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Abstract. A pair of sequences (αn(a, k, q), βn(a, k, q)) such that
α0(a, k, q) = 1 and

βn(a, k, q) =

nX
j=0

(k/a; q)n−j(k; q)n+j

(q; q)n−j(aq; q)n+j
αj(a, k, q)

is termed a WP-Bailey Pair. Upon setting k = 0 in such a pair we
obtain a Bailey pair.

In the present paper we consider the problem of “lifting” a Bailey pair
to a WP-Bailey pair, and use some of the new WP-Bailey pairs found
in this way to derive some new identities between basic hypergeometric
series and new single sum- and double sum identities of the Rogers-
Ramanujan-Slater type.

1. Introduction

A pair of sequences
(
αn(a, q), βn(a, q)

)
that satisfy α0(a, q) = 1 and

(1.1) βn(a, q) =
n∑

r=0

αr(a, q)
(q; q)n−r(aq; q)n+r

=
1

(aq, q; q)n

n∑

r=0

(q−n; q)r

(aqn+1; q)r
(−1)rqnr−r(r−1)/2αr(a, q)

where

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1),

(a1, a2, . . . , aj ; q)n := (a1; q)n(a2; q)n · · · (aj ; q)n,

(a; q)∞ := (1− a)(1− aq)(1− aq2) · · · , and

(a1, a2, . . . , aj ; q)∞ := (a1; q)∞(a2; q)∞ · · · (aj ; q)∞,

is termed a Bailey pair relative to a. Bailey [5, 6] showed that, for such a
pair,

(1.2)
∞∑

n=0

(y, z; q)n

(
aq

yz

)n

βn(a, q)
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=
(aq/y, aq/z; q)∞
(aq, aq/yz; q)∞

∞∑

n=0

(y, z; q)n

(aq/y, aq/z; q)n

(
aq

yz

)n

αn(a, q).

Slater, in [18] and [19], subsequently used this transformation of Bailey
to derive 130 identities of the Rogers-Ramanujan type. Slater’s method
involved specializing y and z so that the series on right side of (1.2) became
summable, using the Jacobi triple product identity.

(1.3)
∞∑

n=−∞
xnqn2

= (−q/x,−qx, q2; q2)∞.

In [2], Andrews extended the definition of a Bailey pair by setting
α0(a, k, q) = 1 and

βn(a, k, q) =
n∑

j=0

(k/a; q)n−j(k; q)n+j

(q; q)n−j(aq; q)n+j
αj(a, k, q)

(1.4)

=
(k/a, k; q)n

(aq, q; q)n

n∑

j=0

(q−n; q)j(kqn; q)j

(aq1−n/k; q)j(aqn+1; q)j

(qa

k

)j
αj(a, k, q).

Such a pair (αn(a, k, q), βn(a, k, q)) is termed a WP-Bailey pair. Examples
of WP Bailey pairs were previously given by Bressoud [7] and Singh [17].
Note that setting k = 0 in a WP-Bailey pair generates a standard Bailey
pair, but it is not necessarily true that all standard Bailey pairs can be
derived in this way (at least not if we insist that the βn(a, k, q) in a WP-
Bailey pair be in closed form).

We say that the Bailey pair (αn(a, q), βn(a, q)) relative to a lifts to the
WP-Bailey pair (αn(a, k, q), βn(a, k, q)), or equivalently, that
(αn(a, k, q), βn(a, k, q)) is a lift of the pair (αn(a, q), βn(a, q)), if

αn(a, 0, q) = αn(a, q), βn(a, 0, q) = βn(a, q), ∀n ≥ 0.

Remark 1.1. Sometimes it will be convenient to suppress one or more of the
parameters a, k, or q in the notation of ordinary and WP Bailey pairs. We
shall, however, always distinguish between ordinary and WP Bailey pairs
by denoting the latter in boldface.

The following (using slightly different notation) was proved in [14].

Theorem 1.2. Let N be a positive integer. Suppose that α0 = 1 and the
sequences {αn} and {βn} are related by

βn =
n∑

j=0

(k/a; q)n−j(k; q)n+j

(q; q)n−j(aq; q)n+j
αj .

Then

(1.5)
N∑

n=0

(1− kq2n)(y, z, kaqN+1/yz, q−N ; q)n

(1− k)(kq/y, kq/z, yzq−N/a, kq1+N ; q)n
qnβn
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=
(qk, qk/yz, qa/y, qa/z; q)N

(qk/y, qk/z, qa, qa/yz; q)N

×
N∑

n=0

(y, z, kaqN+1/yz, q−N ; q)n

(aq/y, aq/z, aq1+N , yzq−N/k; q)n

(aq

k

)n
αn.

This turned out to be a re-formulation of one of the constructions Andrews
[2] used to generate the WP-Bailey lattice, but we were unaware of the
connection initially. Upon letting N → ∞ we get the following result from
[13].

Theorem 1.3. Subject to suitable convergence conditions, if

(1.6) βn =
n∑

r=0

(k/a; q)n−r

(q; q)n−r

(k; q)n+r

(aq; q)n+r
αr,

then

(1.7)
∞∑

n=0

(q
√

k,−q
√

k, y, z; q)n

(
√

k,−
√

k, qk/y, qk/z; q)n

(
qa

yz

)n

βn =

(qk, qk/yz, qa/y, qa/z; q)∞
(qk/y, qk/z, qa, qa/yz; q)∞

∞∑

n=0

(y, z; q)n

(qa/y, qa/z; q)n

(
qa

yz

)n

αn.

Notice that, if αn above is independent of k, then the series on the right
sides of (1.2) and (1.7) are identical. Now suppose that a standard Bailey
pair as in (1.1) lifts to a WP-Bailey pair in which αn is independent of k. If
the standard Bailey pair gives rise to an identity of the Rogers-Ramanujan-
Slater type, for certain choices of the parameters y and z, then it follows that
the same choices for y and z will lead to a generalization of that identity,
since the only occurrence of k on the right side of (1.7) is in the infinite
product and the left side of (1.7) will thus also be an infinite product.

In [14] we found a WP-Bailey pair that is a lift of Slater’s pair F3.

Theorem 1.4. Define

αn(1, k) =

{
1, n = 0,

q−n/2 + qn/2, n ≥ 1,
(1.8)

βn(1, k) =
(k
√

q, k; q)n

(
√

q, q; q)n
q−n/2.

Then (αn(1, k), βn(1, k)) satisfy (1.4) (with a = 1).

The substitution of this pair into Theorem 1.2 leads to the following
corollary.
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Corollary 1.5.

