GENERAL WP-BAILEY CHAINS

JAMES MC LAUGHLIN AND PETER ZIMMER

ABSTRACT. Motivated by a recent paper of Liu and Ma, we describe a
number of general WP-Bailey chains. We show that many of the existing
WP-Bailey chains (or branches of the WP-Bailey tree), including chains
found by Andrews, Warnaar and Liu and Ma, arise as special cases of
these general WP-Bailey chains.

We exhibit three new branches of the WP-Bailey tree, branches which
also follow as special cases of these general WP-Bailey chains.

Finally, we describe a number of new transformation formulae for
basic hypergeometric series which arise as consequences of these new
WP-Bailey chains.

1. INTRODUCTION

Andrews [1], following on from prior work of Bressoud [6] and Singh [13],
defined a WP-Bailey pair to be a pair of sequences (ay(a, k,q), Bn(a,k,q))
(if the context is clear, we occasionally suppress the dependence on ¢ and
write (an(a, k), Bn(a, k))) satisfying

(1.1)
a _ - (k/GSQ)n—j(k’?(Dn—i—ja' a
fn(a,k,q) ; (4 On—j (ag; @)t ia:k,9)

k/akqn = q);(kq";q); qa\J
(ag.4;9)n Z 1 "/k 0)j(ag";q); <?) (@ k,q)-

]:

Andrews also showed in [1] that there were two distinct ways to construct
new WP-Bailey pairs from a given pair (see (2.6) and (2.7) below). These
two constructions allowed a “tree” of WP-Bailey pairs to be generated from
a single WP-Bailey pair. Andrews and Berkovich [2] further investigated
these two branches of the WP-Bailey tree, in the process deriving many new
transformations for basic hypergeometric series. Spiridonov [16] derived
an elliptic generalization of Andrews first WP-Bailey chain, and Warnaar
[18] added four new branches to the WP-Bailey tree (see (2.8), (3.4), (3.5)
and (3.11) below), two of which had generalizations to the elliptic level.
More recently, and motivated in part by the papers above, Liu and Ma [9]
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introduced the idea of a general WP-Bailey chain (as a solution to a system
of linear equations), and added one new branch to the WP-Bailey tree (see
(2.9) below).

Motivated by Liu and Ma’s concept of a general WP-Bailey pair, in the
present paper we reformulate their construction in terms of the more stan-
dard (a, k) notation and also derive three other general WP-Bailey chains.
We show that all the WP-Bailey chains referred to above arise as special
cases of these general chains.

We further derive three new WP-Bailey chains from these general chains.
Lastly, we find many new transformations of basic hypergeometric series, by
inserting known WP-Bailey pairs into these three new WP-Bailey chains.

2. THE GENERAL WP-BAILEY CHAIN OF L1U AND MA
Liu and Ma [9] defined a WP-Bailey chain as follows:
Definition 1. Any pair of sequences {a,(t,b)} and {B,(t,b)} satisfying

n

(2'1) Z bt q n-H b Q) Z‘(t,b)

n % tq Q)n—i—z

1=

is called a well-poised (in short, WP) Bailey pair w.r.t. the parameters t
and b, denoted by (o, (t,b), Bn(t,b)). Further, if for n > 0, the sequences

{al (t, )} and {B,(t,c)} defined by
(2.2) al (t,¢) = Apan(t,b),

= Z dn,iBi(t, b)
=0

is still a WP-Bailey pair w.r.t. the parameters t and c, then the iterative
process from (ap(t,b), Bn(t,0)) to (al,(t,c), B, (t,¢)) is said to be a WP-Bailey
chain.

The authors point out in [9] that the X, and the d,,; always satisfy

n

(bt; q ik (D @)k (ct; Q)ntx(C Qn—r
2.3 LIy A
(2:3) Z k(P @)tk (6 Dn—r(t¢; Dt

n,i k>

1=

and then proceed, using infinite matrices, to invert (2.3) to find expressions
for the d,, 1, as sums over the \;.

For our purposes, we reformulate their result using the more usual nota-
tion in which (ay,(a, k), Bn(a, k)) denotes a WP-Bailey pair, using a single
sequence g, (replacing their \,,), and giving a more direct proof which avoids
the use of infinite matrices. Before proceeding to this, we first recall the fol-
lowing necessary result of Warnaar.
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Lemma 1 (Warnaar, [18]). For a and k indeterminates the following equa-
tions are equivalent:

~ (k/a)n—j(k)n+;
(24) ﬂn(aak)zz( / ) ]( ) +Jj

=0 (Q)n—j (G’Q)n-i-j

(e k) 1 —ag*™ Z 1 —k:q% a/k Jn—j(@)n+; <k>nj Bi(a, k).

1—a In—i(k@)n+; \a

aj(a, k),

If @ and k are mterchanged in the second equation, we also note for later
that Lemma 1 implies the following.

