
CONTINUED FRACTIONS WITH MULTIPLE LIMITS

DOUGLAS BOWMAN AND J. MC LAUGHLIN

Abstract. For integers m ≥ 2, we study divergent continued fractions
whose numerators and denominators in each of the m arithmetic pro-
gressions modulo m converge. Special cases give, among other things,
an infinite sequence of divergence theorems, the first of which is the
classical Stern-Stolz theorem.

We give a theorem on a class of Poincaré type recurrences which
shows that they tend to limits when the limits are taken in residue
classes and the roots of their characteristic polynomials are distinct roots
of unity.

We also generalize a curious q-continued fraction of Ramanujan’s with
three limits to a continued fraction with k distinct limit points, k ≥ 2.
The k limits are evaluated in terms of ratios of certain q series.

Finally, we show how to use Daniel Bernoulli’s continued fraction in
an elementary way to create analytic continued fractions with m limit
points, for any positive integer m ≥ 2.

1. Introduction

When one studies an infinite process, and it is found not to tend to a def-
inite limit, an initial instinct is for one to discard the process as unsuitable.
However, there are cases in which the divergence occurs in such a controlled
way that the process still retains utility. Summability provides one example.
Another way in which a divergent process can be useful is if it tends to a
finite number of definite limits for “nice” subsequences of its approximants.
This occurs in a natural way in the context of continued fractions, recurrence
sequences and infinite products of matrices. Here we will make an intensive
study of this behavior when the subsequences are arithmetic progressions of
residue classes modulo m.

We begin by reviewing notation for continued fractions. The symbol K

is used for continued fractions in the same way that
∑

and
∏

are used for
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series and products, respectively. Thus,

N
K

n=1

an

bn
:=

a1

b1 +
a2

b2 +
a3

b3 + . . . +
aN

bN

=
a1

b1 +
a2

b2 +
a3

b3 + · · · +
aN

bN
.

Write PN/QN for the above finite continued fraction written as a rational
function of the variables a1, ..., aN , b1, ..., bN . PN is the N -th canonical nu-
merator, QN is the N -th canonical denominator and the ratio PN/QN is
the N -th approximant. Let Ĉ denote the extended complex plane.

By K∞
n=1an/bn we mean the limit of the sequence {Pn/Qn} as n tends to

infinity, if the limit exists.
Two of the most interesting examples of continued fractions with more

than one limit are due to Rogers-Ramanujan [10, 12], and Ramanujan [11],
respectively:

(1.1) 1 +
q

1 +
q2

1 +
q3

1 +
q4

1 · · ·
,

and

(1.2)
−1

1 + q +
−1

1 + q2 +
−1

1 + q3 + · · · .

Now, it is known that (1.1) converges for |q| < 1, while for |q| > 1, it tends
to two different limits, depending on whether one considers the sequence of
even or odd approximants. For (1.2), the behavior is even more interesting:
it diverges for |q| < 1, but its sequence of approximants converge to different
values depending on the residue class modulo 3 from which the approximants
are chosen. We show that (1.1) and (1.2) are part of the same phenomenon–
a phenomenon that we thoroughly explore here. We present a unified theory
showing that this behavior is typical of a larger class of continued fractions
which have multiple limits. We show that there is nothing special about two
or three limits, and that continued fractions with m ≥ 2 limits arise just as
naturally.

In the course of our investigations it became necessary to investigate cer-
tain infinite products of matrices. These, in turn, led to theorems about the
limiting behavior of Poincaré-type recurrences. We obtain a theorem sim-
ilar to that of Perron on the limiting behavior of Poincaré-type recurrence
sequences in the case where the eigenvalues are distinct roots of unity, but
our theorem gives more information. We begin by describing this work.
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1.1. Poincaré-type recurrences. Let the sequence {xn}n≥0 have the ini-
tial values x0, . . . , xp−1 and subsequently defined by

(1.3) xn+p =
p−1∑
r=0

an,rxn+r,

for n ≥ 0. Suppose also that there are numbers a0, . . . , ap−1 such that

lim
n→∞

an,r = ar, 0 ≤ r ≤ p− 1.(1.4)

A recurrence of the form (1.3) satisfying the condition (1.4) is called a
Poincaré-type recurrence, (1.4) being known as the Poincaré condition. Such
recurrences were initially studied by Poincaré who proved that if the roots
of the characteristic equation

(1.5) tp − ap−1t
p−1 − ap−2t

p−2 − · · · − a0 = 0

have distinct norms, then the ratios of consecutive terms in the recurrence
(for any set of initial conditions) tend to one of the roots. See [9]. Because
the roots are also the eigenvalues of the associated companion matrix, they
are also referred to as the eigenvalues of (1.3). This result was improved by
O. Perron, who obtained a number of theorems about the limiting asymp-
totics of such recurrence sequences. Perron [8] made a significant advance in
1921 when he proved the following theorem which for the first time treated
cases of eigenvalues which repeat or are of equal norm.

