
ON THE DIVERGENCE IN THE GENERAL SENSE OF
q-CONTINUED FRACTION ON THE UNIT CIRCLE.

D. BOWMAN AND J. MC LAUGHLIN

Abstract. We show, for each q-continued fraction G(q) in a certain
class of continued fractions, that there is an uncountable set of points
on the unit circle at which G(q) diverges in the general sense. This
class includes the Rogers-Ramanujan continued fraction and the three
Ramanujan-Selberg continued fraction.

We discuss the implications of our theorems for the general conver-
gence of other q-continued fractions, for example the Göllnitz-Gordon
continued fraction, on the unit circle.

1. Introduction

In [2], we made a detailed study of the convergence behaviour of the
famous Rogers-Ramanujan continued fraction K(q), where

(1.1) K(q) := 1 +
q

1 +
q2

1 +
q3

1 + · · · .

It is an easy consequence of Worpitzky’s Theorem (see [8], pp. 35–36)
that R(q) converges to a value in Ĉ for any q inside the unit circle.

Theorem 1. (Worpitzky) Let the continued fraction K∞
n=1an/1 be such that

|an| ≤ 1/4 for n ≥ 1. Then K∞
n=1an/1 converges. All approximants of the

continued fraction lie in the disc |w| < 1/2 and the value of the continued
fraction is in the disk |w| ≤ 1/2.

Suppose |q| > 1. For n ≥ 1, define

Kn(q) := 1 +
q

1 +
q2

1 +
q3

1 + · · · +
qn

1
.

Then

lim
j→∞

K2j+1(q) =
1

K(−1/q)
,

lim
j→∞

K2j(q) =
K(1/q4)

q
.
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This was stated by Ramanujan without proof and proved by Andrews,
Berndt, Jacobson and Lamphere in 1992 [1].

This leaves the question of convergence on the unit circle. The conver-
gence behaviour at roots of unity was investigated by Schur, who showed in
[11] that if q is a primitive m-th root of unity, where m ≡ 0 (mod 5), then
K(q) diverges and if q is a primitive m-th root of unity, m 6≡ 0(mod 5), then
K(q) converges and

(1.2) K(q) = λ q(1−λσm)/5K(λ),

where λ =
(

m
5

)
(the Legendre symbol) and σ is the least positive residue

of m (mod 5). Note that K(1) = φ = (
√

5 + 1)/2, and K(−1) = 1/φ.
Remark: Schur’s result was essentially proved by Ramanujan, probably

earlier than Schur (see [9], p.383). However, he made a calculational error
(see [6], p.56).

There remains the question of whether the Rogers-Ramanujan contin-
ued fraction converges or diverges at a point on the unit circle which is
not a root of unity. The chief difficulty in trying to apply the usual con-
vergence/divergence tests stems from the facts that the Rogers-Ramanujan
continued fraction converges at a set of points that is dense on the unit circle
and diverges at another such dense set. This is clear from the result of Schur
above.

This question about convergence on the unit circle at points which were
not roots of unity remained unanswered until our paper, [2], where we
showed the existence of an uncountable set of points on the unit circle at
which the Rogers-Ramanujan continued fraction diverged.

To discuss this topic we use the following notation. Let the regular
continued fraction expansion of any irrational t ∈ (0, 1) be denoted by
t = [0, e1(t), e2(t), · · · ]. Let the i-th approximant of this continued frac-
tion expansion be denoted by ci(t)/di(t). We will sometimes write ei for
ei(t), ci for ci(t) etc, if there is no danger of ambiguity. Let φ = (

√
5+1)/2.

In [2], we proved the following theorem.

Theorem 2. [2] Let

S = {t ∈ (0, 1) : ei+1(t) ≥ φdi(t) infinitely often}.(1.3)

Then S is an uncountable set of measure zero and, if t ∈ S and y =
exp(2πit), then the Rogers-Ramanujan continued fraction diverges at y.

We were also able to give explicit examples of points y on the unit circle
at which K(y) diverges.

Corollary 1. Let t be the number with continued fraction expansion equal
[0, e1, e2, · · · ], where ei is the integer consisting of a tower of i twos with an
i an top.

t = [0, 2, 222
, 2223

, · · · ] =
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0.484848484848484848484848484848484848484848484848484848484
84848484848484848484849277885083112437522992318812011 · · ·

If y = exp(2πit) then K(y) diverges.

We were also able to show the existence of an uncountable set of points
on the unit circle at which R(q) diverges in the general sense (see below for
the definition of general convergence) and to give explicit examples of such
points (The point y of Corollary 1 is such a point, for example).

In [3] we generalised Theorem 2 to a wider class of q-continued fractions,
a class which includes the Rogers-Ramanujan continued fraction and the
three “Ramanujan-Selberg” continued fractions studied by Zhang in [13]:

S1(q) := 1 +
q

1 +
q + q2

1 +
q3

1 +
q2 + q4

1 + · · · ,(1.4)

S2(q) := 1 +
q + q2

1 +
q4

1 +
q3 + q6

1 +
q8

1 + · · · ,(1.5)

and

S3(q) := 1 +
q + q2

1 +
q2 + q4

1 +
q3 + q6

1 +
q4 + q8

1 + · · · .(1.6)

These continued fractions were first studied by Ramanujan [9]. As a corol-
lary to our theorem in [3], we were able to show, for each of the continued
fractions above, the existence of an uncountable set of points on the unit
circle at which the continued fraction diverged.

In this present paper we extend our result in [2] on the divergence in the
general sense of the Rogers-Ramanujan continued fraction on the unit circle
to a wider class of q-continued fractions, a class which includes K(q), S1(q),
S2(q) and S3(q). We show that each of these q-continued fractions diverges
in the general sense at an uncountable set of points on the unit circle.

2. Divergence in the General Sense of q-Continued Fractions
on the Unit Circle

In [7], Jacobsen revolutionised the subject of the convergence of contin-
ued fractions by introducing the concept of general convergence. General
convergence is defined, see [8], as follows.

Let the n-th approximant of the continued fraction

M = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·
be denoted by An/Bn and let

Sn(w) =
An + wAn−1

Bn + wBn−1
.
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Define the chordal metric d on Ĉ by

(2.1) d(w, z) =
|z − w|√

1 + |w|2
√

1 + |z|2

when w and z are both finite, and

d(w,∞) =
1√

1 + |w|2
.

Definition: The continued fraction M is said to converge generally to f ∈ Ĉ
if there exist sequences {vn}, {wn} ⊂ Ĉ such that lim inf d(vn, wn) > 0 and

lim
n→∞

Sn(vn) = lim
n→∞

Sn(wn) = f.

Remark: Jacobson shows in [7] that, if a continued fraction converges in the
general sense, then the limit is unique.

The idea of general convergence is of great significance because classical
convergence implies general convergence (take vn = 0 and wn = ∞, for
all n), but the converse does not necessarily hold. General convergence is
a natural extension of the concept of classical convergence for continued
fractions.

