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Abstract

In the present paper we initiate the study of a certain kind of partition inequality,
by showing, for example, that if M ≥ 5 is an integer and the integers a and b are
relatively prime to M and satisfy 1 ≤ a < b < M/2, and the c(m,n) are defined by

1

(sqa, sqM−a; qM )∞
− 1

(sqb, sqM−b; qM )∞
:=

∑
m,n≥0

c(m,n)smqn,

then c(m,Mn) ≥ 0 for all integers m ≥ 0, n ≥ 0.

A similar result is proved for the integers d(m,n) defined by

(−sqa,−sqM−a; qM )∞ − (−sqb,−sqM−b; qM )∞ :=
∑
m,n≥0

d(m,n)smqn.

In each case there are obvious interpretations in terms of integer partitions. For
example, if p1,5(m,n) (respectively p2,5(m,n)) denotes the number of partitions of
n into exactly m parts ≡ ±1( mod 5) (respectively ≡ ±2( mod 5)), then for each
integer n ≥ 1,

p1,5(m, 5n) ≥ p2,5(m, 5n), 1 ≤ m ≤ 5n.

1. Introduction

The purpose of this paper is to initiate the study of certain types of partition

inequalities, which will be described below. Before coming to this refinement we

recall some of the previous results.

1This work was partially supported by a grant from the Simons Foundation (#209175 to James
Mc Laughlin).
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Let p1,5(n) (respectively p2,5(n)) denote the number of partitions of n into parts

≡ ±1( mod 5) (respectively ≡ ±2( mod 5)). As is well known,

∞∑
n=0

(p1,5(n)− p2,5(n))qn =
1

(q, q4; q5)∞
− 1

(q2, q3; q5)∞
(1)

=

∞∑
k=0

qk
2

(q; q)k
−
∞∑
k=0

qk
2+k

(q; q)k

=

∞∑
k=1

qk
2

(1− qk)

(q; q)k

=

∞∑
k=1

qk
2

(q; q)k−1
,

where the second equality follows from the Rogers-Ramanujan identities. If the final

series is expanded as a power series in q, the coefficient of qn is clearly non-negative

for all n, and thus that

p1,5(n)− p2,5(n) ≥ 0, for all n ∈ N. (2)

At the 1987 A.M.S. Institute on Theta Functions, Leon Ehrenpreis asked if (2)

could be proved without employing the Rogers-Ramanujan identities. In [6], Kadell

showed that this was possible by finding an injection from the set of partitions

counted by p2,5(n) into the set of partitions counted by p1,5(n). In [2], Berkovich

and Garvan extended this result by giving injective proofs of an infinite family of

partition inequalities implied by differences of finite q-products.

Theorem 1 (Berkovich and Garvan, [2]). Suppose L > 0, and 1 < r < m − 1.

Then the coefficients in the q-expansion of the difference of the two finite products

1

(q, qm−1; qm)L
− 1

(qr, qm−r; qm)L
(3)

are all nonnegative, if and only if r - (m− r) and (m− r) - r.

In [1], Andrews used his anti-telescoping technique to provide an alternative

answer to the question of Ehrenpreis. In the same paper he also proved two similar

results for the non-negativity of the coefficients of the power series deriving from

differences of finite q-products with modulus eight. One of these is contained in the

following theorem (which Andrews called the “finite little Göllnitz” theorem).

Theorem 2 (Andrews, [1]). If L > 0, and the sequence {fn} is defined by

∞∑
n=0

fnq
n =

1

(q, q5, q6; q8)L
− 1

(q2, q3, q7; q8)L
,

then fn ≥ 0, for all n ≥ 0.
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This result of Andrews was extended by Berkovich and Grizzell, who proved

combinatorially the following result ([3, Theorem 1.3]).

Theorem 3 (Berkovich and Grizzell, [3]). For any L > 0, and any odd y > 1, the

q-series expansion of

1

(q, qy+2, q2y; q2y+2)L
− 1

(q2, qy, q2y+1; q2y+2)L
=

∞∑
n=0

a(L, y, n)qn (4)

has only non-negative coefficients.

They also proved an extension (Theorem 4.1 in [3]) of the theorem above.