(1.9) 8φ7

[
k, q

√
k,−q

√
k, y, z, k

√
q, kq1+N/yz, q−N√

k,−
√

k, qk/y, qk/z,
√

q, kq1+N , yzq−N ; q,
√

q

]

=
(qk, qk/yz, q/y, q/z; q)N

(qk/y, qk/z, q, q/yz; q)N

×
(

1 +
N∑

n=0

(1 + qn)(y, z, kq1+N/yz, q−N ; q)n

(q/y, q/z, q1+N , yzq−N/k; q)n

(√
q

k

)n
)

.

(1.10)
∞∑

n=0

(1− kq4n)(k; q)2nq2n2−n

(1− k)(q; q)2n
=

(kq2; q2)∞
(q; q2)∞

.

(1.11)
∞∑

n=0

(1− kq2n)(k; q)n(−1)nqn(n−1)/2

(1− k)(q; q)n
= 0.

(1.12)
∞∑

n=0

(1− kq4n)(−q; q2)n(k; q)2nqn2−n

(1− k)(−kq; q2)n(q; q)2n
=

(kq2,−1; q2)∞
(−kq, q; q2)∞

.

Proof. The identity at (1.9) is immediate, while (1.10) follows upon letting
N →∞, replacing q by q2, letting y, z →∞ and finally using (1.3) to sum
the right side. The identity at (1.11) is a consequence of letting N → ∞,
setting y =

√
q, letting z →∞ and again using (1.3) to sum the right side,

and (1.12) follows similarly, except we set y = −√q instead. ¤

Of course the last three identities are not new, as all can easily be seen
to arise as special cases of (5.6). However, they do illustrate how a lift of a
standard Bailey pair leads to generalizations of identities arising from this
standard pair (the identities given by setting k = 0 in the corollary above).

The discovery of the WP-Bailey pair at (1.8) which is a lift of Slater’s
Bailey pair F3, together with the observation following Theorem 1.3, mo-
tivated us to investigate if other standard Bailey pairs could be lifted to a
WP-Bailey pair, and to see what new transformations of basic hypergeo-
metric series and what new identities of the Rogers-Ramanujan-Slater type
would follow from these new WP-Bailey pairs.

It turned out that several of the lifts of Bailey pairs that we found could
be derived as special cases of a result (see (2.13) below) of Singh [17] (see
also Andrews and Berkovich [3]) . However, several others were not so easily
explained, and in attempting to prove that some of these pairs that were
found experimentally were indeed WP-Bailey pairs, we were led to consider
various elementary ways of deriving new WP-Bailey pairs from existing pairs
(ways that are different from those described by Andrews in [2]).

We also describe various ways in which double-sum identities of the Rogers
-Ramanujan type identities may be easily derived from WP-Bailey pairs.
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The second author defined three “multiparameter Bailey pairs” in [16],
which, together with certain families of q-difference equations, “explain”
more than half of the 130 Rogers-Ramanujan type identities in Slater’s pa-
per [19]. These multiparameter Bailey lift in a natural way to WP Bailey
pairs, which in turn easily yield a variety of single and double-sum WP
generalizations of Rogers-Ramanujan type identities.

2. WP-Bailey pairs arising from standard Bailey pairs

We first tried inserting the αn that were part of Bailey pairs found by
Slater [18, 19] into (1.4), and checking experimentally if the resulting βn(a, k)
had closed forms. As a result, the following WP-Bailey pairs were found.
The letter-number combination (e.g. E7’) refers to the standard pair in
Slater’s papers [18] and [19] recovered by setting k = 0. In all cases it is to
be understood that α0 = β0 = 1.

αn(q, k) =
(−1)n(q−n − qn+1)

(1− q)
, (E7’)(2.1)

βn(q, k) =
(−1)n(k2; q2)n

qn(q2; q2)n
.

αn(1, k) = q−n/2 + qn/2, (F3’)(2.2)

βn(1, k) =
(k, kq1/2; q)n

(q1/2, q; q)n
q−n/2.

αn(q, k) =
q−n/2 + qn/2+1/2

1 + q1/2
, (F4’)(2.3)

βn(q, k) =
(k, kq−1/2; q)n

(q3/2, q; q)n
q−n/2.

αn(1, k) = (−1)nq−n2/2
(
q−3n/2 + q3n/2

)
, (H3’)(2.4)

βn(1, k) =
(−1)n(1− kqn + kq2n)(k; q)n

q(n2+3n)/2(q; q)n
.

αn(1, k) = (−1)nq−n2/2
(
q−n/2 + qn/2

)
, (H4’)(2.5)

βn(1, k) =
(−1)n(k; q)n

q(n2+n)/2(q; q)n
.

αn(1, k) = q−n − qn, (H5’)(2.6)

βn(1, k) =
(k, k; q)n(1− 2kqn + kq2n)

(1− k)qn(q, q; q)n
.
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αn(1, k) = 0, (H6’)(2.7)

βn(1, k) =
(k, k; q)n

(q, q; q)n
.

αn(1, k) = 2(−1)n, (H7’)(2.8)

βn(1, k) = (−1)n (k2; q2)n

(q2; q2)n
.

αn(1, k) = (−1)n(q−n + qn), (H8’)(2.9)

βn(1, k) = (−1)n (k2; q2)n(1 + kq2n)
(1 + k)qn(q2; q2)n

.

αn(q, k) = q−n − qn+1, (H12’)(2.10)

βn(q, k) =
(k; q)n(k; q)n−1(1− kqn−1 − kqn + kq2n)

qn(q, q2; q)n
.

αn(q, k) = 0, (H13’)(2.11)

βn(q, k) =
(k, k/q; q)n

(q, q2; q)n
.

αn(1, q) = (−1)n(1 + qn)q(n2−n)/2, (H17’)(2.12)

βn(1, q) =
(−1)n(k; q)nqn(n−1)/2kn

(q; q)n
.

It turns out that eight of these are special cases of a more general WP-
Bailey pair. In attempting to prove that these were indeed WP-Bailey pairs,
we observed that the following WP-Bailey pair of Singh ([17] (see also An-
drews and Berkovich [3]),

α′n =
(1− aq2n)(a, c, d, a2q/kcd; q)n

(1− a)(q, aq/c, aq/d, kcd/a; q)

(
k

a

)n

,(2.13)

β′n =
(kc/a, kd/a, k, aq/cd; q)n

(aq/c, aq/d, q, kcd/a; q)n
,

is a lift of a standard Bailey pair of Slater [18, Equation (4.1), page 469],

αn =
(1− aq2n)(a, c, d; q)n

(1− a)(aq/c, aq/d, q; q)n

(−a

cd

)n

q(n2+n)/2,(2.14)

βn =
(aq/cd; q)n

(aq/c, aq/d, q; q)n
.
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Remark 2.1. (1) We have replaced the ρ1 and ρ2 in [3] with c and d, to
maintain consistency with Slater’s notation in [18].