Theorem 1. Let the sequence {xn}n≥0 be defined by initial values x0,
. . . , xp−1 and by (1.3) for n ≥ 0. Suppose also that there are numbers
a0, . . . , ap−1 satisfying (1.4). Let q1, q2, . . . qσ be the distinct moduli of the
roots of the characteristic equation (1.5) and let lλ be the number of roots
whose modulus is qλ, multiple roots counted according to multiplicity, so that

l1 + l2 + . . . lσ = p.

Then, provided an,0 be different from zero for n ≥ 0, the difference equation
(1.3) has a fundamental system of solutions, which fall into σ classes, such
that, for the solutions of the λ-th class and their linear combinations,

lim sup
n→∞

n
√
|xn| = qλ.

The number of solutions of the λ-th class is lλ.

Thus when all of the characteristic roots have norm 1, this theorem gives
that

lim sup
n→∞

n
√
|xn| = 1.

Another related paper is [6] where the authors study products of matrices
and give a sufficient condition for their boundedness. This is then used to
study “equimodular” limit periodic continued fractions, which are limit pe-
riodic continued fractions in which the characteristic roots of the associated
2× 2 matrices are all equal in modulus. The matrix theorem in [6] can also
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be used to obtain results about the boundedness of recurrence sequences.
We study a more specialized situation here and obtain far more detailed
information as a consequence.

Our focus is on the case where the characteristic roots are distinct roots
of unity. Under a condition stronger than (1.4) we will show that all non-
trivial solutions of such recurrences approach a finite number of limits in a
precisely controlled way. Specifically, our theorem is:

Theorem 2. Let the sequence {xn}n≥0 be defined by initial values x0,
. . . , xp−1 and by (1.3) for n ≥ 0. Suppose also that there are numbers
a0, . . . , ap−1 such that

∞∑
n=0

|ar − an,r| < ∞, 0 ≤ r ≤ p− 1.

Suppose the solutions of (1.5) are distinct roots of unity, say α1, . . . , αp.
Let m be the least positive integer such that, for all j ∈ {0, 1, . . . , p − 1},
αm

j = 1. Then, for 0 ≤ j ≤ m − 1, the subsequence {xmn+j}∞n=0 converges.
Set lj = limn→∞ xnm+j, for integers j ≥ 0. Then the (periodic) sequence
{lj} satisfies the recurrence relation

(1.6) ln+p =
p−1∑
r=0

arln+r,

and thus there exist constants c1, · · · , cp such that

(1.7) ln =
p∑

i=1

ciα
n
i .

Remark. In [2] the authors study a recurrence which is of Poincaré type
and has 6 limits. In section 4 we obtain this result of a special case of one
of our corollaries.

Theorem 2 follows easily from Proposition 1 in section 2 which proves
the convergence of infinite products of matrices when the limits are taken in
arithmetic progressions. Proposition 1 is also our key to giving a unifying
theory of certain classes of continued fractions with multiple limits.

1.2. Continued fractions with multiple limits. Our general theorem
on continued fractions with multiple limits is the following which includes
the multiple limit convergence behavior of both (1.1) and (1.2) as special
cases.

Theorem 3. Let {pn}n≥1, {qn}n≥1 be complex sequences satisfying
∞∑

n=1

|pn| < ∞,

∞∑
n=1

|qn| < ∞.
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Let ω1 and ω2 be distinct roots of unity and let m be the least positive integer
such that ωm

1 = ωm
2 = 1 . Define

G :=
−ω1ω2 + q1

ω1 + ω2 + p1 +
−ω1ω2 + q2

ω1 + ω2 + p2 +
−ω1ω2 + q3

ω1 + ω2 + p3 + · · · .