Corollary 1. If (an(a, k), Bn(a,k)) are a WP-Bailey pair, then so are
(ol (a,k), B, (a,k)), where

ol (k) = L9 (’“)nw,a),

1—-a a
1-k E\"

Theorem 1. Suppose that (ca(a, k), Bu(a,k)) satisfy (1.1), that g, is an
arbitrary sequence of functions and ¢ and e are arbitrary constants. Then
(ol (a, k), Bh(a,k)) also satisfy (1.1), where

(2.5) o (a,k) = gnan(e,c),

1 — cq®)(k/a; Q)n—j (k; @)ntj (eq; q)2;
z Bj(e (1 =) (@ O)n—5(aq: Q)ntj(cq; q)2;

) nzf 2]+2r)(q—(n—j) kq"+j, e/c, quj; q)T (qaC)r
(1- eq2J (aq"H 71 ag =D [k, cq?*T g; q), \ ke ) I

Proof. It a/,(a, k) is as given, then

' (a _ = (k/a)n—r(k)n+tr aule. ¢
Br(a, k) ; (@nr(aq)nir grar(e;c)
- (k/a)n—r(K)n+r §

0 <Q)n—r(GQ)n+r

1—eq Z 1 —cq¥ 6/0 r—j(€)r+j (f)rijﬁj(e,C)

r=

1—e 1-—c¢ Jr—j(cq)r+; \e

% Z k/a n—r(E)nr 11— eq2r (e/c)r—j(e)r+j (C)T_j

n T(CLQ)n—i-r "l-e (Q)r—j(CQ)r—i—j g
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_Zl—cq Bi(e, )

(k/a)n r— ](k)n+r+j +.1 - €q2T+2j (e
—0 (Q)nfrf] (CLQ)n+r+j ! 1

3
m

C)r(€)ry2; (C)T

/ c
—€ (Q)r(CQ)rHj e

_ z": 1 — cq¥ Bi(e,0) (k/a)n—j(k)n+j(eq)2;

= 1—c (@)n—j(aq)ntj(cq)2;

% g 1-— eq27”+2j (q_(n_j), k?an, G/C, quj; Q)r (ﬂ)r Gr+i
1—eq? (aqi=(=9) [k, aqni+L, cq% 1, q;q), \ ke ) 777

O

Of course, from the perspective of adding branches to the WP-Bailey tree,
what is desirable is to choose e and ¢ and the sequence g,, so as to make the
inner sum over r above have closed form.

It is shown in [9] that Andrews’ first WP-Bailey chain in [1] follows as a
special case of their theorem, and the authors also find a new WP-Bailey
chain as another special case. In fact Andrews’ second WP-Bailey chain in
[1] and the first WP-Bailey chain of Warnaar in [18] also follow as special
cases. Since our notation is somewhat different from that of Liu and Ma [9],
for completeness we show how all four WP Bailey chains follow as special
cases of Theorem 1.

Corollary 2. If (an(a, k), Bn(a,k)) satisfy (1.1), then so do (o, (a, k),

510.19) and (. ), e 19) (1], (b, ), A 19 (15 andt a0, ),
B (a,k)) [9], where

/ _ (p1,p2)n aq ”a a,c ndrews
(26) (@ k) = Gor agfp)n <p1p2> (0 (dndrews 1)

(kp1/a,kpa/a)n
(aq/p1,aq/p2)n

"L (1—cq¥)(p1,p2);(k/)n—i(k)ntj ag \’ o
]Z:% (1_0)(kp1/a, ka/a)n( )n_](qc)nﬂ- (p1p2> ﬁj( ’ )7

with ¢ = kp1pa/aq;

/B;L(aﬂ k) -

& = (qaz/k)% 7]{2 na a,c narews
(2.7) anla, k) = o <qa2> n(a,c), (Andrews [1])

o N R aay (KRN

Bn( 7]<7) - ]go (Q)n—j <qa2> ﬁ]( ’ )a

with ¢ = qa®/k;
(2.8) (Warnaar [18])
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_71/2 n 111/2 (02 - 2\ "
1 -k 1+q¢"a/k/" (a%/k;q)an (K~ on(a,0)
1—q k2 1+a/kY2  (k;q)om

a?

1 — kl/2 1—|—qja/k1/2 (k/c;q) k2 J

ta. k) = E n=j :
Pl k) L= gk = 1+a/k'V? (¢ ( >ﬁj(a’c)’

af(a, k) =

a?

with ¢ = a®/k (we consider just the ¢ = 1 case of Warnaar’s theorem here);

(2.9)  (Liu and Ma [9])

. _ @k @ (RN
an(a’k)_ (k‘q;q2) ( a ) n( ) )a

/2] | a2t ne2j

Bi(a, k) = Z 1- 5 : (k; 4*)n—j (K*/a*; 4*); <_k> Zjﬁ —2j(a,c)

T S e @Rk \ e e
with ¢ = a? k.