(2) Slater did not state the pair (2.14) explicitly as a Bailey pair, but
instead listed many special cases (see Tables B, F, E and H in [18]).

By making the correct choices for a, c and d, it can be shown that the
WP-Bailey pairs at (2.1), (2.2), (2.3), (2.5), (2.7), (2.8) , (2.11) and (2.12)
are all special cases of (2.14). The proofs for the remaining pairs do not
follow in the same way, because the corresponding standard Bailey pairs are
not derived by substituting directly into (2.14). It is necessary to first derive
some other preliminary results.

Theorem 2.2. Suppose that (αn(a), βn(a, k)) is a WP-Bailey pair such
that αn(a) is independent of k. Then (α∗n(a),β∗n(a, k)) is a WP-Bailey
pair, where

α∗n(a) = (aqn + q−n)αn(a)

β∗n(a, k) =
(1 + aq2n)βn(a, k)− (1− k)

(
1− k

a

)
βn−1(a, kq)

qn
− a

(k, k/a; q)n

(aq, q; q)n
.

Proof. From the definition of a WP-Bailey pair,

βn(a, kq) =
n∑

r=0

(kq; q)n+r(kq/a; q)n−r

(aq; q)n+r(q; q)n−r
αr(a)

=
n+1∑

r=0

(k; q)n+1+r(k/a; q)n+1−r(1− aqn+1+r)(1− qn+1−r)
(1− k)(1− k/a)(aq; q)n+1+r(q; q)n+1−r

αr(a)

=
(1 + aq2n+2)

(1− k)(1− k/a)

n+1∑

r=0

(k; q)n+1+r(k/a; q)n+1−r

(aq; q)n+1+r(q; q)n+1−r
αr(a)

− qn+1

(1− k)(1− k/a)

n+1∑

r=0

(k; q)n+1+r(k/a; q)n+1−r

(aq; q)n+1+r(q; q)n+1−r
αr(a)(aqr + q−r)

=
(1 + aq2n+2)

(1− k)(1− k/a)
βn+1(a, k)

− qn+1

(1− k)(1− k/a)

[
a
(k; q)n+1(k/a; q)n+1

(aq; q)n+1(q; q)n+1
+ β∗n+1(a, k)

]
.

The result follows upon replacing n with n− 1. ¤

The following corollary is immediate, upon setting k = 0.
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Corollary 2.3. Suppose that (αn, βn) is a Bailey pair relative to a. Then
so is (α∗n, β∗n), where

α∗n = (aqn + q−n)αn

β∗n =
(1 + aq2n)βn − βn−1

qn
− a

(aq, q; q)n
.

The following theorem follows directly from the definition of a WP-Bailey
pair, so the proof is omitted.

Theorem 2.4. Let (α(1)
n (a, k),β(1)

n (a, k)) and (α(2)
n (a, k), β(2)

n (a, k)) be WP-
Bailey pairs and let c1 and c2 be constants. Then (αn(a, k), βn(a, k)) is a
WP-Bailey pair, where

αn(a, k) = c1α
(1)
n (a, k) + c2α

(2)
n (a, k),

βn(a, k) = c1β
(1)
n (a, k) + c2β

(2)
n (a, k) + (1− c1 − c2)

(k, k/a; q)n

(aq, q; q)n
.

Note for later the special case c2 = 0. The following corollary is immediate
upon setting k = 0.

Corollary 2.5. Let (α(1)
n , β

(1)
n ) and (α(2)

n , β
(2)
n ) be Bailey pairs relative to a,

and let c1 and c2 be constants. Then (αn, βn) is a Bailey pair relative to a,
where

αn = c1α
(1)
n + c2α

(2)
n ,

βn = c1β
(1)
n + c2β

(2)
n +

(1− c1 − c2)
(aq, q; q)n

.

Remark 2.6. Some the Bailey pairs derived by Slater [18, 19] follow from
other pairs derived by her in [18, 19] as a result of Corollaries 2.3 and 2.5.

We are now in a position to prove that the pairs at (2.4), (2.6), (2.9) and
(2.10) are indeed WP-Bailey pairs.

Corollary 2.7. The pair of sequences (αn(1, k), βn(1, k)), where

αn(1, k) = (−1)nq−n2/2
(
q−3n/2 + q3n/2

)
, (H3’)

βn(1, k) =
(−1)n(1− kqn + kq2n)(k; q)n

q(n2+3n)/2(q; q)n
,

is a WP-Bailey pair.

Proof. From what has been said previously, the pair at (2.5), namely

α(1)
n (1, k) = (−1)nq−n2/2

(
q−n/2 + qn/2

)
, (H4’)

β(1)
n (1, k) =

(−1)n(k; q)n

q(n2+n)/2(q; q)n
.
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is a WP-Bailey pair. From Theorem 2.2, with a = 1,

α(2)
n (1, k) = (qn + q−n)α(1)

n (1, k)

= (−1)nq−n2/2
(
q−3n/2 + q3n/2 + q−n/2 + qn/2

)
,

β(2)
n (1, k) =

(1 + q2n)β(1)
n (1, k)− (1− k) (1− k) β

(1)
n−1(1, kq)

qn
− (k, k; q)n

(q, q; q)n

=
(−1)n(k; q)n

q(n2+n)/2(q; q)n

1 + qn − kqn + kq2n

qn
− (k, k; q)n

(q, q; q)n
,

is a WP-Bailey pair. The result now follows from Theorem 2.4, upon setting
a = 1, c1 = −1, c2 = 1 and letting (α(1)

n (1, k),β(1)
n (1, k)) and (α(2)

n (1, k),
β

(2)
n (1, k)) be as stated above. ¤

We next prove that the pair at (2.9) is a WP-Bailey pair.

Corollary 2.8. The pair of sequences (αn(1, k), βn(1, k)), where

αn(1, k) = (−1)n(q−n + qn), (H8’)

βn(1, k) = (−1)n (k2; q2)n(1 + kq2n)
(1 + k)qn(q2; q2)n

.

is a WP-Bailey pair.