We consider continued fractions of the form

G(q) := b0(q)+K∞
n=1

an(q)
bn(q)

(2.2)

:= g0(q0)+
f1(q0)
g1(q0) + · · · +

fk−1(q0)
gk−1(q0) +

fk(q0)
g0(q1)

+
f1(q1)
g1(q1) + · · · +

fk−1(q1)
gk−1(q1) +

fk(q1)
g0(q2) +

· · · +
fk(qn−1)
g0(qn) +

f1(qn)
g1(qn) + · · · +

fk−1(qn)
gk−1(qn) +

fk(qn)
g0(qn+1) + · · ·

where fs(x), gs−1(x) ∈ Z[q][x], for 1 ≤ s ≤ k. Thus, for n ≥ 0 and 1 ≤ s ≤ k,

ank+s = ank+s(q) = fs(qn), bnk+s−1 = bnk+s−1(q) = gs−1(qn).(2.3)

Many well-known q-continued fractions, including the Rogers-Ramanujan
continued fraction, the three Ramanujan-Selberg continued fractions studied
by Zhang in [13], and the Göllnitz-Gordon continued fraction,

(2.4) GG(q) := 1 + q +
q2

1 + q3 +
q4

1 + q5 +
q6

1 + q7 + · · · ,

have the form of the continued fraction at (2.2), with k at most 2. It seems
natural to consider a class of continued fractions which, in a sense, contains
all of the above continued fractions.

For the remainder of the paper Pn(q)/ Qn(q) denotes the n-th approxi-
mant of G(q), Pn/Qn if there is no danger of ambiguity. For later use, we
recall some basic facts about continued fractions. It is well known (see, for
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example, [8], p.9) that the Pn’s and Qn’s satisfy the following recurrence
relations.

Pn = bnPn−1 + anPn−2,(2.5)
Qn = bnQn−1 + anQn−2.

It is also well known (see also [8], p.9) that, for n ≥ 1,

PnQn−1 − Pn−1Qn−1 = (−1)n−1
n∏

i=1

an.(2.6)

Condition 2.3 also implies that if q is a primitive m-th root of unity then
G(q) is periodic with period m k. Indeed, if q is a primitive m-th root of
unity and j ≥ 0,

ajmk+r = fr(qjm) = fr(q0) = ar,(2.7)

bjmk+r = gr(qjm) = gr(q0) = br.

We now assume certain facts about the approximants of G(q), and the con-
vergence behaviour of G(q), at certain roots of unity.

We assume that there is a positive integer d and an integer s ∈ {1, 2, . . . ,
d}, such that if m ≡ s mod d and (r, m) = 1, then

q = exp (2πir/m) =⇒

{
an(q) 6= 0, for n ≥ 1,

G(q) converges and G(q) 6= 0.
(2.8)

This integer s will be referred to frequently in what follows.
We further assume that if G(q) converges at q = exp (2πir/m), a primi-

tive m-th root of unity, then G(q) converges at any q′ = exp (2πir′/m′), a
primitive m′-th root of unity, where m ≡ m′(mod d) and r ≡ r′(mod d).

We also assume that there exists η ∈ Q such that if H(q) := qη/G(q) and
G(q) converges at q = exp (2πir/m) then

H (exp (2πir/m)) = H
(
exp

(
2πi r′/m′)) ,(2.9)

with r′ and m′ as above. Note that the above condition implies that H(q)
takes only finitely many values at roots of unity. Let these values be denoted
H1, H2,. . . , HNG

.
We assume that for all m ≡ s (mod d) that there are integers K0, K1,

K2, K3 and K4, depending only on s, such that

akm(q) = K0, Pkm−1(q) = K1,(2.10)

Qkm−2(q) = K2, Qkm−1(q)Pkm−2(q) = K3,

|Qkm−1(q)| = |Pkm−2(q)| = K4

Here k is the positive integer in the definition of the continued fraction G(q)
at (2.2).
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Finally, it is also assumed that there exists r 6= u ∈ {0, 1, . . . , d− 1}, such
that

H (exp (2πir/s)) = Ha 6= Hb = H (exp (2πiu/s)) ,(2.11)

for some a, b ∈ {1, . . . , NG}.

It may be instructive at this point to show how these abstract conditions
above apply to a particular continued fraction. We let G(q) = K(q).

If we compare the continued fractions at (1.1) and (2.2), it is clear that
we can take k = 1, g0(x) ≡ 1 and f1(x) ≡ x (giving bn(q) = g0(qn) = 1 and
an(q) = f1(qn) = qn).

From Schur’s paper [11] (or see Table 1, which contains the relevant in-
formation from [11]) we can take d = 5 and s = 1 and if q is a primitive
m-th root of unity, m ≡ 1 mod 5, then K(q) converges, giving Condition
2.8 above.

If we set η = 1/5 and set H(q) = q1/5/K(q), we have from (1.2) that, if
q is a primitive m-th root of unity, m 6≡ 0 mod 5, then

(2.12) H(q) =
q(λσm)/5

λK(λ)
,

where λ =
(

m
5

)
(the Legendre symbol) and σ is the least positive residue of

m (mod 5). It follows that H(q) can take only ten possible values at roots
of unity.

It is also clear from (2.12) that Conditions 2.9 and 2.11 are satisfied,
since if m ≡ 1 mod 5 (so that λ = σ = 1 and K(1) = (1 +

√
5)/2 ) and

q = exp (2πir/m), with (r, m) = 1, then

H(q) =
2 exp(2πi r/5)

1 +
√

5
.

If q is a primitive m-th root of unity, it follows from (1.1) and (2.10)
that K0 = am(q) = qm = 1. It follows from Schur’s paper [11] (or, once
again, from Table 1) that K1 = Pm−1(q) = 1, K2 = Qm−2(q) = 0 and
K3 = Pm−2(q)Qm−1(q) = q(1−m)/5q(m−1)/5 = 1 = K4. Thus Condition 2.10
is satisfied.

From the paper of Zhang [13], each of S1(q), S2(q) and S3(q) also satisfy
a set of conditions of the form set out in (2.8) to (2.11). The relevant details
are found in Table 1.

As before, let the regular continued fraction expansion of an irrational
t ∈ (0, 1) be denoted by [0, e1, e2, . . .] and let the n-th approximant of this
continued fraction be denoted by cn/dn. We prove the following theorem.
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Theorem 3. Let G(q) have the form given by (2.2) and satisfy conditions
(2.3) and (2.8) – (2.11).

There exists an integer N ′ and a strictly increasing function γ : N → N
such that if t is any irrational in (0, 1) for which there exist two subsequences
of approximants {cfn/dfn} and {cgn/dgn} satisfying

cfn ≡ r(mod d), cgn ≡ u(mod d),(2.13)

dfn ≡ s(mod d), dgn ≡ s(mod d).

and

ehn+1 > 2πγ(k N ′ d2
hn

),(2.14)

for all n, where hn = fn or gn. Then H(exp(2πit)) does not converge
generally.

Let S� denote the set of all t ∈ (0, 1) satisfying (2.13) and (2.14) and set

YG = {exp(2πit) : t ∈ S�}.(2.15)

Then YG is an uncountable set of measure zero.