Proof. In each case we apply Theorem 1, letting e = a and g,, be the factor
multiplying ay,(a,c) in each of the WP-Bailey chains listed above. That
the inner sum over r in (2.5) has a closed form and that the stated expres-
sions for the various 3.,V (a, k) above now hold, follow as a consequence of,

respectively, Jackson’s sum of a terminating g¢r,
1/2 _ . 1/2 b d —-n

a,qa’=, —qa'=, 0, ¢, d, €, 4
2.1
(210) 897 1112 4112 ag/b, ag/e, aq/d, ag/e, ag
_ (ag, aq/be, ag/bd, ag/cd; q)n

(ag/b,aq/c,aq/d, aq/bed; q)n’

where a%q = bedeq™™, the following formulae (see [8, problem 2.12] and [2,
Equation (3.2)], respectively):

g aqg _ag k n o ,—n
(211) 10¢9 [a’ Q\/> q\/a CL\/>, \/;7 \/E’ ) Ig’ aq17_fq ) q ’q’q]
f? fa V ’ \/ ’ f7 f7 akq ) aqk ’ aqn+1

n+1;Q7q

g a _ a9 k kg™ g~
(212) 10¢9 a, Q\f Q\/6 CL\/7, k' Uk’ @7 aiinq » 4 1q,q
a, a, V ’ ; Q\f \/E Ma “ ) aanrl
k k

(aq, \/E,’(%i;q)n
( & qVE; q)

)
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and a g-analogue of Watson’s 3F» sum (see [8, 11.16]),

5 A, VA, =gV, ¢ bg™, A/q/b, —A\/q/b, b/ _@
LV =V, AL A b, A2q/b N R
0, n odd
=< O n (@0%/A%50%) 02

(b/X; @)n (bq, 2N /b5¢2)

n eveln.

0

Before describing and proving a new WP-Bailey chain which follows from
Theorem 1, we need a preliminary result.

Lemma 2.

— __a @ n —-n

(213) IO(Z)Q [a Q\/> C]\/a a\/;a \/>, \/E’ \/E; aa;iﬁq y 4 1;q, q]
fv fv \% Q) \% Q) q\/>7 q\/>7 %7 qTa aqn+
2

11—k (afb %5 q)n
1 _ 52 k.

1 kq " (k’ a’ q)n
Proof. In Bailey’s transformation (see [8], I11.28),

a, ¢v/a, —q\/a, b, ¢, d, e, f, Nag" Jef, ¢~
1) win | ol e e s fo )
_ (ag,aq/ef, Aq/e, A/ f;q),
(ag/e,aq/f, Aq/ef, Ag; q),,
X, ¢V A, =gV A\, \b/a, Aeja, Md/a, e, f, hag" T Jef, ¢~ }
VA, =V/A, aq/b, ag/c, aq/d, Aq/e, Mq/f.efq"/a, Aq”“’q’q ’

where X\ = ga?/bed, set b = ar/q/k, ¢ = —a\/q/k, d = k/aq, e = aq/Vk
and f = —aq/V'k, so that A = —aq. The left side of (2.14) becomes the left
side of (2.11), and so equals the right side of (2.11). The result follows upon
replacing a with —a/q, after some simple manipulations. ([

X 1009 [

The next WP-Bailey chain appears to be new.

Corollary 3. If (an(a, k,q), Bn(a,k,q)) satisfy (1.1), then so do (o, (a, k,q),
Bn(a, k. q)), where

(2.15)

a” , k2q
/ k; — < 2n 1
ok = ()

Brlak,q) = 1 1_k y <E 22;><k j) <If?>ﬂj<a’lcj;’q>‘
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Proof. Set e = a, ¢ = a?/kq, g, = (k*q/a® ) (a?/k; q)gn/(k:q, q)2n in Theorem
1, and use (2.13), with a replaced with ag®’ and k with kg?/, to put the inner
sum over 7 at (2.5) in closed form, and simplify the resultlng sum. O

Remarks: 1) We note the similarities between this WP-Bailey chain and
the second chain of Andrews at (2.7), including the fact that a double ap-
plication of this construction returns the original WP-Bailey pair.

2) Upon inserting the unit WP-Bailey pair (4.1) in this chain, we get the
pair

1— 2n k . 2 k- k n
210 ek = L2 b st (1"
l—a (q,0*/k;q)n (kg;q)2n \a
1—k (qk2/a2; Q)n
L—ke*  (q@)n
which can also be derived by applying Corollary 1 to the pair at (4.14).
3) The small number of summation formulae for terminating basic hyper-
geometric series would tend to suggest that there are not many WP-Bailey

chains which follow from Theorem 1. With this in mind, we turn to new
general WP-Bailey chains.

Bnla,q) =

3. NEw GENERAL WP-BAILEY CHAINS AND THEIR CONSEQUENCES

Motivated by Warnaar’s other WP-Bailey chains in [18], we now consider
some new general WP-Bailey chains.

Theorem 2. Suppose that (an(a,k,q), Bnla,k,q)) satisfy (1.1), that gy, is
an arbitrary sequence of functions and that e and c are arbitrary constants.
Then (o, (a,k,q), B, (a,k,q)) also satisfy (1.1), where

(3'1) o (CL k Q) = gnan(e ¢, q2)

oc. (1 —cq¥)(k/a; @)n—j(k; @)ntj(eq® q*)a;
Zﬂf D) 0= (@ D@ Dress (e P,

' (a,k,q) =

y ”Z” eq ) (gD kg5 q),(e/e, eq; %) gr (@)
(T e ) 77 a0 [ e 77, s ()

—
Proof. As previously, if o/, (a, k, q) is as given, then

67,1 (CL, k, Q) = Z (k/a)n—r(k)n—i-r grar(ea Cy q2)

—0 (Dn—r(aq)n+r

_Z k/an 7" n+rgr

n r CLQ)nJrr

1—eq Zl—cq 6/CQ)r 564+ (E>T ]ﬂg(ecq)