Proof. The proof is similar to that for (2.4) in the corollary above, except
we start with

α(1)
n (1, k) = 2(−1)n, (H7’)

β(1)
n (1, k) = (−1)n (k2; q2)n

(q2; q2)n
.

Theorem 2.2 gives

α(2)
n (1, k) = 2(−1)n(qn + q−n),

β(2)
n (1, k) = (−1)n (k2; q2)n(2 + 2q2n)

qn(1 + k)(q2; q2)n
− (k, k; q)n

(q, q; q)n
,

is a WP-Bailey pair. The result follows once again from Theorem 2.4, upon
setting c2 = 1/2 and c1 = 0. ¤

We next give proofs for the two remaining two pairs at (2.6) and (2.10).

Corollary 2.9. The pairs of sequences

αn(1, k) = q−n − qn, (H5’)

βn(1, k) =
(k, k; q)n(1− 2kqn + kq2n)

(1− k)qn(q, q; q)n
.
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and

αn(q, k) = q−n − qn+1, (H12’)

βn(q, k) =
(k; q)n(k; q)n−1(1− kqn−1 − kqn + kq2n)

qn(q, q2; q)n
.

are WP-Bailey pairs.

Proof. Let c →∞ (or c → 0) and set d = q in (2.13) to get that

αn(a, k) =
q−n − aqn

1− a
,

βn(a, k) =
(kq/a, k; q)n

(a, q; q)nqn

is a WP-Bailey pair. Now apply Theorem 2.4 with c1 = 1 − a and c2 = 0
(with (α(1)

n (a, k),β(1)
n (a, k)) = (α(2)

n (a, k), β(2)
n (a, k)) = (αn(a, k), βn(a, k)))

to get that

α∗n(a, k) = q−n − aqn,

β∗n(a, k) =
(kq/a, k; q)n

(aq; q)n−1(q; q)nqn
+ a

(k, k/a; q)n

(aq, q; q)n
,

is a WP-Bailey pair. The pairs in the statement of the corollary are, respec-
tively, the cases a = 1 and a = q. ¤
Remark 2.10. If lifts exist for the remaining Bailey pairs found by Slater
[18, 19], finding them will likely prove more difficult, as experiment seems
to indicate that the αn are not independent of k.

For completeness sake, we include the following theorem in this section,
as it gives yet another way of deriving new Bailey pairs from existing Bailey
pairs. We first note the identities

(2.15) 1 =
1− aqn+r+1

1− aq2r+1
− aq2r+1 1− qn−r

1− aq2r+1
.

(2.16) 1 = q−n+r 1− aqn+r+1

1− aq2r+1
− q−n+r 1− qn−r

1− aq2r+1
.

Theorem 2.11. Suppose (αn(a, q), βn(a, q)) is a Bailey pair with respect to
a. Then so are the pairs (α∗n(a, q), β∗n(a, q)) and (α†n(a, q), β†n(a, q)), where
α∗0(a, q) = β∗0(a, q) = α†0(a, q) = β†0(a, q) = 1, and for n > 0,

α∗n(a, q) = (1− aq)
(

αn(aq, q)
1− aq2n+1

− aq2n−1 αn−1(aq, q)
1− aq2n−1

)
,

β∗n(a, q)) = βn(aq, q),

α†n(a, q) = (1− aq)
(

qn αn(aq, q)
1− aq2n+1

− qn−1 αn−1(aq, q)
1− aq2n−1

)
,

β†n(a, q)) = qnβn(aq, q).
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Proof. From the definition of a Bailey pair,

βn(aq, q) =
n∑

r=0

αr(aq, q)
(q; q)n−r(aq2; q)n+r

=
n−1∑

r=0

αr(aq, q)
(q; q)n−r(aq2; q)n+r

+
αn(aq, q)
(aq2; q)2n

= (1− aq)
n−1∑

r=0

αr(aq, q)
(q; q)n−r(aq; q)n+r+1

+
αn(aq, q)
(aq2; q)2n

= (1− aq)
n−1∑

r=0

αr(aq, q)
(1− aq2r+1)(q; q)n−r(aq; q)n+r

− (1− aq)
n−1∑

r=0

aq2r+1αr(aq, q)
(1− aq2r+1)(q; q)n−r−1(aq; q)n+r+1

+
αn(aq, q)
(aq2; q)2n

= (1− aq)
n−1∑

r=0

αr(aq, q)
(1− aq2r+1)(q; q)n−r(aq; q)n+r

− (1− aq)
n∑

r=1

aq2r−1αr−1(aq, q)
(1− aq2r−1)(q; q)n−r(aq; q)n+r

+
αn(aq, q)
(aq2; q)2n

.

The next-to-last equality follows from (2.15) and the result now follows
for (α∗n(a, q), β∗n(a, q)). The result for (α†n(a, q), β†n(a, q)) follows similarly,
except we use (2.16) at the next to last step. ¤

Corollary 2.12. The pairs (α∗n(a, q), β∗n(a, q)) and (α†n(a, q), β†n(a, q)) are
Bailey pairs with respect to a, where α∗0(a, q) = β∗0(a, q) = α†0(a, q) =
β†0(a, q) = 1, and for n > 0,

α∗n(a, q) =
(aq, c, d; q)n

(aq2/c, aq2/d, q; q)n

(−aq

cd

)n

q(n2+n)/2

− aq2n−1 (aq, c, d; q)n−1

(aq2/c, aq2/d, q; q)n−1

(−aq

cd

)n−1

q(n2−n)/2,

β∗n(a, q)) =
(aq2/cd; q)n

(aq2/c, aq2/d, q; q)n
,

α†n(a, q) = qn (aq, c, d; q)n

(aq2/c, aq2/d, q; q)n

(−aq

cd

)n

q(n2+n)/2

− qn−1 (aq, c, d; q)n−1

(aq2/c, aq2/d, q; q)n−1

(−aq

cd

)n−1

q(n2−n)/2,

β†n(a, q)) = qn (aq2/cd; q)n

(aq2/c, aq2/d, q; q)n
.
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Proof. This follows directly from applying Theorem 2.11 to the Bailey pair
at (2.14). ¤

3. Dual WP-Bailey pairs

We next consider a natural pairing of WP-Bailey pairs. We first recall
that

(3.1) (a; 1/q)n =
(−a)n(1/a; q)n

qn(n−1)/2
.

Andrews showed in [1] that if (αn(a, q), βn(a, q)) is a Bailey pair relative to
a, then (α∗n(a, q), β∗n(a, q)) is also a Bailey pair relative to a, where

α∗n(a, q) = anqn2
αn(1/a, 1/q),

β∗n(a, q) = a−nq−n2−nβn(1/a, 1/q).