Theorem 4 (Berkovich and Grizzell, [3]). For any L > 0, and any odd y > 1, and

any x with 1 < x ≤ y + 2, the q-series expansion of

1

(q, qx, q2y; q2y+2)L
− 1

(q2, qy, q2y+1; q2y+2)L
=

∞∑
n=0

a(L, x, y, n)qn

has only non-negative coefficients.

The authors also give exact conditions under which the coefficients

a(L, y, n) and a(L, x, y, n) are equal to 0. Berkovich and Grizzell continued their

investigations in [4], where the following theorem is proved.

Theorem 5 (Berkovich and Grizzell, [4]). For any octuple of positive integers

(L,m, x, y, z, r, R, ρ), the q-series expansion of

1

(qx, qy, qz, qrx+Ry+ρz; qm)L
− 1

(qrx, qRy, qρz, qx+y+z; qm)L

=

∞∑
n=0

a(L, x, y, z, r, R, ρ, n)qn

has only non-negative coefficients.

In each of the above results, the finite q-products were all of the same order,

and the modulus in each case was the same power of q. In [5] they derived a result

involving finite q-products of two different orders, and with two different moduli.

Theorem 6 (Berkovich and Grizzell, [5]). For any positive integers m,n, y, and z,

with gcd(n, y) = 1, and integers K and L, with K ≥ L ≥ 0,

1

(qz; qm)K(qnyz; qnm)L
− 1

(qyz; qm)K(qnz; qnm)L
=

∞∑
k=0

a(K,L, x, y, z, n,m, k)qk

has only non-negative coefficients.
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Note that Berkovich and Grizzell proved all of their results combinatorially, and

that just as the statement at (1) was interpreted combinatorially at (2), each of the

statements proved by those authors for differences of q-products may be interpreted

in terms of inequalities for certain restricted partition functions.

For example (employing the notation of the authors in [3]), if P1(L, y, n) denotes

the number of partitions of n into parts ≡ 1, y + 2, 2y( mod (2y + 2)) with the

largest part less than (2y + 2)L and P2(L, y, n) denotes the number of partitions

of n into parts ≡ 2, y, 2y + 1( mod (2y + 2)) with the largest part also less than

(2y + 2)L, then Theorem 3 implies that

P1(L, y, n) ≥ P2(L, y, n)

for all positive integers L and n (recall that y is any odd integer greater than 1).

A refinement of the ordinary partition function p(n) is p(m,n), the number of

partitions of n into exactly m parts, since

p(1, n) + p(2, n) + · · ·+ p(n− 1, n) + p(n, n) = p(n).

This refinement leads naturally to a question that arises from the partition in-

equalities implied by the above theorems. Suppose p1(n) and p2(n) are two re-

stricted partition counting functions such that

p1(n) ≥ p2(n), for all n ∈ N.

Let p1(m,n) (respectively p2(m,n)) denote the number of partitions of the type

counted by p1(n) (respectively p2(n)) into exactly m parts. For which n (if any)

does it hold that

p1(m,n) ≥ p2(m,n), 1 ≤ m ≤ n?

Such questions are considered in the next section. An example of the results in

the present paper is the following.

Let p1,5(m,n) (respectively p2,5(m,n)) denote the number of partitions of n

into exactly m parts ≡ ±1( mod 5) (respectively ≡ ±2( mod 5)). Then, for each

integer n ≥ 1,

p1,5(m, 5n) ≥ p2,5(m, 5n), 1 ≤ m ≤ 5n.

This is illustrated for n = 4 (or 5n = 20) in Table 1 below.

2. Main Results

The example above follows as an implication of a special case of the next theorem.
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m p1,5(m, 20) p2,5(m, 20) m p1,5(m, 20) p2,5(m, 20)
1 0 0 11 1 0
2 4 4 12 2 0
3 0 0 13 0 0
4 5 5 14 1 0
5 4 3 15 1 0
6 2 2 16 0 0
7 4 3 17 1 0
8 1 1 18 0 0
9 2 1 19 0 0
10 2 1 20 1 0

Table 1: p1,5(m, 20) ≥ p2,5(m, 20), 1 ≤ m ≤ 20.

Theorem 7. Let M ≥ 5 be a positive integer, and let a and b be integers such that

1 ≤ a < b < M/2 and gcd(a,M) = gcd(b,M) = 1. Define the integers c(m,n) by

1

(sqa, sqM−a; qM )∞
− 1

(sqb, sqM−b; qM )∞
:=

∑
m,n≥0

c(m,n)smqn. (5)

(i) Then c(m,Mn) ≥ 0 for all integers m,n ≥ 0.