1-c 2)r—](cq ) )7"+J e
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" (k) (K)per 1 — eq™ ec;Qr_je;er c\"—J
XZ(/) (K)n+ q" (e/ciq”) (Q)+()

g ¢
(Dn—r(a@Qntr 7 1—a (¢%5¢%)r—j(ca?; ¢%)rtj \e

r=j
n—j

_Zl—cqj (e,¢,q )Z(k/a)n r— ](k)n+7‘+j

(Q)nfrfj (GQ)n+T+j

1- eq”*‘” (e/c; @*)r(e; q%)rr2; <c>r

X g +7 —
o 1—e (qz'q2)r(cq2'q2)r+zj

e

4r4-4j

:anl__afjﬂj(e,aq )(k/a)” 5 (R)nj (ea?; a*)o; Z 1 —eq

(@)n—j(aq)ntj(cq?; ¢%) 1 —eq

(¢, kq"t; q)r(e/c, eq" ;Q)r (@)Tg .
(ag" == [k, aq I+ q), (g 42, g% ¢2), \ ke ) T

O

As with Theorem 1, the aim is to find choices for the sequence g, and the
parameters e and ¢ which lead to the inner sum over r above having closed
form. We believe the following WP-Bailey chain to be new.

Corollary 4. If (an(a, k,q), Bn(a,k,q)) satisfy (1.1), then so do (o, (a, k,q),
Bn(a,k,q)), where

14+a ak
3.2 ! k,q) = ——q" 2P
( ) an(a7 7q) 1 + ann q an (a ) q 7q ) I

ak 4j qk. 2
B (ak,q) = z”: <1 _ 7kq4]) (—aq; q)2; <q“2’q2>n—j (/{2;(]22)n+j
j=0 (1 - %) (=k;@)2; (4%6*)n—j (akq; q*)n+;

14+a 5 ak
X ————— ¢’ 3; — :
T+ aq T <a gt
Proof. Set e = a%, ¢ = ak/q, gn = (1 + a)q"/(1 + ag*®) in Theorem 2, and

use (2.10) to put the inner sum over r at (3.1) in closed form, and simplify
the resulting sum. O

Remark: Somewhat curiously, inserting the unit pair (4.1) in this chain
leads to a pair that is the special case p; = —p2 = \/aq/k of Singh’s WP-
Bailey pair at (4.2).

In Theorem 3 we showed how to derive new general WP-Bailey pairs
(o (a,k,q), B (a,k,q)) in terms of (a,(e,c,q?), Bule, c,q?)), where
(an(a,k,q), Bn(a,k,q)) is an existing WP-Bailey pair. It is also possible to
derive new general WP-Bailey pairs in terms of (ay (e, ¢, ¢1/2), Bn(e, ¢, ¢'/?)),
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but for aesthetic reasons we replace ¢'/2

theorem.

by q everywhere, to get the following

Theorem 3. Suppose that (o, (a,k,q), Bn(a, k,q)) satisfy (1.1), that gy, is
an arbitrary sequence of functions and that e and ¢ are arbitrary constants.
Then (o, (a, k,q), B, (a,k,q)) also satisfy (1.1), where

(33) o, (a k q2) = gnan(e ¢, Q)

e 1 _cqzj)(k‘/a q )n J(k q )n+](eQ7Q)
Zﬁj —¢)(¢%q )n—](aq 14 )n+](cq,q)2]

XRE:J eq?2) (g2 9 kg? 22, (e/c, 4% q)rgryj (dPca”
(1 - eq¥)(ag? 2712, aq>=2=0) [k; ¢) (cg® ™+, g5 q)r \ ke

ak:q

We omit the proof as it follows very similar lines to the proofs of Theorems
1 and 2. Warnaar’s WP-Bailey chains in Theorems 2.4 and 2.5 of [18] follows
as a special case of the theorem above (we use \/a where Warnaar uses a,
so as to keep the parameters in the new WP Bailey pairs as a and k).

Corollary 5 (Warnaar, [18]). If (an(a, k,q), Bn(a, k, q)) satisfy (1.1), then
so do (a%(av k, Q);ﬁqlv,(az k, Q))’ where

(34) aly(ak.¢?) = an <\/6, qqu) ,
(), ¢ (2 88) (), oy

(—av/a; q)on = (1 —~ ﬁ) (4% 4%)n—s (kj’q ) i

()8 e

Proof. Set e = +/a, c = k/q\/a, gn, = 1, use (2.10) to get the inner sum over
7 in (3.3) in closed form, and the result follows after some simple manipu-
lations. g

Bl (a,k,q%) =

Corollary 6 (Warnaar, [18]). If (an(a,k,q), Bn(a, k,q)) satisfy (1.1), then
so do (o, (a,k,q),B,(a, k,q)), where

1 2n k
(35) a%(a, ka q2) = q_nﬂan <\/67 T Q> )

n <%;q>zn - (1 - k%) (59 0sy  (k5¢%)nsy
k

B (a,k,q*) =q
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Proof. Set ¢ = a, ¢ = k/\/a, gn = ¢~"(1 + vag")/(1 + v/a). To get
the inner sum over r in (3.3) in closed form, we use the following result of
Andrews and Berkovich [2] (we replace \/q with ¢):

(3.6) 10 Wo(Va;iga'/*, —iga** Vkq", —Vkq", ¢, —¢ ", a/k; ¢;q)
(ag®,a/k; ¢*)n (—kq/v/a; Q)2n <k>”
(k/a,k%/a;6%)n  (Va;q)2n ’

aq
with a replaced with ag®, k with kg% and n with n — j. The result follows
once again, after some g-product manipulations. ([l

The next result also appears to be new.