Let {Pn/Qn}∞n=1 denote the sequence of approximants of G. If qn 6= ω1ω2 for
any n ≥ 1, then G does not converge. However, the sequences of numerators
and denominators in each of the m arithmetic progressions modulo m do
converge. More precisely, there exist complex numbers A0, . . . , Am−1 and
B0, . . . , Bm−1 such that, for 0 ≤ i < m,

lim
k→∞

Pm k+i = Ai, lim
k→∞

Qm k+i = Bi.(1.8)

Extend the sequences {Ai} and {Bi} over all integers by making them peri-
odic modulo m so that (1.8) continues to hold. Then for integers i,

(1.9) Ai =
(

A1 − ω2A0

ω1 − ω2

)
ωi

1 +
(

ω1A0 −A1

ω1 − ω2

)
ωi

2,

and

(1.10) Bi =
(

B1 − ω2B0

ω1 − ω2

)
ωi

1 +
(

ω1B0 −B1

ω1 − ω2

)
ωi

2.

Moreover,

(1.11) AiBj −AjBi = −(ω1ω2)j+1 ωi−j
1 − ωi−j

2

ω1 − ω2

∞∏
n=1

(
1− qn

ω1ω2

)
.

Put ω1 := exp(2πia/m), ω2 := exp(2πib/m), 0 ≤ a < b < m, and r :=
m/ gcd(b − a,m). Then G has r distinct limits in Ĉ which are given by
Aj/Bj, 1 ≤ j ≤ r. Finally, for k ≥ 0 and 1 ≤ j ≤ r,

Aj+kr

Bj+kr
=

Aj

Bj
.

To see how the behavior of (1.1) for |q| > 1 follows from this, observe that
by the standard equivalence transformation for continued fractions, (1.1) is
equal to

1 +
1

1/q +
1

1/q +
1

1/q2 +
1

1/q2 · · · +
1

1/qn +
1

1/qn · · · .

We can now apply Theorem 3 with ω1 = −1, ω2 = 1 (so m = 2), qn = 0 and
p2n−1 = p2n = 1/qn to get that the continued fraction does not converge,
but that the sequence of approximants in each of the arithmetic progressions
modulo 2 do converge.

The behavior of (1.2) is similarly a special case. Put ω1 = exp(2πi/6),
ω2 = exp(−2πi/6) (so that ω1 + ω2 = ω1ω2 = 1), gn = 0 and fn = qn.
Theorem 3 then gives that (1.2) has three limits for |q| < 1.

We refer to the number r in the theorem as the rank of the continued
fraction. A remarkable consequence of this theorem is that because of (1.9)
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and (1.10), to compute all the limits of a continued fraction of rank r, one
only needs to know the first two limits of the numerator and denominator
convergents. In fact, taking i = 0 and j = 1 in (1.11), it can be seen that
one only needs to know the value of three of the four limits {A0, A1, B0, B1}.

Another interesting consequence of Theorem 3 is that the fundamental
Stern-Stolz divergence theorem [7] is an immediate corollary. In fact, the
Stern-Stolz theorem will be found to be the beginning of an infinite sequence
of similar theorems all of which are special cases of our theorem. See Corol-
laries 1-3 and Example 1. These consequences of Theorem 3 are explored
after its proof.

1.3. A generalization of the Ramanujan continued fraction with
three limits. In a recent paper [2], the authors proved a claim made by
Ramanujan in his lost notebook ([11], p.45) about (1.2). To describe Ra-
manujan’s claim, we first need some notation. Throughout take q ∈ C
with |q| < 1. The following standard notation for q-products will also be
employed:

(a)0 := (a; q)0 := 1, (a)n := (a; q)n :=
n−1∏
k=0

(1− a qk), if n ≥ 1,

and

(a; q)∞ :=
∞∏

k=0

(1− a qk), |q| < 1.

Set ω = e2πi/3. Ramanujan’s claim was that, for |q| < 1,
(1.12)

lim
n→∞

(
1
1 −

1
1 + q −

1
1 + q2 − · · · −

1
1 + qn + a

)
= −ω2

(
Ω− ωn+1

Ω− ωn−1

)
.
(q2; q3)∞
(q; q3)∞

,

where

Ω :=
1− aω2

1− aω

(ω2q, q)∞
(ωq, q)∞

.

Ramanujan’s notation is confusing, but what his claim means is that the
limit exists as n →∞ in each of the three congruence classes modulo 3, and
that the limit is given by the expression on the right side of (1.12). Also,
the appearance of the variable a in this formula is a bit of a red herring;
from elementary properties of continued fractions, one can derive the result
for general a from the a = 0 case.

Here we examine a direct generalization of Ramanujan’s continued frac-
tion which has k limits, for an arbitrary positive integer k ≥ 2, and evaluate
these limits in terms of ratios of certain unusual q-series. Let m be any
arbitrary integer greater than 2, let ω be a primitive m-th root of unity and,
for ease of notation, let ω̄ = 1/ω. Define

G(q) :=
1
1 −

1
ω + ω̄ + q −

1
ω + ω̄ + q2 −

1
ω + ω̄ + q3 + · · · .
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For |q| < 1 and a, x 6= 0, define

(1.13) P (a, x, q) :=
∞∑

j=0

qj(j+1)/2ajxj

(q; q)j(x2q; q)j
.