(ii) If, in addition, M is even, then c(m,Mn+M/2) ≥ 0 for all integers m,n ≥ 0.

Proof. We recall a special case of the q-binomial theorem:

∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
. (6)

Hence

1

(sqa, sqM−a; qM )∞
− 1

(sqb, sqM−b; qM )∞

=
∑
j,k≥0

sj+kqa(j−k)+kM

(qM ; qM )j(qM ; qM )k
−
∑
j,k≥0

sj+kqb(j−k)+kM

(qM ; qM )j(qM ; qM )k
. (7)

We fix the exponent of s by setting j + k =: m, so that j = m − k and the right

side of (7) becomes

∑
m≥0

sm
m∑
k=0

qa(m−2k)+kM − qb(m−2k)+kM

(qM ; qM )m−k(qM ; qM )k
. (8)

Next, we restrict the values of k so that when the inner sum is expanded as a power

series, it contains only those powers of q whose exponents are multiples of M (so

that the series multiplying sm is
∑∞
n=0 c(m,Mn)qMn).
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From the stated properties of a and b, it can be seen that what is needed is the

set of values of k for which m− 2k is a multiple of M . If m is even, then k = m/2

is such a value, and qa(m−2k)+kM − qb(m−2k)+kM = 0 in this case. Hence we need

only consider those k in the intervals 0 ≤ k < m/2 and m/2 < k ≤ m satisfying

m− 2k ≡ 0( mod M).

Next, notice that every such k′ in the upper interval may be expressed as k′ =

m − k, for some k in the lower interval, and every k in the lower interval can

be similarly matched with a k′ in the upper interval. Note that m − 2k ≡ 0(

mod M) ⇐⇒ m − 2(m − k) ≡ 0( mod M), and that the denominators of the

summands remain invariant under the transformation k ↔ m− k. Hence∑
m,n≥0

c(m,Mn)smqMn

=
∑
m≥0

sm
∑

0≤k<m/2

M |m−2k

qa(m−2k)+kM − qb(m−2k)+kM
+ q−a(m−2k)+(m−k)M − q−b(m−2k)+(m−k)M

(qM ; qM )m−k(qM ; qM )k

=
∑
m≥0

sm
∑

0≤k<m/2

M |m−2k

qa(m−2k)+kM (1− q(m−2k)(b−a))(1− q(m−2k)(M−b−a))
(qM ; qM )m−k(qM ; qM )k

Finally, (m − 2k)(b − a) and (m − 2k)(M − b − a) are each positive multiples of

M (since M |m − 2k), and the conditions on a and b give that they are different

multiples of M , each less than (m − k)M , so that the factors (1 − q(m−2k)(b−a))
and (1 − q(m−2k)(M−b−a)) are cancelled by two different factors in the q-product

(qM ; qM )m−k. The remaining factors in the denominators may be expanded as

geometric series with only non-negative coefficients, and the claim at (i) above

follows.

The claim at (ii) follows similarly, upon noting that

m− 2k ≡M/2( mod M)⇐⇒ m− 2(m− k) ≡ −M/2 ≡M/2( mod M).

We next compare the results in Theorem 7 with the result in the Theorem 1 of

Berkovich and Garvan. Our results are weaker than those of Berkovich and Garvan

in Theorem 1, in the sense that setting s = a = 1 in our theorem recovers only

the case L → ∞ in their theorem, and only in the the arithmetic progressions 0(

mod M) and M/2( mod M) (in the case M is even). However, in the case of these

arithmetic progressions, our result is stronger in two senses.

Firstly, the results hold for cases where a > 1, in contrast to the result in Theorem

1, which holds only when a = 1. Secondly, as we will see below, the inclusion of
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the parameter s allows us to give stronger partition interpretations, in that the

partition inequalities for integers in these arithmetic progressions also hold for any

particular fixed number of parts.

Corollary 1. Let M , a and b be as in Theorem 7. Let pa,M,m(n) denote the number

of partitions of n into exactly m parts ≡ ± a( mod M), and let pb,M,m(n) likewise

denote the number of partitions of n into exactly m parts ≡ ± b( mod M). Then

(i) pa,M,m(nM) ≥ pb,M,m(nM) for all integers n ≥ 1, and all integers m, 1 ≤
m ≤Mn.