Corollary 7. If (an(a, k, q), Bn(a, k, q)) satisfy (1.1), then so do (o, (a, k,q),
Br(a, k,q)), where

37 ahfahe?) =an (Va ).
(\_/—]g;q)% Zn: (1 B k2;14j) (%;q2)n—j (kQ q2)n+j
(—4v/a;q)an = ( _%) (4% ¢*)n— (ﬁ

() )

Proof. Set e = y/a, ¢ = k/+/a, g, = 1. This time, to get the inner sum over
r in (3.3) in closed form, we use the following result of Warnaar [18]:

Bl (a,k,¢*) =

(3.8) s Wr(a;b,aq"/Vb, —aq"/Vb,q™", —q" " ¢;4%)
_ (=a/b;q)an  (a®¢?,b;6°)n (g)n
(—aq; q)2n (1/b,a%¢?/b%¢?)n \b/ ’

with a replaced with \/aq?, b with a/k and n with n— j. The result follows,
as above, after some g-product manipulations. O

Inserting the unit pair (4.1) in this chain gives the pair

by~ Lo Ve (Va g va), (R
(3.9) nlakg) =57 (\/M\/g;\/a)n <a> :
ﬂn(a,k,q): <_%;\/a)2n (%,k;q)n (k;/a)”7

(=v/aG: /1), (%,q; q)n

which is somewhat reminiscent of Bressoud’s pair at (4.10).
Motivated by Warnaar’s Theorem 2.6 in [18], we also have the following
general WP-Bailey chain.
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Theorem 4. Suppose that (an(a,k,q), Bu(a, k,q)) satisfy (1.1), that gy is
an arbitrary sequence of functions and that e and c are arbitrary constants.

Then (a),(a, k,q), Bl (a,k,q)) also satisfy (1.1), where
(3.10) aby(a,k,q) = gnanle,c.q®),  azati(a,k,q) =0,

(1 cq¥) (5:4),,_y; (ks @)nt2i(eq? %)z
Zﬁ] &60) (1 = o) (@ O)n—2j(aq; Q)n+25(cq?; 42)2;

y Z 4”47")((1‘(”‘2” kg% q)ar(e/c,eqV s q?)rgryj [ qPca®\"
1—661‘“ (ag 2+ ag' =("=2) [k; q)9, (cq¥t2, g2, ¢2)r \ K2e

B(ak,q) =

[n/2] J

Once again, we omit the proof, since it is very similar to the proofs of the
other theorems above.

Upon setting g, = 1, e = a and ¢ = k?/a, and once again using (2.10),
we obtain the WP-Bailey chain of Warnaar in Theorem 2.6 of [18].

Corollary 8 (Warnaar, [18]). If (an(a,k,q), Bn(a, k,q)) satisfy (1.1), then
so do (o, (a, k,q), B,(a, k, q)), where

k2
(311) 0/271(@’ k;aQ) = Qn (CL, a,q2> ) 0/271-1—1(@7 kv Q) =0

(kz 4q ) anm (1 - @) (%;q)n—Zj (k3 @)ns2j

(aq,q )n — (1 _ ﬁ) (Q§ Q)n—Qj (@ )
j=0 a a 1 q n+2j

o n—2j 2
()" n (o).
a

B (a,k,q) =

4. TRANSFORMATION FORMULAE FOR BASIC HYPERGEOMETRIC SERIES

We next describe a number of transformations of basic hypergeometric
series which follow from the new WP-Bailey chains described in Corollaries
3,4 and 7.

Before proceeding, we remark that the ten or more WP-Bailey chains that
presently exist potentially give rise to two hundred or more transformations
between basic hypergeometric series, most of which have probably not been
written down (by inserting the ten or more WP-Bailey pairs and their “du-
als” via Corollary 1 into the ten or more existing WP-Bailey chains, ignoring
possible duplication (which is why we write “potentially”)).

Inserting the unit WP-Bailey pair (see [2] for example, where this WP-
Bailey pair, and others employed below, may be found),

(v, —qva,a,a/k; q)n (K"
(4.1) an(a, k) = (Va, =va,q, kq; ¢)n <a>

By (a, k) = {1 n =0,

0, n>1,
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into (2.15) leads (perhaps not surprisingly) to (2.13). Upon substituting
Singh’s WP-Bailey pair [13],

an(ak) = D/ —av/a,a, p1, p2.a*q/kp1p2; @) <k>"
’ (Va, —v/a,q,aq/p1,aq/p2, kp1p2/a; q)n ’
Bo(a, k) = Epr/a-Kpa/ask, aq/prpai @)
’ (aq/p1,aq/p2,kpip2/a,q;q)n