The pair (α∗n(a, q), β∗n(a, q)) is called the dual of (αn(a, q), βn(a, q)). Note
that the dual of (α∗n(a, q), β∗n(a, q)) is (αn(a, q), βn(a, q)). As an example,
the dual of the Bailey pair

αn(1, q) = (−1)nq3n2/2
(
q−3n/2 + q3n/2

)
, (B2)

βn(1, q) =
qn

(q; q)n
.

is the Bailey pair

αn(1, q) = (−1)nq−n2/2
(
q−3n/2 + q3n/2

)
, (H3)

βn(1, q) =
(−1)n

q(n2+3n)/2(q; q)n
.

This concept of duality can be extended to WP-Bailey pairs.

Theorem 3.1. Suppose (αn(a, k, q), βn(a, k, q)) is a WP-Bailey pair. Then
(α∗n(a, k, q), β∗n(a, k, q)) is also a WP-Bailey pair, where

α∗n(a, k, q) = αn(1/a, 1/k, 1/q),

β∗n(a, k, q) =
(

k

aq

)2n

βn(1/a, 1/k, 1/q).

Proof. Replace a by 1/a, k by 1/k and q by 1/q in (1.4) and use (3.1) to
simplify the resulting expression. ¤

As with standard Bailey pairs, we refer to the pair (α∗n(a, k, q), β∗n(a, k, q))
in Theorem 3.1 as the dual of (αn(a, k, q), βn(a, k, q)). Note that, as above,
the dual of (α∗n(a, k, q), β∗n(a, k, q)) is (αn(a, k, q), βn(a, k, q)).

We also remark that it is possible to use these duality constructions to
derive new Bailey- or WP-Bailey pairs.
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Corollary 3.2. The pair of sequences (α∗n(1, k), β∗n(1, k)) is a WP-Bailey
pair, where

α∗n(1, k) = (−1)nqn2/2
(
q−3n/2 + q3n/2

)
,(3.2)

β∗n(1, k) =
(−1)n(1− qn + kq2n)(k; q)nkn−1q(n2−3n)/2

(q; q)n
.

Proof. The pair at (3.2) is the dual of the pair at (2.4):

αn(1, k) = (−1)nq−n2/2
(
q−3n/2 + q3n/2

)
, (H3’)

βn(1, k) =
(−1)n(1− kqn + kq2n)(k; q)n

q(n2+3n)/2(q; q)n
.

¤

Remark 3.3. The Bailey pair derived from (3.2) by setting k = 0 does not
appear in Slater’s lists of Bailey pairs in [18, 19].

4. Basic Hypergeometric series identities and identities of the
Rogers-Ramanujan-Slater type

Each of the WP-Bailey pairs found above may be substituted into (1.5)
and (1.7), leading to possibly new identities between basic hypergeometric
series and/or new identities of the Rogers-Ramanujan type. We illustrate
this by considering the WP-Bailey pair from (3.2).

Corollary 4.1. Let N be a positive integer and suppose k 6= 0.

(4.1)
N∑

n=0

(
q
√

k,−q
√

k, k, y, z, kqN+1

yz , 1−√1−4k
2 q, 1+

√
1−4k
2 q, q−N ; q

)
n(√

k,−
√

k, kq
y , kq

z , yzq−N , kq1+N , 1−√1−4k
2 , 1+

√
1−4k
2 , q; q

)
n

(−k)nq
n2−n

2

=

(
qk, qk

yz , q
y , q

z ; q
)

N(
qk
y , qk

z , q, q
yz ; q

)
N

×

1 +

N∑

n=1

(
y, z, kqN+1

yz , q−N ; q
)

n(
q
y , q

z , yzq−N

k , q1+N ; q
)

n

(−1
k

)n

q(n2−n)/2
(
1 + q3n

)

 .

(4.2)
∞∑

n=0

(
q
√

k,−q
√

k, k, 1−√1−4k
2 q, 1+

√
1−4k
2 q; q

)
n

(q; q2)nknq(n2−3n)/2

(√
k,−

√
k, 1−√1−4k

2 , 1+
√

1−4k
2 , q; q

)
n

(k2q; q2)n

=
1 + k

q

(
q2k2, ; q2

)
∞

(qk2; q2)∞
.
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(4.3)
∞∑

n=0

(
q
√

k,−q
√

k, k, 1−√1−4k
2 q, 1+

√
1−4k
2 q; q

)
n

(−k)nq3(n2−n)/2

(√
k,−

√
k, 1−√1−4k

2 , 1+
√

1−4k
2 , q; q

)
n

= 0.

(4.4)
∞∑

n=0

(
q
√

k,−q
√

k, k,
√

q, 1−√1−4k
2 q, 1+

√
1−4k
2 q; q

)
n

knqn2−3n/2

(√
k,−

√
k, k

√
q, 1−√1−4k

2 , 1+
√

1−4k
2 , q; q

)
n

= q−1/2 (kq; q)∞
(k
√

q; q)∞
.

Proof. The identity at (4.1) follows upon substituting the pair from (3.2)
into (1.5), setting a = 1, and using the fact that

1− qn + kq2n = k

(
1−√1−4k

2 q, 1+
√

1−4k
2 q; q

)
n(

1−√1−4k
2 , 1+

√
1−4k
2 ; q

)
n

.

Next, let N →∞ in (4.1) to get that

(4.5)
∞∑

n=0

(
q
√

k,−q
√

k, k, y, z, 1−√1−4k
2 q, 1+

√
1−4k
2 q; q

)
n(√

k,−
√

k, kq
y , kq

z , 1−√1−4k
2 , 1+

√
1−4k
2 , q; q

)
n

(−k

yz

)n

q
n2−n

2

=

(
qk, qk

yz , q
y , q

z ; q
)
∞(

qk
y , qk

z , q, q
yz ; q

)
∞


1 +

∞∑

n=1

(y, z; q)n(
q
y , q

z ; q
)

n

(−1
yz

)n

q(n2−n)/2
(
1 + q3n

)

 .

The identities at (4.2), (4.3) and (4.4) follow, respectively, from letting
(y, z) → (

√
q,−√q), (y, z) → (∞,∞) and (y, z) → (

√
q,∞), and using the

Jacobi triple product identity (1.3) to sum the resulting series on the right
sides. ¤

5. Double-sum identities of the Rogers-Ramanujan-Slater type

If (αn)n≥0 is any sequence with α0 = 1, then trivially
αn,

n∑

j=0

(k/a; q)n−j (k; q)n+j

(q; q)n−j(aq; q)n+j
αj




is a WP-Bailey pair. If this pair is substituted into (1.7), then after switching
the order of summation on the left side and re-indexing, we get the following
theorem.