We show, as a corollary to this theorem, for each of the continued fractions
K(q), S1(q), S2(q) and S3(q), that there exists an uncountable set of points
on the unit circle at which the continued fraction does not converge generally.

The main idea of the proof will be to show that there exist points y on the
unit circle for which there exist two sequences of positive integers, {mi} and
{ni}, such that the subsequences of approximants to H(y), {Pni/Qni} and
{Pni−1/Qni−1} each tend to the same limit, L1 say, and the subsequences
{Pmi/Qmi} and {Pmi−1/Qmi−1} each tend to the same limit L2 6= L1. This
is done by constructing real numbers t in the interval (0, 1) whose continued
fraction expansions have a certain rapid convergence behavior and then set-
ting y = exp(2πit). In addition, it is shown that the sequences {Qni/Qni−1}
and {Qmi/Qmi−1} are bounded from above, for i sufficiently large. These
two conditions are then shown to imply that H(q) does not converge gener-
ally at y.

We first give some technical lemmas. The proofs are not given if the
results are well known. Our aim is to estimate Pi(q) and Qi(q) for sequences
of i’s in certain arithmetic progressions. We use matrix notation since the
proofs are simpler.

Lemma 1. Let G(q) be as in (2.2). There exist strictly increasing sequences
of positive integers {κn} and {νn} such that if x and y are any two points
on the unit circle then, for all integers n ≥ 0,

|Qn(x)−Qn(y)| ≤ κn|x− y|,(2.16)

and

|Pn(x)− Pn(y)| ≤ νn|x− y|.(2.17)
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Proof. Let {fn(q)} be any sequence of polynomials in Z[q]. Suppose fn(q) =∑Mn
i=0 γiq

i, where the γi’s are in Z. Then

|fn(x)− fn(y)| ≤
Mn∑
i=1

|γi|
∣∣xi − yi

∣∣

≤
Mn∑
i=1

i |γi||x− y|.

Now set δn = max
{ ∑Mn

i=1 i |γi|, 1, δn−1 + 1
}

. Inequality (2.16) follows by
setting fn(q) = Qn(q) and δn = κn. The result for (2.17) follows similarly.

�

With κn and νn as in the above lemma, define, for each n ≥ 1,

γ(n) := max{κn, νn}.(2.18)

This function will be used later in the proof of Theorem 3.

Lemma 2. ([12], p. 238) For n ≥ 0,

(2.19)

Pn Pn−1

Qn Qn−1

 =

b0 1

1 0

 n∏
i=1

bi 1

ai 0

 .

Proof. This follows, by induction, from the recurrence relations (2.5). �

We now assume that q is a primitive m-th root of unity, q = exp(2πin/m),
where (n, m) = 1, m ≡ s mod d and either n ≡ r mod d and n ≡ u mod d,
where r, s and u are as in condition (2.11).

Lemma 3. For j ≥ 1 and 1 ≤ r ≤ km,

(2.20)

Pjkm+r Pjkm−1+r

Qjkm+r Qjkm−1+r



=

Pkm−1 akmPkm−2

Qkm−1 akmQkm−2

P(j−1)km+r P(j−1)km−1+r

Q(j−1)km+r Q(j−1)km−1+r

 .

For j ≥ 1 and 0 ≤ r ≤ km− 1,Pjkm+r

Qjkm+r

 =

Pkm−1 akmPkm−2

Qkm−1 akmQkm−2

jPr

Qr

 .(2.21)
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Proof. By Lemma 2 and the periodicity of the ai’s and/or the bi’s noted at
(2.7), we have thatPjkm+r Pjkm−1+r

Qjkm+r Qjkm−1+r

 =

b0 1

1 0

 jkm+r∏
i=1

bi 1

ai 0



=

b0 1

1 0

 km∏
i=1

bi 1

ai 0

0 1

1 −b0

b0 1

1 0

 jkm+r∏
i=km+1

bi 1

ai 0



=

Pkm Pkm−1

Qkm Qkm−1

0 1

1 −bkm

b0 1

1 0

 (j−1)km+r∏
i=1

bi 1

ai 0

 .

Statement (2.20) then follows from the facts that Pkm = bkmPkm−1 +
akmPkm−2 and Qkm = bkmQkm−1 + akmQkm−2 and Lemma 2. Statement
(2.21) is an immediate consequence of (2.20). �

Remark: It is clear from (2.21), that if G(q) converges then Qkm−1 6= 0,
since otherwise Qjkm−1 = 0 for j ≥ 1.

Define

M :=

Pkm−1 akmPkm−2

Qkm−1 akmQkm−2

 .(2.22)

Equation (2.6) implies that

Det(M) = akm(Pkm−1Qkm−2 − Pkm−2Qkm−1) = (−1)km
km∏
i=1

ai.(2.23)

Let T denote the trace of M and D its determinant. In light of (2.23) and
(2.10) it is clear that T and D are both integers that depend only on s.
From this it is clear that

T 2 − 4 D = K5, for some K5 ∈ Z,(2.24)

and that K5 also depends only on s. The eigenvalues of M are

λ1 =
T +

√
T 2 − 4 D

2
,(2.25)

λ2 =
T −

√
T 2 − 4 D

2
.
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The corresponding eigenvectors are

x :=

x1

x2

 =


Pkm−1 − akmQkm−2 −

√
T 2 − 4 D

2Qkm−1

1

(2.26)

and

y :=

y1

y2

 =


Pkm−1 − akmQkm−2 +

√
T 2 − 4 D

2Qkm−1

1

 .(2.27)

As shown above, if G(q) converges, then Qkm−1 6= 0, and this justifies
taking x2 = y2 = 1. Note for later use that |x1|, |y1|, λ1 and λ2 depend only
on s. This follows from (2.10) and (2.24).

Lemma 4. Let the eigenvalues of

M =

Pkm−1 akmPkm−2

Qkm−1 akmQkm−2


be λ1 and λ2. If G(q) converges then λ1 = λ2 or |λ1| 6= |λ2|.

Proof. Since ai 6= 0 for i ≥ 1, it follows from (2.6), that Det(M) 6= 0, so
that neither of the eigenvalues is zero.

Suppose λ1 6= λ2 but |λ1| = |λ2|. In this case it is clear from (2.25) and
(2.26) that x and y are linearly independent. For r ∈ {0, 1, 2, . . . , km− 1},
suppose that (Pr, Qr)T = pr x+qr y, for some pr, qr ∈ C. Then it follows
from (2.21), (2.26) and (2.27) thatPjmk+r

Qjmk+r

 =

prλ
j
1x1 + qrλ

j
2y1

prλ
j
1 + qrλ

j
2

 .(2.28)

By some simple algebraic manipulation,
Pjkm+r

Qjkm+r
= y1 +

pr (x1 − y1)

pr + qr

(
λ2
λ1

)j
.(2.29)

The right hand side does not converge as j → ∞, unless pr = 0 or qr = 0,
for each r.

Since we are considering the case where no ai = 0, then a1 6= 0, (P0, Q0) 6=
γ(P1, Q1), for any γ ∈ C. Hence p0q1 − p1q0 6= 0.