(4.2)

into (2.15) we get the following transformation:
(4.3)
kq® n ,—n
a qf Q\/a a\/77 \/7 7_L7p17p2777kq »d
12011 vk e 1454

n

1—
fv \/>7 \/ ) \/ 7q\/>7 q\/> %7 ﬂa %a (WTaaqn+1

7 p1? p2
k‘2
11—k (aq, o q)

a? a2 api ap2 _aq -n
_ 0% kq’ kq’ kq> kg’ kq’ p1p2’q :q,q
1—kg*™ (k% q) ﬁﬂﬂmaq” '
Ta’t/n kq’ kq' p17p2’ kg 0 k2

It is easy to recognize this as Bailey’s 19sW11 — 7¢g transformation (see
[8, II1.27]). Note that (2.13) follows immediately from (4.3), upon setting
p1 = aq/p2. Inserting the pair

 (eva, —qva,a,k/ag; @)n (g0®/k; @)2n (K"

(4.4) Oén(a7 k) - (\/’7 _\/&7% a2q2/k:;q)n (k;q)% (a) ’
(k2/qa*; @)n

(¢

Bn(a, k) =

i

into (2.15) leads to

an\[ _Q\/&a %a_a\/;7q\/ y —4V Q7k27kq »q -
\/> f \% Q7 \/ 57 avkqfﬂ’aqk"’aqnﬁ-

. 2 2 2 _
1k (aq,az,Q)nm U\ &g~ kg 725 4 ”.qq
- — 2 k. 3 2 2 2,—n )1

1 kq” (kj’g7q)n \/%qa_\/%qaalg2

(4.5) 1009

14,

Similarly, inserting the pair

(W’—W@v“’“ﬁ’—“ kﬁ ~hehsa), [y

a

(4.6) apla, k)=
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into (2.15) leads to
A7) s a,qv/a, —q+/a, —a\[, —avkq, 15.kq", q ”'q .
. 8PT7 1-n s 4y
\/> f Vkq, \/*a kq2 aqk qn+
. 2 —
B 1—k <aqa77q>n 5¢4 Q\/Z%,—Q\/a%a%qakngaq n.q q
- k. 2. —n )y 1
1—kq2n (kagaQ)n \/%27_ azaa/ %7a]32
Substituting the pair
0, if n is odd,
(4.8) an(a, k) = q (Ve —*Va,a,a®/k¢%) ) on
(Va, —va, 4, 4*k? /a; q2)n/2 (5) , ifn s even,
oh (k. kv/a/a, —k\/afa, a/ks q) <_k>
a, = - 3
! (Vag, —\/aq, gk*/a, ¢; q)n a
into (2.15) leads to
(4.9)
16Wis (a \/7 \/7 q —aq \/77_‘1(1\/%» kag 7kqnxkqn+1xqin7qlin;q2;q2)
kq. a2 kg
_ 1—k (CL(L azaQ)n7¢6 \;’%7 \(/ML kq’Z\/E _% %,qu nqq
1—kq2n (k E.q) a4 _a_ )y 45 )
’a’ n \/@7 \/Eu\/ ’ \/ 7k2q7 k2
a result reminiscent of (3.14) in [2].
We next turn to two WP-Bailey pairs found by Bressoud [5]. Inserting

the pair

(4.10) am(a, k) = 1 —Vag" (\/a’T;\/a)” <ak >n

_k'
Boaky = P H0a (), [k y"
n\Q, - &2 a\/a
into (2.15), and then replacing v/a with a, v’k with k and /g with g, gives

(4.11)
- (q\/a’ _Q\/&7 a, k‘2q3




14 JAMES MC LAUGHLIN AND PETER ZIMMER

1 k2 (a2q2 k442 q )

— ) a )

=1 k2q4n <k2 k2, )
n

’a2’
a?¢® _a?¢® o' —a® —a® K’¢' —on 2
kq ’ kqak227k227k27a27q 5 a
X 7¢6 a2 a®  atqg2n 5 q akz )
kq’ kqv_aq aq P EEgE T RT

an identity similar to (4.10) in [2]. In a similar manner, inserting Bressoud’s
WP-Bailey pair

(1.12) admmzlfffnggijgéé <Jﬁy

a _ _ k. n
Bnla, k) = <k’l: ks qu)" <akq> ;

into (2.15), and likewise replacing v/a with a, vk with k and V/q with g,

gives

k2q? 2 2,2 2 3 )
o (05F50) | (a0t .~ 52— 50 020 i) o
242—2n
J=0 <W7Q;Q>j ( —a, kq, —kq, kq?, —kq?, 2 q ,a2q>tm; q2)j
k4 2
1— k2 (aQqQ, +iq )
=1 —k2q4” <k2 kg’q )

(4.13)

a’q a?q a* —a3 —a3 Kk2¢® —on 2
Ta*Tka 2 K2q 0 k2 0 a2 >, q 2 G
X 7¢6 a2 a2 a®  alq~2n 4, k?2 .
7qu - q’ - —ag, k‘4 2 Pz q

Finally, we apply the corollary to two WP-Bailey pairs found by the
present author and Peter Zimmer in [11]:

aD(a k) — (ga®/k* @ (K"
. sy D ()
oy (o/k k) (/e g)a,
/8” ( 7k) (kQ/a)(Lq)n (CL%Q)Qn .