Theorem 5.1. Let (αn)n≥0 be any sequence with α0 = 1. Then, subject to
suitable convergence conditions,

(5.1)
∞∑

j,n=0

(1− kq2n+2j)(k/a; q)n(k; q)n+2j(y, z; q)n+j

(1− k)(q; q)n(aq; q)n+2j(qk/y, qk/z; q)n+j

(
qa

yz

)n+j

αj
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=
(qk, qk/yz, qa/y, qa/z; q)∞
(qk/y, qk/z, qa, qa/yz; q)∞

∞∑

n=0

(y, z; q)n

(qa/y, qa/z; q)n

(
qa

yz

)n

αn.

This last equation can be used to derive, almost trivially, a large number
of double-sum series = product identities. Firstly, any identity on the Slater
list can be extended to a double-sum identity involving the free parameter k,
and which reverts back to the original single-sum identity upon setting k = 0.
This is simply done by inserting the sequence αn from the same Bailey pair
(αn, βn), and making the same choices for y and z, as Slater did to derive the
original identity. Secondly, we can choose (αn) so that the series on the right
of (5.1) becomes one of the series in an identity on the Slater list, so that
the right side once again can be expressed as an infinite product. Thirdly,
we can choose αn so that the series on the right side becomes summable
via the Jacobi triple product identity or the quintuple product identity. We
illustrate each of these methods of generating a double-sum series = product
by giving some examples.

We first consider the standard pair B1 from Slater’s paper [18]. This pair
has

(5.2) αj =

{
1, j = 0,

q3j2/2−j/2(−1)j(1 + qj), j > 0,

and leads to the first Rogers-Ramanujan identity.

(5.3)
∞∑

n=0

qn2

(q; q)n
=

1
(q, q4; q5)∞

.

Corollary 5.2. For k 6= 1,

(5.4)
∞∑

j,n=0

(1− kq2n+2j)(1 + qj)(k; q)n(k; q)n+2jq
(5j2−j)/2+2nj+n2

(−1)j

(1− k)(q; q)n(q; q)n+2j

=
(kq; q)∞

(q, q4; q5)∞
+

(kq; q)∞
(q; q)∞

.

Proof. First, set a = 1 and let y, z →∞ in (5.1) to get

(5.5)
∞∑

j,n=0

(1− kq2n+2j)(k; q)n(k; q)n+2j

(1− k)(q; q)n(q; q)n+2j
q(n+j)2αj =

(qk; q)∞
(q; q)∞

∞∑

n=0

qn2
αn.

Next, substitute for (αn), writing α0 = 1 as

α0 = 1 = q3(02)/2−0/2(−1)0(1 + q0)− 1,
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and use (1.3) to sum the right side, to get

∞∑

j,n=0

(1− kq2n+2j)(1 + qj)(k; q)n(k; q)n+2jq
(5j2−j)/2+2nj+n2

(−1)j

(1− k)(q; q)n(q; q)n+2j

−
∞∑

n=0

(1− kq2n)(k, k; q)nqn2

(1− k)(q, q; q)n
=

(qk; q)∞
(q; q)∞

(q2, q3, q5; q5)∞ =
(kq; q)∞

(q, q4; q5)∞
.

The fact that
∞∑

n=0

(1− kq2n)(k, k; q)nqn2

(1− k)(q, q; q)n
=

(kq; q)∞
(q; q)∞

follows as a special case of the following identity, which is a special case of
an identity due to Jackson [11] (set a = k, b = k and let c, d →∞).

6φ5

[
a, q

√
a,−q

√
a, b, c, d√

a,−√a, aq/b, aq/c, aq/d
; q,

aq

bcd

]
=

(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

.

(5.6)

¤

Corollary 5.3.

(5.7)
∞∑

j,n=0

(1− kq2n+2j) (k/a; q)n (k; q)n+2j(yqj , zqj ; q)n (qa/y, qa/z; q)j

(1− k)(q; q)n(aq; q)n+2j (qk/y, qk/z; q)n+j (q; q)j

×
(

qa

yz

)n

qj2
=

(qk, qk/yz, qa/y, qa/z; q)∞
(qk/y, qk/z, qa, qa/yz; q)∞

1
(q, q4; q5)∞

.

Proof. Set

αn =
(qa/y, qa/z; q)n

(y, z; q)n

(
yz

qa

)n qn2

(q; q)n

in (5.1), so that the series on the left side of (5.1) becomes the series on the
right side of (5.3). ¤

Corollary 5.2 is an extension of the first Rogers-Ramanujan identity, since
setting k = 0 recovers this identity, after some series manipulations. It is
possible to generalize the identity in Corollary 5.2 as follows (Corollary 5.2
is the case s = 5/2, r = 1/2 of the following corollary).

Corollary 5.4. Let s be a positive rational number and r a rational number.
For k 6= 1,

(5.8)
∞∑

j,n=0

(1− kq2n+2j)(1 + q2rj)(k; q)n(k; q)n+2jq
sj2−jr+2nj+n2

(−1)j

(1− k)(q; q)n(q; q)n+2j

=
(kq; q)∞(qs−r, qs+r, q2s; q2s)∞

(q; q)∞
+

(kq; q)∞
(q; q)∞

.
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Proof. The proof is similar to the proof of Corollary 5.2, except we make
the substitution

αn = q(s−1)n2−nr(−1)n(1 + q2nr)
in (5.5). ¤

6. WP Generalizations of the Multiparameter Bailey Pairs

In [16], the second author showed that more than half of the identities
in Slater’s list could be recovered by specializing parameters in just three
general Bailey pairs together with some q-difference equations.

The standard multiparameter Bailey pair (SMBP) [16] is defined as fol-
lows:

Let

(6.1)

α(d,e,h)
n (a, q) :=

(−1)n/da(h/d−1)n/eq(h/d−1+1/2d)n2/e−n/2e(1− a1/eq2n/e)
(1− a1/e)(qd/e; qd/e)n/d

× (a1/e; qd/e)n/d χ(d | n),

where

χ(P (n, d)) =
{

1 if P (n, d) is true,
0 if P (n, d) is false,

and let β
(d,e,h)
n (a, q) be determined by (1.1).