We first consider the case p0 = 0. Then limj→∞ Pjkm /Qjkm = y1. Since
p0 = 0, it follows from the remark above that p1 6= 0, and then it must be
that q1 = 0 and limj→∞ Pjkm+1/Qjkm+1 = x1 6= y1, which is a contradiction.

On the other hand, if p0 6= 0, then q0 = 0 and so q1 6= 0 which necessitates
p1 = 0, and a similar contradiction follows. This completes the proof. �
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Remarks: 1) The eigenvalues for the Rogers-Ramanujan continued frac-
tion and the Ramanujan-Selberg continued fractions are non-zero and dis-
tinct.
2) It follows similarly from (2.29), (2.26) and (2.27), that, in the case
|λ1| 6= |λ2|,

(2.30) G(q) =


y1 =

Pkm−1 − akmQkm−2 +
√

T 2 − 4 D

2Qkm−1
, |λ1| < |λ2|,

x1 =
Pkm−1 − akmQkm−2 −

√
T 2 − 4 D

2Qkm−1
, |λ1| > |λ2|.

For later use we evaluate G(q) when λ1 = λ2. In this case T 2 − 4 D = 0.
This equation implies

(2.31) Pkm−2 = −(Pkm−1 − akmQkm−2)2

4 akm Qkm−1
.

This in turn means that Pkm−1 6= akmQkm−2, or else Pkm−2 = 0 and (2.21)
gives that Pjkm−2 = 0 for j ≥ 1, implying that G(q) = 0, contradicting our
assumption.

For ease of notation we write Pkm−1 = a, Qkm−1 = c and akmQkm−2 = d.
Then it follows from Lemma 3 and induction that

(2.32)

Pjkm−1 akmPjkm−2

Qjkm−1 akmQjkm−2

 =

Pkm−1 akmPkm−2

Qkm−1 akmQkm−2

j

=
(a + d)j−1

2j+1c

(j(a− d) + a + d)2 c −j(a− d)2

4 j c2 (j(d− a) + a + d)2c

 .

From this and (2.21) it follows that, for 0 ≤ r ≤ km− 1,

Pjkm+r

Qjkm+r
=

(j(a− d) + a + d)2 c Pr − j(a− d)2Qr

4 j c2Pr + (j(d− a) + a + d)2 cQr

=
((a− d) + (a + d)/j)2 c Pr − (a− d)2Qr

4 c2Pr + ((d− a) + (a + d)/j)2 cQr
,

and that

G(q) = lim
j→∞

Pjkm+r

Qjkm+r
=

a− d

2c
=

Pkm−1 − akmQkm−2

2Qkm−1
.(2.33)

This holds whether or not 2 c Pr−(a−d)Qr = 0, for any r ∈ {0, 1, . . . , km−
1}.

Note that (2.10) implies that |G(q)| depends only on s.
In the following lemmas the cases of equal and unequal eigenvalues are

considered separately, with Lemmas 5 to 7 dealing with the case of equal
eigenvalues.
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Define Gn(q) := Pn(q)/Qn(q) and Hn(q) := xη/Gn(q), where η is as
defined at (2.9).

For the case of equal eigenvalues, it follows from (2.25) that T = Pkm−1 +
akmQkm−2 6= 0. Note also that the conditions at (2.10) imply that Pkm−1−
akmQkm−2 = K1 −K0 K2, a fixed integer depending only on s.

In the following lemmas a sequence of positive integers N1, . . . , N10 and a
sequence of constants is defined. These integers and constants will depend
only on the constants K0, K1, K2 and K3 described at (2.10). As such, they
will depend only on s. To avoid repetition throughout the lemmas, we state
here that these integers are chosen to satisfy N1 < N3 < N4 < N7 < N8 and
N2 < N5 < N6 < N9 < N10. For Lemmas 5 to 7, we assume that λ1 = λ2.

Lemma 5. There exist positive constants D1, D2, D3, D4, D5 and D6, each
depending only on s, such that if j ≥ 1, then

|Qjkm−1| = j D2 Dj
1.(2.34)

There exists a positive integer N1, depending only on s, such that if j ≥ N1,
then

D3 j Dj
1 ≤ |Qjkm−2| ≤ D4 j Dj

1(2.35)

and

D5 ≤
∣∣∣∣Qjkm−1

Qjkm−2

∣∣∣∣ ≤ D6.(2.36)

Proof. To prove (2.34), we first equate entries at (2.32), using the fact that
λ1 = λ2 = (Pkm−1 + akmQkm−2)/2.

Qjkm−1 = j Qkm−1 λj−1
1 ,

(2.34) follows upon setting D1 = |λ1| and D2 = |Qkm−1/λ1|, recalling the
conditions at (2.10) and the facts noted at the end of (2.27).

Note for later use that, since M has determinant equal to a non-zero inte-
ger and has two equal eigenvalues, then D1 ≥ 1 so that limj→∞ |Qjkm−1| =
∞. Inequality (2.36) then implies limj→∞ |Qjkm−1| = ∞ also.

Statement (2.35) follows similarly from comparing corresponding matrix
elements at (2.32), namely,

Qjkm−2 =
(

akmQkm−2 − Pkm−1 +
2λ1

j

)
jλj−1

1

2akm
.

Set

D4 =
2|λ1|+ |akmQkm−2 − Pkm−1|

2|akmλ1|
.

Take N1 large enough so that 2|λ1|/N1 < |akmQkm−2−Pkm−1| and then set

D3 =
|akmQkm−2 − Pkm−1| − 2|λ1|/N1

2|akmλ1|
.
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Statement (2.36) follows from (2.34) and (2.35), by taking D5 = D2/D4 and
D6 = D2/D3. �

Lemma 6. There exists positive constants D7, D8, D9, D10 and D11 and
positive integers N3 and N4, each depending only on s, such that, if j ≥ 1,
then

|G(q)−Gjkm−1(q)| =
D7

j
,(2.37)

if j ≥ N3, then
D8

j
≤ |G(q)−Gjkm−2(q)| ≤

D9

j
,(2.38)

and if j ≥ N4 and n = jkm− 1 or jkm− 2 , then
D10

j
≤ |H(q)−Hn(q)| ≤ D11

j
.(2.39)

Proof. Equations (2.32) and (2.33) give that

|G(q)−Gjkm−1(q)|

=
∣∣∣∣Pkm−1 − akmQkm−2

2Qkm−1
− (j + 1)Pkm−1 − (j − 1)akmQkm−2

2 j Qkm−1

∣∣∣∣
=
∣∣∣∣Pkm−1 + akmQkm−2

2 j Qkm−1

∣∣∣∣ .
Set

D7 =
∣∣∣∣Pkm−1 + akmQkm−2

2Qkm−1

∣∣∣∣ .
Note that D7 6= 0, since D7 = |λ1/Qkm−1| 6= 0. Next, from (2.32) and

(2.33) we find that

|G(q)−Gjkm−2(q)|

=
∣∣∣∣Pkm−1 − akmQkm−2

2Qkm−1
+

j(Pkm−1 − akmQkm−2)2

2 Qkm−1((j + 1)akmQkm−2 − (j − 1)Pkm−1)

∣∣∣∣
=

∣∣∣∣∣ −P 2
km−1 + a2

kmQ2
km−2

2 Qkm−1(−(Pkm−1 + akmQkm−2)/j + (Pkm−1 − akmQkm−2))

∣∣∣∣∣ 1j .