0@ (a0 k) = (a, ¢v/a, —q\/a, k/a, ar/q/k, —ar\/q/k; q)n
WD) e ) = e Ve, 4k Vi, iR g e
(k, k?/a* 6°)p 2 - even
BP(a, k) = (¢% a2 /k; %) 0’ ’
0, n odd.
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Note that the second pair may also be derived by applying Corollary 1 to
the pair at (4.8). These WP-Bailey pairs inserted in (2.15) lead, respectively
to the transformations

(4.16) 76 [\f i \[ \/; & ke n;q,q]

VEG, —vEG, gVE, —gVk, S agnt

1—k (GQ7GT;Q>R
1=k (k, k),
aq_ aqg a2 a3/2 —a3/2 g3/2 _g3/2 kq® _p
ngbs Vkq’ f’kq’kzq’kq’kf’kﬁ’a’q .4, q
T~ e VOO =40, 4V 4, —4/a, gz, e

and

(417) 8¢ [CL Q\/i _Q\/6 a\/;7 \/;,kq,kq »d nq _kq2]

Y )

VR, VR kS ag

a k2q, aq ag® & a? -n
1—k q, a27q e [\/7’ Vkq' kg’ k2q =il 7q ]

1k (k,Eq)

a 3 aqn 21n7qq
VEq’ \/]?7 k, ) k2

Likewise, inserting the WP-Bailey pairs at (4.2), (4.4), (4.6), (4.8), (4.10),
(4.12), (4.14) and (4.15), respectively, into the WP-Bailey chain at (3.2)
leads, respectively, to the following transformations:

k) k ]C 2.2 2
q’ aq = aq  p1p2 k
_ (k/a,—q:9),, (aka;*)n
(—k,aq;9), (kq/a;q?)n
3.3

i (kq",q7 "™ q); (a?,aq?, p1, p2, kplqp27q )i
X

qa;
° agt—" 14n. a2q® a2¢® kpipa
]=0< »aq Q>] (CL, P10 p2 0 aq 7q q ;

2 [ak 2 /[ak k2 2. 2n ,—2n
q 77_(] 77_a —ag, a2q 47k ,q ) QQCL

qa,
k k 2n+1 ag' " 7
“ s %7_k7_kq7akq nt 7qT k

_ (k/a,—4;9),, (akg;¢*)n
(—=k,aq;q),, (kq/a;q*)n

k n —n. (a2 aq2 L~q2)»(q’:7 kg;q4>
x (kq",q";q); 00 433 475 I g

1—-n 345
iz (“qk ,aqH";q)j (a,%,qz;(f)j (%’“,akq;q“)j
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2 [ak k2 3.2 2n -2
—q 77_(1 —aq, a2 27k nvq n 2

q-a
(4'20) 695 1—2n 4>
2n a
_ / —k, —kq, akq® 1, qk k

_ (k/a7_ )n (ak% q2
(—k,aq;q),, (kq/a;q*)n

ak aq 9 9n _on 9 (k/a,—q;q),, (akg;q*)n
sWi | —s—a,k,—, k*¢"", ¢ ";¢°,—q | = n
( q (—k,aq;q), (kq/a;q®)n

aqg a e
X10 W9 <CL, _avzu_?q)kqnakqlJrnuql 7L7q n;q27q2>;

ak koag® 5 0n _on o ) (k/a,—q;q), (akq;q*)n
sWr ; k¢™",q "";q%,1 ) = &
< (=k,aq;q),, (kq/a;q*)n

2
a
xg Wy (a;i\/a, —iv/a, %, kq",q " q, 1> ;

ak L9 12 9n  _on. 2 (k/a,—q;q), (akg; q2)n
4.23) ¢W; < k2 g gt 1) = u
(4.23) "\g &k (=Fk,aq;q),, (kq/a;q*)n

a
xe W5 (a;?qa

kq",q " q, 1) ;
k ko k 2
(424) 0W9 <a a’k7,_7W’k2q2n7q—2n;q2’qa> =
q q q k k
(k/a,—q;q), (akq;q >n ~ (L+a) (a0*/k, —aq’ [k, K" g7 q); ;.
(=K, ag;q),, (ka/a;*)n = (1 +ag®)(ag" " [k, ag™*™, —q,q;q); ~

ak k2 _ _ q*a?
12W11 (q7 —a, —aqg, —G/qQ, _aq37 CLTq27 k2q2na k2q2+2n7 q2 2n’ q 2”; q4’ k2

_ (k/a,—q;q),, (akg;¢*)n
(=K, aq;q),, (kq/a;¢*)n

gl—"n 3,3 .44
7 q1+n7q) (makq 7(12;(]2) (akq; q*);
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In a similar manner, inserting the WP-Bailey pairs at (4.2), (4.4), (4.6),
(4.8), (4.10), (4.12), (4.14) and (4.15), respectively, into the WP-Bailey chain
at (3.7) leads, respectively, to the following transformations:

a,qv/a, q\fm,pz,k,,w VEq®, —VEq" " —¢7" ]