The Euler multiparameter Bailey pair (EMBP) is given by

(6.2) α̃(d,e,h)
n (a, q) := qn(d−n)/2dea−n/de (−a1/e; qd/e)n/d

(−qd/e; qd/e)n/d

α(d,e,h)
n (a, q)

with β̃
(d,e,h)
n (a, q) determined by (1.1), and the Jackson-Slater multiparame-

ter Bailey pair (JSMBP) by

(6.3) ᾱ(d,e,k)
n (a, q) := (−1)n/dq−n2/2de (qd/2e; qd/e)n/d

(a1/eqd/2e; qd/e)n/d

α(d,e,h)
n (a, q)

with β̄
(d,e,h)
n (a, q) determined by (1.1).

Clearly each of the α’s in (6.1)–(6.3) could be inserted into (1.4) instead
of (1.1) to produce WP generalizations of the multiparameter Bailey pairs.

Let us therefore define

α(d,e,h)
n (a, k, q) := α(d,e,h)

n (a, q),(6.4)

α̃(d,e,h)
n (a, k, q) := α̃(d,e,h)

n (a, q),(6.5)

ᾱ(d,e,k)
n (a, k, q) := ᾱ(d,e,k)

n (a, q),(6.6)

and employ (1.4) to obtain the following corresponding β’s:

(6.7) β(d,e,h)
n (ae, k, qe) =

(k, k/ae; qe)n

(qe, aeqe; qe)n
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×
bn/dc∑

r=0

(a; qd)r(1− aq2dr)(q−en, kqen; qe)dr

(qd; qd)r(1− a)(aeqe(n+1), k−1aeqe(1−n); qe)dr

× (−1)ra(h−d+ed)rk−drq(2h−2d+1)dr2/2+(2e−1)dr/2

(6.8) β̃(d,e,h)
n (ae, k, qe) =

(k, k/ae; qe)n

(qe, aeqe; qe)n

×
bn/dc∑

r=0

(a2; q2d)r(1− aq2dr)(q−en, kqen; qe)dr

(q2d; q2d)r(1− a)(aeqe(n+1), k−1aeqe(1−n); qe)dr

× (−1)ra(h−d−1+ed)rk−drq(h−d)dr2+edr

(6.9) β̄(d,e,h)
n (ae, k, qe) =

(k, k/ae; qe)n

(qe, aeqe; qe)n

×
bn/dc∑

r=0

(a, qd/2; qd)r(1− aq2dr)(q−en, kqen; qe)dr

(qd, aqd/2; qd)r(1− a)(aeqe(n+1), k−1aeqe(1−n); qe)dr

× a(h−d+ed)rk−drq(h−d)dr2+(2e−1)dr/2.

Thus each of
(
α

(d,e,h)
n (a, k; q), β(d,e,h)

n (a, k; q)
)
,
(
α̃

(d,e,h)
n (a, k, q),

β̃
(d,e,h)
n (a, k, q)

)
, and

(
ᾱ

(d,e,h)
n (a, k, q), β̄(d,e,h)

n (a, k, q)
)

is a WP Bailey pair.
Note that the series in each of (6.7)–(6.9) may be expressed as a limiting
case of a very-well-poised t+1φt basic hypergeometric series, where

t = |2h− 2d + 1|+ 2ed + 2,

and as such is either summable or transformable via standard formulas found
in Gasper and Rahman’s book [8].

Proposition 6.1. The WP multiparameter Bailey pairs(
α

(1,1,1)
n (a, k, q),β(1,1,1)

n (a, k, q)
)
,
(
α̃

(1,1,1)
n (a, k, q), β̃(1,1,1)

n (a, k, q)
)
, and(

ᾱ
(1,1,1)
n (a, k, q), β̄(1,1,1)

n (a, k, q)
)

are given by

α(1,1,1)
n (a, k, q) =

(−1)nqn(n−1)/2(1− aq2n)(a; q)n

(1− a)(q; q)n
(6.10)

β(1,1,1)
n (a, k, q) =

(−1)nknq(
n
2)(k; q)n

an(q; q)n
(6.11)

α̃(1,1,1)
n (a, k, q) =

(−1)na−n(1− aq2n)(a2; q2)n

(1− a)(q2; q2)n
(6.12)

β̃(1,1,1)
n (a, k, q) =

(−1)na−n(k2; q2)n

(q2; q2)n
(6.13)
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ᾱ(1,1,1)
n (a, k, q) =

q−n/2(1− aq2n)(a,
√

q; q)n

(1− a)(q, a
√

q)n
(6.14)

β̄(1,1,1)
n (a, k, q) =

(k, k
√

q/a; q)n

(q, a
√

q; q)n
q−n/2(6.15)

Proof. Each of the α’s is a direct substitution into the definition with d =
e = h = 1. Each of the β’s follows from Jackson’s summation of a very-well-
poised 6φ5 [8, Eq. (II.21)]. ¤

We may now use these WP Bailey pairs to derive WP generalizations of
Rogers-Ramanujan-Slater type identities.

Corollary 6.2.
∞∑

n=0

(1− kq2n)(k; q)n

(1− k)(q; q)n
(−1)nknqn(3n−1)/2 = (kq; q)∞(6.16)

∞∑

n=0

(1− kq4n)(−q, k; q2)n

(1− k)(−kq, q2; q2)n
(−1)nknq2n2−n =

(kq2; q2)∞
(−kq; q2)∞

(6.17)

∞∑

n=0

(1− kq2n)(−1, k; q)n

(1− k)(−kq, q; q)n
(−1)nknqn2

=
(kq; q)∞

(−kq; q)∞
(6.18)

∞∑

n=0

(1− kq2n)(k2; q2)n

(1− k)(q2; q2)n
(−1)nqn2

= (kq; q)∞(q; q2)∞(6.19)

∞∑

n=0

(1− kq4n)(−q; q2)n(k2; q4)n

(1− k)(−kq; q2)n(q4; q4)n
(−1)nqn2

=
(kq2; q2)∞(q; q)∞

(−kq; q2)∞(q4; q4)∞
(6.20)

∞∑

n=0

(1− kq4n)(k; q)2n

(1− k)(q; q)2n
q2n2−n =

(kq2; q2)∞
(q; q2)∞

(6.21)

∞∑

n=0

(1− kq4n)(−q; q2)n(k; q)2n

(1− k)(−kq; q2)n(q; q)2n
qn2−n =

(kq2,−1; q2)∞
(−kq, q; q2)∞

(6.22)