Choose N3 such that |(Pkm−1 + akmQkm−2)/N3| < |(Pkm−1 − akmQkm−2)|
and set

D8 =
| − P 2

km−1 + a2
kmQ2

km−2|
2 |Qkm−1|(|Pkm−1 + akmQkm−2|+ |Pkm−1 − akmQkm−2|)

and

D9 =
| − P 2

km−1 + a2
kmQ2

km−2|
2 |Qkm−1|(|Pkm−1 − akmQkm−2| − |Pkm−1 + akmQkm−2|/N3)

.
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Note that neither D8 or D9 is zero, since λ1 = (Pkm−1 + akmQkm−2)/2 6= 0
and Pkm−1 − akmQkm−2 6= 0 from the remark following (2.31).

Let n = jkm − 1 or jkm − 2 and set M
′

= max{D7, D9} and m
′

=
min{D7, D8}. Choose N4 such that |G(q)| > M

′
/N4 (Recall that |G(q)| 6= 0

and is constant for fixed s). Let j ≥ N4. Then

|H(q)−Hn(q)| =
∣∣∣∣ qη

G(q)
− qη

Gn(q)

∣∣∣∣ = ∣∣∣∣G(q)−Gn(q)
G(q)Gn(q)

∣∣∣∣ .
Then

m
′

j |G(q) Gn(q)|
≤ |H(q)−Hn(q)| ≤ M

′

j |G(q) Gn(q)|
.

By the definition of M ′ and the choice of N4, it follows that

m
′

j |G(q)| (|G(q)|+ M ′)
≤ |H(q)−Hn(q)| ≤ M

′

j |G(q)|(|G(q)| −M ′/N4)
.

Set

D10 =
m

′

|G(q)| (|G(q)|+ M ′)
, D11 =

M
′

|G(q)|(|G(q)| −M ′/N4)
.

The constants D10 and D11 depend only on s, since |G(q)|, m′, M ′ and N4

depend only on s . �

Lemma 7. Let y be another point on the unit circle. There exist positive
constants D13, D14 and D15 and positive integers N7 and N8, each depending
only on s, such that if j ≥ N7 and n = jkm− 1 or jkm− 2, and

Pn(y) = Pn(q) + ε1, Qn(y) = Qn(q) + ε2, ε = max{|ε1|, |ε2|} < 1/2,

then

|Gn(y)−Gn(q)| ≤ D13ε

j
;(2.40)

if j ≥ N8 and the angle between q and y (measured from the origin) is less
than π/(2|η|), then

(2.41) |Hn(y)−Hn(q)| < D14|q − y|+ D15
ε

j

and

(2.42) |Hn(y)−H(q)| ≤ D14|q − y|+ D15
ε

j
+

D11

j
.

Proof. Let

D12 = max{D7, D9}, D′
2 = min{D2, D3}, N7 ≥

⌈
1

D′
2

⌉
.

Set D′
13 = 3 + |G(q)| + D12/N7 and set D13 = 2D′

13/D′
2. Choose N8 such

that

min
{
|G(q)| − D12

N8
, |G(q)| − D12

N8
− D13

2N8

}
≥ |G(q)|

2
.
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From the fact that D1 ≥ 1 together with (2.34) and (2.35), it follows that

|Qn| ≥ D′
2 j Dj

1 ≥ D′
2 j.

Let j ≥ N7. Then |Qn| − 1/2 > D′
2 j − 1/2 ≥ D′

2 j/2 and

|Gn(y)−Gn(q)| =
∣∣∣∣Pn(y)
Qn(y)

− Pn(q)
Qn(q)

∣∣∣∣ = ∣∣∣∣ ε1Qn(q)− ε2Pn(q)
Qn(q)(Qn(q) + ε2)

∣∣∣∣
≤ |ε1 − ε2|
|Qn(q) + ε2|

+
|ε2||Pn(q)−Qn(q)|
|Qn(q)||Qn(q) + ε2|

=
|ε1 − ε2|

|Qn(q) + ε2|
+
|ε2||Gn(q)− 1|
|Qn(q) + ε2|

≤ 2ε

||Qn(q)| − ε|
+

ε (|G(q)|+ D12/j + 1)
||Qn(q)| − ε|

=
ε (|G(q)|+ D12/j + 3)

||Qn(q)| − ε|

≤ D′
13 ε

||Qn(q)| − 1/2|
≤ 2D′

13 ε

D′
2 j

=
D13ε

j
.

Here we have used (2.37), (2.38), the bounds on ε1 and ε2 and the inequality
relating |Qn| and j above.

Similarly, if j ≥ N8, then

|Hn(y)−Hn(q)| =
∣∣∣∣ yη

Gn(y)
− qη

Gn(q)

∣∣∣∣
=
∣∣∣∣Gn(q)(yη − qη) + qη(Gn(q)−Gn(y))

Gn(q)Gn(y)

∣∣∣∣
≤ 2|η||q − y|

|Gn(y)|
+
|Gn(q)−Gn(y)|
|Gn(q)||Gn(y)|

≤ 2|η||q − y|
||Gn(q)| −D13 ε/j|

+
D13 ε/j

|Gn(q)| ||Gn(q)| −D13 ε/j|
.

Here we have used (2.40) and the fact that the angle between q and y
(measured from the origin) is less than π/(2|η|) implies that |yη − qη| ≤
2|η||q−y| (This last inequality follows since the stated bound implies (q/y)η

lies in the first or fourth quadrant and the fact that in these quadrants,
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chordal distance from 1 is less than arc distance, which in turn is less than
twice the chordal distance). From (2.37) and (2.38), it follows that

|Hn(y)−Hn(q)| ≤ 2|η||q − y|
||G(q)| − (D12 + D13 ε)/j|

(2.43)

+
D13 ε/j

||G(q)| −D12/j| ||G(q)| − (D12 + D13 ε)/j|

≤ 2|η||q − y|
||G(q)| − (D12 + D13/2)/N8|

+
D13 ε/j

||G(q)| −D12/N8| ||G(q)| − (D12 + D13/2)/N8|

≤ 4|η|
|G(q)|

|q − y|+ 4 D13

|G(q)|2
ε

j
.(2.44)

Set D14 = max{4/|G(q)|, 4|η|/|G(q)|} and D15 = 4D13/|G(q)|2.
Statement (2.42) follows from (2.41) and (2.39). �

In the following three lemmas we assume |λ1| > |λ2|.