—-n —-n

ag aq kpips ag'™" _ aq +1, 11044
f? fv P p2? ;227 \/‘ ) \/E 7aqn - qn
2 k.
(a . %1 q )H(T,q)gn (kq)"
k2q2 2
(fz, 7 ,q) (—qa; @)y, \@
2 i — k k
n (1= 5a¥) (ke a2 ?) (M M2 8 i)

x Z
(1_ E) (M kq2*2".q2> (ﬂ ag kpips
’ .
j

s P R 0 2’ a 7Q§Q>j

(4.26) 10¢9 [

¢

n (a qx/ﬁ,—q\/fia%;q)j(q‘zn,kq%;tﬁ)j(%;q)% g
J

(4.27) a?2?=2" 9 oni2. 2\ (k
7=0 (\/> IQ7Ta )j( % 7aqn+ aQ)] (E;Q)Qj

(4.28)

k
a, Q\/a —(I\/E a qaya E: gv » q n)_q_n7\/Eq"1_\/Eqn
k k k a2 .

12011

(I y 5
a’;
. N E k2 2n+42 kq272n )
j=0 (]- 2) < a? ' a2 y 4 )] <Q\/E, q; q>
J

— 4
n (a7 kg 6?),, (a, *Va, —¢*/a, % qQ)j

=0 (azqi_% a%q'nt2q ) ( v, —Va, T )
J

(4.29)
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2,2 a?. 2 —k.
(a q 7%7q >2n (T’q)4n (kq)Qn
k292
(a%, ~ ;q2)2 (—qa; @4y,
2 k k 2

2n (1—% 4J> (k"™ a7 ¢%), (k v, -, £ q)A Cka\Y
> - ()

k2 k2g4n+2 k 2—4n k2 ’
7=0 (]- a2> ( —aZ q ; ) ( aqg, qa3 » 45 4 )]

X

n (1= vag) (e ke "), (Va 5q)
(4.30) e : NI
=0 (1 —+/a) (%7“2‘14%4;‘14% ( Ca q>j
2 —k.
B (a2q47%7q4>n (7’q2)2n <k‘q2)n
. —
(a'%,k(ﬂ ,q) (—q%a;¢?)y, \ °

k2 an_o—an. 4y (k a¢®. 2\ (—kya. ;
) n <1—a—2q )(k:q”,q ",q)j( ,akq,Q)j( aQ) A (kq)J

24n+4 4—4n
=0 (1 53) (k 2 kq ; > (Q7a3a ) (—ava; q)y;

n (1—ag") (¢7*", k¢'™; ¢* ) (\/&,%SQ)

J q3]
2,4—4n k
i=0 (1—a) (a T ,a2q4”+4;q4)j (q, ‘fl‘[,q>
2 4 a? —k. 2
(20", 5:4") (F5a),, <k:q2>”
k2q* a2
(fz, LS ,q4)n(—q2a;q2)2n
2 .
n (1= 50%) (kg™ q s 0Y), (&,
2 k2gintd  Lgd—dn 212
=0 (1 'jz) (‘2727%723(14% (qQ,qag , —Va, —q\/ft;fﬁ)

(4.31)

4 .
5 g = " VEe", V" | (
5@P4 \/E"’ aq\}%njaan’»l’ _aqn+17Q7q - <£ qu .

9 . _ 2
<kq>n n (1 - %q‘”) (ka®",q7*" ¢%), (%,E;q)j (%;q)zj
>< PR—
2 2 k2g2n+2  Lg2—2n
@ 0 ( —%) (qiz,qf;cﬂ)j (as,q,q (ag;q)y;

Jj= a a
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(4.33)
aq aq _2n —2n \/E 2n \/E 2n
a’q\/> q\/73 25 Z?ia ?aq y —4q ) q ,— q 7q2a2
1099 Zon Zon 14
Ve e, qa ak _ |k ag' " ag' TP g Cagt k

IR ) ) > @ )
aq NG NG q

5. BAILEY-TYPE CHAINS

Just as Liu and Ma did in [9], we can let & — 0 to get regular Bailey
chains, but unfortunately none are new.

Corollary 9. If (an(a,q), Bn(a,q)) are a Bailey pair w.r.t. a, then so is
(ar,(a,q), By(a,q)), where

(1+a)g”
(5.1) ohe0) = St ),
~ (—a;9)2
ﬁ;:,(azq) = Z J/Bj( 7q2)'
— (4% ¢*)n—
]7
Proof. let k — 0 in Corollary 4 and rearrange. O

Remark: This is the Bailey chain (D4) of Bressoud, Ismail and Stanton
in [7].

Corollary 10. If (ay(a,q), Bn(a,q)) are a Bailey pair w.r.t. a, then so is
(O‘;L(av Q); 61/1(&7 Q)), where

(52) a';z(a27 q2) = Oén(a, q)>
1 U (—1)ndg(n=d)?
ﬁ, (12,(]2 = ﬂ'a,Q-
nl ) (—ag;@)2n = (4%¢%)n- j(a.9)
Proof. let k — 0 in Corollary 7 and rearrange. O

We note that is chain is also not new, being essentially the Bailey chain
(D1) in [7].

The corollaries above and other results in the literature (for example the
first WP-Bailey chain of Andrews in [1]) show that some Bailey chains may
be “lifted” to WP-Bailey chains.

Is it possible to lift all Bailey chains to WP-Bailey chains?
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