Proof. To obtain (6.16), insert (6.10)–(6.11) into (1.7) with a = 1 and y, z →
∞. To obtain (6.17), insert (6.10)–(6.11) into (1.7) with a = 1, y = −√q
and z → ∞. To obtain (6.18), insert (6.10)–(6.11) into (1.7) with a = 1,
y = −q and z → ∞. To obtain (6.19), insert (6.12)–(6.13) into (1.7) with
a = 1 and y, z → ∞. To obtain (6.20), insert (6.12)–(6.13) into (1.7) with
a = 1, y = −√q and z →∞. To obtain (6.21), insert (6.14)–(6.15) into (1.7)
with a = 1 and y, z → ∞. To obtain (6.22), insert (6.14)–(6.15) into (1.7)
with a = 1, y = −√q and z →∞. ¤

Remark 6.3. Setting k = 0 in (6.19) recovers Eq. (3) of Slater [19]. We
had obtained (6.21) and (6.22) earlier via another method (see Eqs. (1.10)
and (1.12)). Setting k = 0 in (6.21) recovers Eq. (9) of Slater [19], an
identity originally due to Jackson [12, p. 179, 3 lines from bottom].
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If any of d, e, or h is greater than 1, then the representation of the β as a
finite product times a very-well-poised t+1φt will have t > 6, will thus not be
summable. Accordingly, the WP-Rogers-Ramanujan-Slater type identities
obtained from these will involve double sums.

Let us now consider the case which leads to a generalization of the first
Rogers-Ramanujan identity.

Proposition 6.4.
(
α

(1,1,2)
n (a, k, q), β(1,1,2)

n (a, k, q)
)

is given by

α(1,1,2)
n (a, k, q) =

(−1)nanqn(3n−1)/2(1− aq2n)(a; q)n

(1− a)(q; q)n
(6.23)

β(1,1,2)
n (a, k, q) = (k; q)n

n∑

j=0

(−1)jkjq(
j
2)+nj(k/a; q)n−j

(q; q)j(q; q)n−j
(6.24)

Proof. The α
(1,1,2)
n (a, k, q) follows by direct substitution into (6.4). The

β
(1,1,2)
n (a, k, q) follows by specializing (6.7) and applying Watson’s q-analog

of Whipple’s theorem [8, Eq. (III.18)]. ¤
Corollary 6.5 (a WP-generalization of the first Rogers-Ramanujan iden-
tity).
(6.25)

∑

n,j≥0

(1− kq2n+2j)qn2+3nj+j(5j−1)/2(−1)jkj(k; q)n(k; q)n+j

(1− k)(q; q)j(q; q)n
=

(kq; q)∞
(q, q4; q5)∞

.

Proof. Insert
(
α

(1,1,2)
n (a, k, q),β(1,1,2)

n (a, k, q)
)

into (1.7) with a = 1 and
y, z → ∞, interchange the order of summation on the left hand side and
apply Jacobi’s triple product identity (1.3) on the right hand side. ¤
Corollary 6.6 (a WP-generalization of the first Göllnitz-Gordon identity).

(6.26)
∑

n,j≥0

(−1)jkj(1− kq4n+4j)qn2+4nj+4j2−j(−q; q2)n+j(k; q2)n(k; q2)n+j

(1− k)(−kq; q2)n+j(q2; q2)j(q2; q2)n

=
(kq2; q2)∞

(−kq; q2)∞(q, q4, q7; q8)∞
.

Proof. Insert
(
α

(1,1,2)
n (a, k, q), β(1,1,2)

n (a, k, q)
)

into (1.7) with a = 1, y =
−√q and z → ∞, interchange the order of summation on the left hand
side and apply Jacobi’s triple product identity (1.3) on the right hand side.
Finally, replace q by q2 throughout. ¤
Remark 6.7. By sending k → 0 in (6.26), we recover Identity (36) of Slater
[19]. An equivalent analytic identity was recorded by Ramanujan in the
lost notebook [4]. This identity became well-known after being interpreted
partition theoretically by Göllnitz [9] and Gordon [10].
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Many additional WP-analogs of known Rogers-Ramanujan type identities
could easily be derived using the WP-multiparameter Bailey pairs. We shall
content ourselves here with several examples where the series expressions
are not too complicated. Each of the following identities can be proved by
inserting an appropriate WP-Bailey pair into a limiting case of (1.7), and
applying Jacobi’s triple product identity (1.3).

A WP-generalization of the first Rogers-Selberg mod 7 identity [15, p.
339]; cf. [19, Eq. (33)]:

(6.27)
∑

n,r≥0

(1− kq4n+4r)(k; q2)n+2r

(1− k)(q2; q2)r(−q; q)2r(q2; q2)n
(−1)nknqn(3n−1)+4nr+2r2

=
(kq2; q2)∞(q3, q4, q7; q7)∞

(q2; q2)∞
.

A WP-generalization of the Jackson-Slater identity [12, p. 170, 5th Eq.];
cf. [19, Eq. (39)]:

(6.28)
∑

n,r≥0

(1− kq4n+4r)(k; q2)n+2r(kq; q2)n+r(q; q2)r

(1− k)(q2; q2)r(q; q2)n+r(kq; q2)r(q2; q2)n
(−1)rq2n2−n+2nr+r2

=
(kq2; q2)∞(−q3,−q5, q8; q8)∞

(q2; q2)∞
.

A WP-generalization of Bailey’s mod 9 identity [5, p. 422, Eq. (1.8)],
cf. [19, Eq. (42)]:

(6.29)
∑

n,r≥0

(1− kq6n+6r)(k; q3)n+2r(q; q)3r

(1− k)(q3; q3)n(q3; q3)2r(q3; q3)r
(−1)nknq3n(3n−1)/2+6nr+3r2

=
(kq3; q3)∞(q4, q5, q9; q9)∞

(q3; q3)∞
.

A WP-generalization of Rogers’s mod 14 identity [15, p. 341, Ex. 2];
cf. [19, Eq. (61)]:

(6.30)
∑

n,r≥0

(1− kq2n+2r)(k; q)n+2r

(1− k)(q; q2)r(q; q)r(q; q)n
(−1)nknqn(3n−1)/2+2nr+r2

=
(kq; q)∞(q6, q8, q14; q14)∞

(q; q)∞
.

7. Slater Revisited

It would interesting to lift all the Bailey pairs found by Slater to WP-
Bailey pairs, but at present we do not have a general method that will allow
us to do this.

As was noted earlier, it is likely that finding lifts of the other Bailey pairs
will be more difficult, as experimentation suggests that the sequence αn will
be dependent on the parameter k.
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It is hoped that some of the results in the present paper might interest
others in the search for lifts of the remaining Bailey pairs in the Slater papers
[18, 19].
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