Lemma 8. There exist positive constants C1, C2, C3, C4, C5, C6 and C7,
and a positive integer N2, each depending only on s, such that, if j ≥ 1,
then

C2 Cj
1 < |Qjkm−1| < C3 Cj

1 ;(2.45)

and if j ≥ N2, then

C4 Cj
1 ≤ |Qjkm−2| ≤ C5 Cj

1(2.46)

and

C6 ≤
|Qjkm−1|
|Qjkm−2|

≤ C7.(2.47)

Proof. Let λ1, λ2, x1 and y1 be as defined at (2.25), (2.26) and (2.27). ThenPkm−1 akmPkm−2

Qkm−1 akmQkm−2

 =

x1 y1

1 1

λ1 0

0 λ2

x1 y1

1 1

−1

.

From Lemma 3 it follows that

Pjkm−1 akmPjkm−2

Qjkm−1 akmQjkm−2

 =

x1 y1

1 1

λj
1 0

0 λj
2

x1 y1

1 1

−1

(2.48)

=
1

x1 − y1

x1λ
j
1 − y1λ

j
2 −x1y1(λ

j
1 − λj

2)

λj
1 − λj

2 x1λ
j
2 − y1λ

j
1

 .
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Thus

Qjkm−1 =
1− (λ2/λ1)j

x1 − y1
λj

1.

Statement (2.45) follows with C1 = |λ1| and

C2 =
1− |λ2/λ1|
|x1 − y1|

and C3 =
1 + |λ2/λ1|
|x1 − y1|

.

Note that, since M has a non-zero integral determinant and |λ1| > |λ2|,
C1 = |λ1| > 1.

Similarly,

Qjkm−2 =
−y1λ

j
1

akm(x1 − x2)

(
1− x1

y1

(
λ2

λ1

)j
)

.

Choose N2 large enough so that∣∣∣∣x1

y1

∣∣∣∣ ∣∣∣∣λ2

λ1

∣∣∣∣N2

< 1

and then take

C4 =
∣∣∣∣ y1

akm(x1 − y1)

∣∣∣∣
(

1−
∣∣∣∣x1

y1

∣∣∣∣ ∣∣∣∣λ2

λ1

∣∣∣∣N2
)

and

C5 =
∣∣∣∣ y1

akm(x1 − y1)

∣∣∣∣ (1 +
∣∣∣∣x1

y1

∣∣∣∣ ∣∣∣∣λ2

λ1

∣∣∣∣) .

Note that equation (2.27) and the fact that none of akm, Qkm−1 and Pkm−2

is zero ensure that x1, y1 6= 0, and hence that C4, C5 6= 0. Clearly, for
j ≥ N2,

C6 :=
C2

C5
≤
∣∣∣∣Qjkm−1

Qjkm−2

∣∣∣∣ ≤ C3

C4
=: C7.

Note that, by the remarks following (2.27), all of these constants depend
only on s. Note also that the condition |λ1| > 1 implies limj→∞ |Qjkm−1| =
limj→∞ |Qjkm−2| = ∞.

�

Lemma 9. There exist positive constants C8 < 1, C9, C10, C11, C12, C13

and C14 and positive integers N5 and N6, each depending only on s, such
that, if j ≥ 1, then

C9 Cj
8 ≤ |G(q)−Gjkm−1(q)| ≤ C10 Cj

8 ;(2.49)

if j ≥ N5, then

C11 Cj
8 ≤ |G(q)−Gjkm−2(q)| ≤ C12 Cj

8 ;(2.50)
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and if j ≥ N6 and n = jkm− 1 or jkm− 2, then

C13C
j
8 ≤ |H(q)−Hn(q)| ≤ C14C

j
8 .(2.51)

Proof. From (2.48) it can be seen that G(q) converges to x1 (and thus, from
(2.10) and (2.26), that |G(q)| depends only on s) so that

|G(q)−Gjkm−1(q)| =

∣∣∣∣∣x1 −
x1λ

j
1 − y1λ

j
2

λj
1 − λj

2

∣∣∣∣∣ = |x1 − y1|∣∣∣1− (λ2/λ1)
j
∣∣∣
∣∣∣∣λ2

λ1

∣∣∣∣j .

Set C8 = |λ2/λ1| < 1, C9 = |x1−y1|/(1+C8) and C10 = |x1−y1|/(1−C8),
and (2.49) follows. Note that x1 6= y1 (else the eigenvalues would be equal),
so that C9 and C10 are non-zero.

Next, choose N5 large enough so that CN5
8 < |y1/x1|, and consider j ≥ N5.

Thus,

|G(q)−Gjkm−2(q)| =

∣∣∣∣∣x1 −
x1y1(λ

j
1 − λj

2)

−x1λ
j
2 + y1λ

j
1

∣∣∣∣∣ = |x1 − y1|∣∣∣y1/x1 − (λ2/λ1)
j
∣∣∣
∣∣∣∣λ2

λ1

∣∣∣∣j .

Set

C11 =
|x1 − y1|

|y1/x1|+ C8
, C12 =

|x1 − y1|
|y1/x1| − CN5

8

,

and (2.50) follows.
Finally, let n = jkm − 1 or jkm − 2, set m

′
= min{C9, C11} and M

′
=

max{C10, C12}. Choose N6 such that |G(q)| > M
′
CN6

8 . Let j ≥ N6. Then

|H(q)−Hn(q)| =
∣∣∣∣ qη

G(q)
− qη

Gn(q)

∣∣∣∣ = ∣∣∣∣G(q)−Gn(q)
G(q)Gn(q)

∣∣∣∣ .
From the definitions of m

′
and M

′
, and the choice of N6, it follows that

m
′
Cj

8

|G(q)| (|G(q)|+ M ′)
≤ |H(q)−Hn(q)| ≤ M

′
Cj

8

|G(q)|
(
|G(q)| −M ′CN6

8

)
Set

C13 =
m

′

|G(q)| (|G(q)|+ M ′)
, C14 =

M
′

|G(q)|
(
|G(q)| −M ′CN6

8

) ,

and (2.51) follows. �

Lemma 10. Let y be a another point on the unit circle. There exist positive
constants C15, C16 and C17 and positive integers N9 and N10, each depending
only on s, such that if j ≥ N9, n = jkm− 1 or jkm− 2. and,

Pn(y) = Pn(q) + ε1, Qn(y) = Qn(q) + ε2, with ε = max{|ε1|, |ε2|} < 1/2.

then

|Gn(y)−Gn(q)| ≤ C15 ε

Cj
1

;(2.52)
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If j ≥ N10, n = jkm−1 or jkm−2 and the angle between q and y (measured
from the origin) is less than π/(2|η|), then

|Hn(y)−Hn(q)| < C16|q − y|+ C17
ε

Cj
1

(2.53)

and

|Hn(y)−H(q)| ≤ C16|q − y|+ C17
ε

Cj
1

+ C14 Cj
8 .(2.54)

Proof. Let

C ′
10 = max{C10, C12}, C ′

2 = min{C2, C4} and N9 ≥
− log(C ′

2)
log(C1)

.

Set C ′
15 = 3 + |G(q)|+ C ′

10 CN9
8 and C15 = 2C ′

15/C ′
2. Choose N10 such that

min

{
|G(q)| − C ′

10C
N10
8 , |G(q)| − C ′

10C
N10
8 − C15

2CN10
1

}
≥ |G(q)|

2
.

