the same leading coefficient L, and that each b,(q) has the same
leading coefficient Ly. If 2b > a then G(q) converges everywhere outside
the unit circle. If 2b = a, then G(q) converges outside the unit circle to
values in (C except possibly at points q satisfying ¢®~"1122 € [—4 La/L2,O)
or (0, 4La/Lb] , depending on the sign of L,. If 2b < a, then the odd and
even parts of G(q) converge everywhere outside the unit circle.

Remark: Both our Theorem 3 and 4 were derived from theorems on limit—
periodic continued fractions and give stronger results than can be derived
from applying simple convergence criteria such as Worpitzky’s Theorem.

Once again it is easy to apply our Theorem 2 to the continued fractions of
Theorem 4 to conclude, in the case 2b < a, that for each ¢ outside the unit
circle, either the continued fraction converges or does not converge generally.
As an illustration we have the following example.
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Example 4. Let

Ga(q) ==q+2+
@ +5¢ O +2¢"+7¢ P +2¢5+5¢" ¢ +7¢°+3¢42+2
@?+2 + g+ 2 + qa* +2 + @ +q+1 +
q15 +3q8 +2q6 q18 +2q10 +7q6 q21 +7q10 q24 _|_7q12 +3q6 +2q2
q6_|_q2_|_1 + q7+q2+1 + q8_|_q3 + q9_|_q2+1
q12n+3 4 3q6n+2 4 2q4n+2 q12n+6 4 2q6n+4 4 7q4n+2
4+ e+ q4n+2+q2n+1 + q4n+3+q2n+1
q12n+9 + 5q6n+4 + 2q4n+6 q12n+12 4 7q6n+6 4 3q4n+2 4 2q2n
+ q4n+4 + q?m +1 + q4(n+1)+1 + qn+1 +1 + -

If |q| > 1, then the odd and even parts of Ga(q) converge. If the odd and
even parts are not equal, then Ga(q) does not converge generally.

4. CONTINUED FRACTIONS WHOSE ODD AND EVEN PARTS TEND TO
DIFFERENT LIMITS

Since our Theorem 2 deals with continued fractions whose odd and even
parts converge to different values, it is desirable to know something about
the form of such continued fractions. We have the following theorem.

Theorem 5. Suppose the odd and even parts of the continued fraction
K2 1an/1 converge to different values. Then lim,,_, o |an| = oc.

We need two preliminary results.

Lemma 1. Suppose {K,}>2, is the sequence of classical approximants of
the continued fraction K2 a,/1, where a, # 0, for n > 1. If the continued

raction K ¢, /1 also has { K, }S, as it sequence of classical approrimants
n=1 n=1

and ¢, # 0, forn > 1, then a, = ¢, for n > 1.
Proof. Elementary. O

We also use the following result, proved by Daniel Bernoulli in 1775 [2]
(see, for example, [8], pp. 11-12).

Proposition 1. Let {Ky, K1, Ka,...} be a sequence of complexr numbers
such that K; # K;_1, fori=1,2,.... Then {Ky, K1, Ks,...} is the sequence
of approximants of the continued fraction

K\ —-Ky K —-Ky (Ki—Koy(K;—Kj3)

K,
O T K, Ky + K; — K, +
(Kn—2 - Kn—S)(Kn—l - Kn)
-+ K, — K, 5 SEN
Ki—-K (K1—Ko)(K2—K3)
Ki— Ky RK (KEKo)EK)
~ Ko +

1 + 1 + 1 +
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(Kn—Q_Kn—Zi)(Kn—l_Kn)
(anl_Kn73)(Kn_Kn72)

-+ 1 + -
Proof of Theorem 5. Let {K,}>°, denote the sequence of classical ap-

proximants of the continued fraction K32 a,/1. By assumption there exist
a # (3 € C such that

lim Ko, = «, nILHOIO Kopi1 = .

n—oo

Hence there exist two null sequences {a, }72, and {3, }°2 such that
(41) K2n = a+ Qp, K2n+1 - /8 + 571
By Lemma 1, Proposition 1 and (4.1), it follows that
- (Kon—2 — Kon—3)(Kon—1 — Kan)
" (Kano1 — Kon—3)(Kon — Kon2)
_ (04 + op—1 — ﬁ - ﬂn—?)(ﬁ + 671—1 - — an)
(ﬁn—l - 671—2)(0[71 - an—l)

Since o # 3 and {ay, }02, and {5,}5°, are null sequences, it follows that
limy, o0 |a2n| = 0o. That lim,, .~ |ag,—1| = co follows similarly.

O

5. CONCLUDING REMARKS

Let m > 2 be a positive integer. A continued fraction for which the odd-
and even parts tend to different limits may be regarded as a special case
(m = 2) of continued fractions for which the sequence of approximants in
each arithmetic progression modulo m tends to a different limit. We will
investigate such continued fractions in a later paper and also look at the
question of whether or not they converge in the general sense.

We close with a question. Does there exist a continued fraction K22 a, /1
whose odd and even parts converge to different values, for which the sequence
{aan+1/a2,} is bounded and whose Stern—Stolz series diverges? This would
mean that our Theorem 2 could show divergence in the general sense for a
continued fraction that the Stern-Stolz Theorem could not be applied to.

On the other hand, it may be that if {a,} is any sequence of non-zero
complex numbers such that the sequence {ag,t1/a2,} is bounded and the
continued fraction K22, ay/1 is such that its odd and even parts converge
to different values, then the Stern-Stolz series for K2 a,/1 converges. A
proof of this would be interesting. In this latter situation our Theorem 2
does not give anything new and may just be easier to apply to certain types
of continued fraction.
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