(ii) If M is even, then pa,M,m(nM +M/2) ≥ pb,M,m(nM +M/2) for all integers

n ≥ 0, and integers m with 1 ≤ m ≤Mn+M/2.

Proof. Clearly from (5), pa,M,m(nM)−pb,M,m(nM) = c(m,Mn), so that (i) follows

from Theorem 7, and (ii) follows similarly.

We next prove a companion result to that in Theorem 7, one which has implica-

tions for the number of partitions into distinct parts.

Theorem 8. Let M ≥ 5 be a positive integer, and let a and b be integers such that

1 ≤ a < b < M/2 and gcd(a,M) = gcd(b,M) = 1. Define the integers d(m,n) by

(−sqa,−sqM−a; qM )∞ − (−sqb,−sqM−b; qM )∞ :=
∑
m,n≥0

d(m,n)smqn. (9)

(i) Then d(m,Mn) ≥ 0 for all integers m,n ≥ 0.

(ii) If, in addition, M is even, then d(m,Mn+M/2) ≥ 0 for all integers m,n ≥ 0.

Proof. We begin by recalling another special case of the q-binomial theorem:

∞∑
n=0

anqn(n−1)/2

(q; q)n
= (−a; q)∞. (10)

Hence

(−sqa,−sqM−a; qM )∞ − (−sqb,−sqM−b; qM )∞

=
∑
j,k≥0

sj+kqa(j−k)+kMqM [j(j−1)/2+k(k−1)/2]

(qM ; qM )j(qM ; qM )k

−
∑
j,k≥0

sj+kqb(j−k)+kMqM [j(j−1)/2+k(k−1)/2]

(qM ; qM )j(qM ; qM )k
(11)

We again fix the exponent of s by setting j + k =: m, so that j = m − k and the

right side of (11) becomes∑
m≥0

sm
m∑
k=0

(qa(m−2k)+kM − qb(m−2k)+kM )qM [(m−k)(m−k−1)/2+k(k−1)/2]

(qM ; qM )m−k(qM ; qM )k
(12)
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Note that the factor (qa(m−2k)+kM − qb(m−2k)+kM ) in (12) is the same as that in

the numerator of (8), and that the rest of the summand in (12) remains invariant

under the transformation k ←→ m− k. Hence the remainder of the proof parallels

that of Theorem 7, and so is omitted.

The result in Theorem 8 may be interpreted in terms of certain restricted parti-

tions into distinct parts.

Corollary 2. Let M , a and b be as in Theorem 8. Let p∗a,M,m(n) denote the number

of partitions of n into exactly m distinct parts ≡ ± a( mod M), and let p∗b,M,m(n)

denote the number of partitions of n into exactly m distinct parts ≡ ± b( mod M).

Then

(i) p∗a,M,m(nM) ≥ p∗b,M,m(nM) for all integers n ≥ 1, and all integers m, 1 ≤
m ≤Mn.

(ii) If M is even, then p∗a,M,m(nM +M/2) ≥ p∗b,M,m(nM +M/2) for all integers

n ≥ 0, and integers m with 1 ≤ m ≤Mn+M/2.

Proof. The proof is immediate from Theorem 8, since from (9),

p∗a,M,m(nM)− p∗b,M,m(nM) = d(m,Mn),

so that (i) follows. The claim at (ii) follows similarly.

3. Concluding Remarks

A number of obvious questions present themselves.

1. Are there combinatorial proofs of the inequalities in Corollaries 1 and 2?

More precisely, is there an injection from the partitions counted by pb,M,m(nM)

to those counted by pa,M,m(nM), and an injection from the partitions counted by

p∗b,M,m(nM) to those counted by p∗a,M,m(nM)?

2. Are there any cases where “finite” versions of Theorems 7 and 8 hold, in the

sense that if the “∞” in the infinite products is replaced by a positive integer L to

give finite products, then all integers c(m,Mn) and d(m,Mn) are still non-negative?

3. Theorem 7 may be thought of as a partial refinement/extension of Theorem

1. Do any of the other theorems in the introduction have similar partial refine-

ment/extensions?