Let j ≥ N9. The inequalities at (2.45) and (2.46) imply that |Qn| ≥ C ′
2C

j
1 .

The condition on N9 implies that, if j ≥ N9, then |Qn| − 1/2 > C ′
2 Cj

1/2.
By similar reasoning to that used in the proof of (2.40), we find that

|Gn(y)−Gn(q)| ≤ |ε1 − ε2|
|Qn(q) + ε2|

+
|ε2||Gn(q)− 1|
|Qn(q) + ε2|

≤ 2ε

||Qn(q)| − ε|
+

ε
∣∣∣|G(q)|+ C ′

10 Cj
8 + 1

∣∣∣
||Qn(q)| − ε|

≤ C ′
15 ε

||Qn(q)|| − 1/2|
≤ 2C ′

15 ε

C ′
2 Cj

1

=
C15 ε

Cj
1

.

Here we have used (2.49), (2.50), the bounds on ε1 and ε2 in the statement
of the lemma and the inequality relating |Qn| and Cj

1 above.
Let j ≥ N10. As in the case where λ1 = λ2,

|Hn(y)−Hn(q)| ≤ 2|η||q − y|
|Gn(y)|

+
|Gn(q)−Gn(y)|
|Gn(q)||Gn(y)|

≤ 2|η||q − y|∣∣∣|Gn(q)| − C15 ε/Cj
1

∣∣∣ +
C15 ε/Cj

1

|Gn(q)|
∣∣∣|Gn(q)| − C15 ε/Cj

1

∣∣∣ .
Here we have used (2.52) and once again the fact that the angle between q
and y, measured form the origin, is less than π/(2|η|) implies that |yη−qη| ≤
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2|η||q − y| (See the explanation before (2.43)). Using (2.49) and (2.50), it
follows that,

|Hn(y)−Hn(q)| ≤ 2|η||q − y|
||G(q)| − C ′

10C
j
8 − C15 ε/Cj

1 |

+
C15 ε/Cj

1

||G(q)| − C ′
10C

j
8 |||G(q)| − C ′

10C
j
8 − C15 ε/Cj

1 |

≤ 2|η||q − y|
||G(q)| − C ′

10C
N10
8 − C15 ε/CN10

1 |

+
C15 ε/Cj

1

||G(q)| − C ′
10C

N10
8 |||G(q)| − C ′

10C
N10
8 − C15/(2CN10

1 )|

≤ 4|η|
|G(q)|

|q − y|+ 4 C15

|G(q)|2
ε

Cj
1

.

Set C16 = max{4|η|/|G(q)|, 4/|G(q)|} and C17 = 4C15/|G(q)|2. Statement
(2.54) follows from (2.53) and (2.51). �

Lemma 11. There exists an uncountable set of points on the unit circle such
that, if y is one of these points, then there exist two increasing sequences of
integer, {ni}∞i=1 and {mi}∞i=1 say, such that

lim
i→∞

Hni(y) = lim
i→∞

Hni−1(y) = Ha,

lim
i→∞

Hmi(y) = lim
i→∞

Hmi−1(y) = Hb,

for some a, b ∈ {1, 2, · · · , NG}, where a 6= b.

Proof. If λ1 = λ2, we set N ′ = N8. If |λ1| > |λ2|, we set N ′ = N10. With
the notation of Theorem 3, let t ∈ S� and set y = exp(2πit). Let cfn/dfn be
one of the infinitely many approximants in the continued fraction expansion
of t satisfying (2.13) and (2.14), and set xn = exp(2πicfn/dfn), so that xn

is a primitive dfn-th root of unity and H(xn) = Ha. Let γ(n) be as defined
at (2.18). We use, in turn, the fact that chord length is shorter than arc
length, a standard bound on the absolute value of the difference between a
real number and an approximant in its continued fraction expansion, and
(2.14), we find that

|xn − y| < 2π

∣∣∣∣t− cfn

dfn

∣∣∣∣ < 2 π

d2
fn

efn+1
<

1
d2

fn
γ(k N ′ d2

fn
)
.(2.55)

Let n′ = k N ′ d2
fn
− 1 or k N ′ d2

fn
− 2. By (2.16), (2.17), (2.18), and (2.55) it

follows that

|Pn′(xn)− Pn′(y)| ≤ γ(n′)|xn − y| < 1
d2

fn

,(2.56)
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and similarly

|Qn′(xn)−Qn′(y)| ≤ 1
d2

fn

.(2.57)

If λ1 = λ2, then by (2.42), with ε = 1/d2
fn

and j = N ′ dfn (so that j ≥ N8),
we find that

|Hn′(y)−Ha| = |Hn′(y)−H(xn)| ≤ D14

d2
fn

γ(k N ′ d2
fn

)
+

D15

d3
fn

N ′ +
D11

N ′ dfn

.

(2.58)

If |λ1| 6= |λ2| then (2.54) similarly implies that

|Hn′(y)−Ha| = |Hn′(y)−H(xn)|(2.59)

≤ C16

d2
fn

γ(k N ′ d2
fn

)
+

C17

d2
fn

C
N ′ dfn
1

+ C14 C
N ′ dfn
8 .

Thus, in either case,

lim
n→∞

Hk N ′ d2
fn
−1(y) = lim

n→∞
Hk N ′ d2

fn
−2(y) = Ha.(2.60)

Similarly,

lim
n→∞

Hk N ′ d2
gn−1(y) = lim

n→∞
Hk N ′ d2

gn−2(y) = Hb.(2.61)

The set S� is uncountable because the conditions for membership require
restrictions on only infinitely many of the partial quotients. One can easily
construct a subset for which there is no restriction on a fixed infinite set of
partial quotient. For each set of choices of positive integers for these partial
quotients, one can choose other partial quotients so that the conditions for
membership of S� are fulfilled. Since the collection of all such continued
fractions is uncountable, S� is an uncountable set. Thus YG = {exp(2πit) :
t ∈ S�} is an uncountable set. �

Before proving Theorem 3, we show that YG has measure zero. We use
the following lemma.

Lemma 12. ([10] pp. 140–141) Let f(m) > 1 for m = 1, 2, . . . , and sup-
pose that

∑∞
n=1 1/f(m) < ∞. Then the set S∗ = {t ∈ (0, 1) : em(t) >

f(m) infinitely often } has measure zero.

Let f(m) = 2πγ(k N ′m2), where γ(n) is the function at (2.18). Since
γ(j) ≥ j for j ≥ 1, it follows that f(n) ≥ 2πn2 and thus that

∑∞
n=1 1/f(n)

converges. Since, for the regular continued fraction expansion of any real
number, di > i for i ≥ 4, it follows that d2

i ≥ (i + 1)2 for i ≥ 4, and thus it
is clear from (2.14) that the elements in S� satisfy em(t) > f(m) infinitely
often. Hence S� (and thus YG) is a set of measure zero.

Of course the actual set of points on the unit circle at which G(q) does
not converge generally might have measure larger than zero.



22 D. BOWMAN AND J. MC LAUGHLIN

Proof of Theorem 3. Let y be any point in YG, where YG is defined
in the proof of Lemma 11, and let t be the irrational in (0, 1) for which
y = exp(2πit). N ′ is defined in Lemma 11. If λ1 = λ2, we set N1/2 = N1. If
|λ1| > |λ2|, we set N1/2 = N2.

Suppose H(y) converges generally to f ∈ Ĉ and that {vn}, {wn} are two
sequences such that

lim
n→∞

Pn + vnPn−1

Qn + vnQn−1
= lim

n→∞

Pn + wnPn−1

Qn + wnQn−1
=

yη

f
:= g.

Suppose first that |g| < ∞. By construction, there exist two infinite strictly
increasing sequences of positive integers {ni}∞i=1, {mi}∞i=1 ⊂ N such that

La :=
yη

Ha
= lim

i→∞

Pni(y)
Qni(y)

= lim
i→∞

Pni−1(y)
Qni−1(y)

and

Lb :=
yη

Hb
= lim

i→∞

Pmi(y)
Qmi(y)

= lim
i→∞

Pmi−1(y)
Qmi−1(y)

,

for some a 6= b, where a, b ∈ {1, 2, · · · , NG}. Also by construction each ni

has the form k N ′ d2
ki
− 1, where dki

is some denominator convergent in the
continued fraction expansion of t. A similar situation holds for each mi. It
can be further assumed that La 6= g, since La 6= Lb. For ease of notation
write

Pni(y) = Pni , Qni(y) = Qni ,

Pni−1(y) = Pni−1, Qni−1(y) = Qni−1.

Write Pni = Qni(La + εni) and Pni−1 = Qni−1(La + δni), where εni → 0 and
δni → 0 as i →∞, so that

Qni(La + εni) + wniQni−1(La + δni)
Qni + wniQni−1

= g + γni ,

where γni → 0 as i →∞. Thus

wni +
Qni

Qni−1
=

Qni

Qni−1
× εni − δni

g − La + γni − δni

.

Because of (2.36) or (2.47), the fact that each ni has the form k N ′ d2
ki
− 1,

where dki
is some denominator convergent in the continued fraction expan-

sion of t and (2.57), it follows that Qni/Qni−1 is absolutely bounded for
N ′ dki

> N1/2. Therefore the right hand side of the last equality tends to 0
as i →∞ and thus

wni + Qni/Qni−1 → 0 as ni →∞.(2.62)

Note that |wni | < ∞ for all i sufficiently large, since |Qni/Qni−1| < ∞.
Similarly,

vni + Qni/Qni−1 → 0 as ni →∞.(2.63)
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By the (2.62), (2.63) and the triangle inequality,

lim
i→∞

|vni − wni | = 0.

Thus
lim inf
n→∞

d(vn, wn) = 0.

Therefore H(y) does not converge generally. The proof in the case where g
is infinite is similar.

Since YG is uncountable, this proves the theorem.
�

Remark: Clearly H(y) = yη/G(y) converges generally if and only if G(y)
converges generally.

We have the following corollary to Theorem 3.

Corollary 2. For each of the continued fractions K(q), S1(q), S2(q) and
S3(q), there exists an uncountable set of points on the unit circle at which
the continued fraction does not converge generally.

G(q) K(q) S1(q) S2(q) S3(q)

η 1/5 1/8 1/2 1/3

(s, d) (1, 5) (1, 8) (1, 8) (1, 6)

H(q) 2 exp(2πi r/5)

1+
√

5
1√

2 exp(−πi r/4)
1

(1+
√

2) exp(πi r)
1

2 exp(4πi r/3)

k 1 2 2 1

f1, · · · , fk x qx2, qx + q2x2 qx2 + q2x4,q4x4 x + x2

akm 1 2 1 2

Pkm−1 1 2 3 1

Qkm−2 0 1 1 0

Qkm−1 q(m−1)/5 εq(m2−1)/8 q(m−1)/2 q(m−1)/3

Pkm−2 q(1−m)/5 εq(m−1)2/8 q(m+1)/2 q(2m+1)/3

Table 1
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Proof. We use information contained in Table 1. In each case, q = exp
(2πir/m), a primitive m-th root of unity and m ≡ s mod d, where (s, d)
is the pair of integers from (2.8). k is the integer and f1, · · · , fk are the
polynomials from the definition of the continued fraction G(q) at (2.2).
H(q) := qη/G(q), where η is the rational in row one of the table.

Row three gives the value of H(q), when q = exp (2πir/m) as above. akm

is the km-th partial numerator in G(q), as defined at (2.2).
The values in the first, third and last four rows come from the papers of

Schur ([11]) and Zhang ([13]). The values of akm can be determined from
the continued fractions at (1.1) and (1.4) – (1.6). For the last two entries in
the S1(q) column, ε = (−1)(m−1)/4, this notation being employed to make
the table fit the width of the page.

We give the proof for S1(q) only, since the proof for each of the other
continued fractions is almost identical. One can easily check that S1(q) has
the form given at (2.2) and satisfies the condition at (2.3), with k = 2.
From the table (or the paper of Zhang [13]), S1(q) satisfies (2.8) with d = 8
and s = 1. Likewise, (2.9) is satisfied with η = 1/8. Conditions (2.10) are
satisfied with K0 = 2, K1 = 2, K2 = 1 and K3 = K4 = 1 (when m ≡ 1
mod 8). It is clear from row three of the table that (2.11) is satisfied,
provided we choose r 6≡ u mod 8. The conditions required by the theorem
are satisfied, and the result follows. �

3. Concluding Remarks

In proving the existence of an uncountable set of points on the unit circle
at which a q-continued fraction G(q) does not converge in the general sense,
our methods rely on knowing the behavior of the continued fraction at roots
of unity and, if q is a primitive m-th root of unity, on the fact that the
values of akm(q), Pkm−1(q), Qkm−2(q) and Qkm−1(q)Pkm−2(q) are fixed for
m belonging to certain arithmetic progressions (See (2.10)). Also important
is the number η from (2.9) which leads to the continued fraction H(q) taking
only finitely many values at roots of unity. Such q-continued fractions appear
to be quite special and it would interesting to have a complete classification
of them.

Our methods permit us to show the existence of a set of measure 0 at
which each of the continued fractions diverges generally. We conjecture that
each of these continued fraction diverges generally almost everywhere on the
unit circle although at present we do not see how to prove this. It would
be very interesting if a point on the unit circle which is not a root of unity
could be exhibited at which any one of the continued fractions which are
subject of Corollary 2 converged, in either the classical or general sense.

The most famous q-continued fraction after the Rogers-Ramanujan con-
tinued fraction is the Göllnitz-Gordon continued fraction, GG(q) (see (2.4)).
This continued fraction tends to the same limit as S2(q), for each q inside
the unit circle, but the behaviour at roots of unity is slightly different. As
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far as we are aware, its behaviour at roots of unity has not been studied.
Based on computer investigations, it would seem that GG(q) satisfies the
conditions of Theorem 3 and thus that the Göllnitz-Gordon continued frac-
tion diverges at uncountably many points on the unit circle. We hope to
show this in a later paper.
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