4. It seems that Theorem 7 is not the end of the story for the type of infinite

product difference shown on the left side of (5). For example, if

1

(sq3, sq13; q16)∞
− 1

(sq7, sq9; q16)∞
:=

∑
m,n≥0

c(m,n)smqn, (13)
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then numerical evidence suggests that

c(m, 16n+ 12) ≥ 0, for all n ≥ 0, 1 ≤ m ≤ 16n+ 12, (14)

c(m, 16n+ 15) ≥ 0, for all n ≥ 0, 1 ≤ m ≤ 16n+ 15. (15)

These observations motivate the following general problem.

Let M ≥ 5 be a positive integer, and let a, b and r be integers such that 1 ≤ a <
b < M/2 and gcd(a,M) = gcd(b,M) = 1 and define the integers c(a, b,M,m, n) by

1

(sqa, sqM−a; qM )∞
− 1

(sqb, sqM−b; qM )∞
:=

∑
m,n≥0

c(a, b,M,m, n)smqn.

Find all quadruples (M,a, b, r) such that

c(a, b,M,m,Mn+ r) ≥ 0, for all n ≥ 0, for all m ∈ [1,Mn+ r]. (16)

To help motivate further study of the problem, we list some such quadruples

(M,a, b, r) in the table below, values not given by Theorem 7 and for which exper-

imental evidence suggests (16) holds.

M a b r
12 1 5 3, 4
16 1 5 4

1 7 3,4,6
3 7 12,15

18 1 7 3,5,6
20 1 9 3,4,5,6,8

3 7 4,15
3 9 1,12,15

24 1 5 6
1 7 4,8,9
1 11 3,4,5,6,8,10
5 11 1,6,16,20,21
7 11 8,18

Table 2: Quadruples (M,a, b, r) not given by Theorem 7 and for which experimental
evidence suggests (16) holds.

Note that M is even for all values in the table.

Of course any set of values for M , a, b and r for which (16) holds also implies an

infinite family of partition inequalities. Let M , a, b and r such that (16) holds. If

pa,M (m,n) (respectively pb,M (m,n)) denotes the number of partitions of the integer

n into exactly m parts ≡ ±a( mod M) (respectively ≡ ±b( mod M)), then for all

positive integers n, and all m ∈ [1,Mn+ r],

pa,M (m,Mn+ r) ≥ pb,M (m,Mn+ r). (17)
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5. Likewise, it seems that Theorem 8 is not the end of the story either, for the

type of infinite product difference shown on the left side of (9). Let M ≥ 8 be an

even positive integer, and let a and b be integers such that 1 ≤ a < b < M/2 and

gcd(a,M) = gcd(b,M) = 1. Define the polynomials pa,b,M,n(s) by

(−sqa,−sqM−a; qM )∞ − (−sqb,−sqM−b; qM )∞ :=
∑
n≥0

pa,b,M,n(s)qn. (18)

Experimental evidence appears to suggest that if r is any fixed integer, 0 ≤ r ≤
M − 1, then for all n ≥ 0, all of the coefficients of pa,b,M,Mn+r(s) have the same

sign. As an example, p1,3,8,n(s) is shown in the following table for 320 ≤ n ≤ 327.

n p1,3,8,n(s)

320 3s8
(
s2 + 5

)
321 s

(
249s10 + 3872s8 + 8355s6 + 3705s4 + 273s2 + 1

)
322 s4

(
10s8 + 614s6 + 2367s4 + 1424s2 + 127

)
323 −s

(
161s10 + 2775s8 + 6858s6 + 3380s4 + 267s2 + 1

)
324 s4

(
2s8 + 141s6 + 391s4 + 123s2 + 3

)
325 −s

(
266s10 + 4010s8 + 8729s6 + 3862s4 + 280s2 + 1

)
326 −s4

(
10s8 + 548s6 + 2154s4 + 1375s2 + 127

)
327 s

(
228s10 + 3474s8 + 7728s6 + 3582s4 + 273s2 + 1

)
Table 3: The coefficients in p1,3,8,n(s) all have the same sign, 320 ≤ n ≤ 327.

This pattern of signs for all of the coefficients of p1,3,8,n(s) in Table 3, namely

+,+,+, −,+,−,−,+, repeats modulo 8, as n cycles through the various residue

classes modulo 8 (this was checked up to n = 1920). At this point we are unable to

say if this pattern eventually breaks down for n large enough, or if it holds for all

even M ≥ 8. No similar patterns appear to hold for M odd.

We leave it to others to hopefully cast further light on these questions.
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