We prove the following theorem.

Theorem 4. Let ω be a primitive m-th root of unity and let ω̄ = 1/ω. Let
1 ≤ i ≤ m. Then

(1.14) lim
k→∞

1
ω + ω̄ + q −

1
ω + ω̄ + q2 − · · ·

1
ω + ω̄ + qmk+i

=
ω1−iP (q, ω, q)− ωi−1P (q, w−1, q)

ω−iP (1, ω, q)− ωiP (1, w−1, q)
.

Moreover, the continued fraction has rank m when m is odd, and rank m/2
when m is even.

We state the result for the first tail of G(q), rather than G(q) itself, for
aesthetic reasons.

We point out that this form of Theorem 4 is initially due to Ismail and
Stanton [4]. Prior to becoming aware of their work, we had proved Theorem
4 in a form that involved the infinite series F (ω, i, j, q) of Lemma 6. Their
result motivated us to prove Lemma 6, thereby deriving compact expressions
for these series and thus arriving at the result of Theorem 4 by another route.

1.4. Analytic continued fractions with multiple limits, via Daniel
Bernoulli’s Theorem. In [2], the authors also describe a general class of
analytic continued fractions with three limit points. Our final results are to
give an alternative derivation, using Daniel Bernoulli’s continued fraction,
of this class of analytic continued fractions, and to generalize this class,
again using Bernoulli’s continued fraction, by showing how to construct
analytic continued fractions with m limit points, for an arbitrary positive
integer m ≥ 2. Recall that Bernoulli’s result is a simple formula for a
continued fraction whose sequence of approximants agrees exactly with any
prescribed sequence (See Proposition 2). If the original sequence is of a
simple kind, then Bernoulli’s continued fraction offers no advantage over
the original sequence and so is in a certain sense “trivial”. (It is just an
obscure way of writing down a simple sequence.) Our results in Theorems 3
and 4 are deeper and do not arise from a simple sequence. Using Bernoulli’s
continued fraction we prove the following theorem which gives a general class
of continued fractions having m limit points. The sequence equal to the n’th
approximant of this continued fraction is constructed from taking the union
of m sequences. This gives rise to the m limits. We have included this result
to put into perspective the special case of Bernoulli’s formula that is given
in [2].
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Theorem 5. Let G(z) be analytic in the closed unit disc and suppose

|G(z)| < 1/2, |z| < 1.(1.15)

Let m be a positive integer, m ≥ 2. Define

(1.16) γn =

{
1−m, n ≡ 0(mod m),
1, otherwise.

Then, for |z| < 1, the continued fraction

(1.17)
G(z2)−G(z) + 1

1 −
G(z3)−G(z2) + 1
G(z3)−G(z) + 2

+ K∞
n=3

−(G(zn+1)−G(zn) + γn)(G(zn−1)−G(zn−2) + γn−2)
G(zn+1)−G(zn−1) + γn + γn−1

.

has exactly the m limits G(0)−G(z) + i, 0 ≤ i ≤ m− 1.

2. A Result on Infinite Matrix Products

The convergence results of this paper follow from the following proposi-
tion.

Proposition 1. Let p ≥ 2 be an integer and let M be a p × p matrix that
is diagonalizable and whose eigenvalues are roots of unity. Let I denote the
p× p identity matrix and let m be the least positive integer such that

Mm = I.

For a p× p matrix G, let

||G||∞ = max
1≤i,j≤p

|G(i,j)|,

where G(i,j) denotes the element of G in row i and column j. Suppose
{Dn}∞n=1 is a sequence of matrices such that

∞∑
n=1

||Dn −M ||∞ < ∞.

Then

F := lim
k→∞

km∏
n=1

Dn

exists. Here the matrix product means either D1D2 . . . or . . . D2D1. Further,
for each j, 0 ≤ j ≤ m− 1,

lim
k→∞

km+j∏
n=1

Dn = M jF or FM j ,

depending on whether the products are taken to the left or right.

We prove the proposition for the products D1D2 . . . only, since the other
case follows by taking the transpose. We need two preliminary lemmas.
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Lemma 1. For n ≥ 0, define

Un =
m∏

j=1

Dmn+j .

Then there exists a sequence {εn} with
∑∞

n=0 εn < ∞ and an absolute
constant A such that

||Un − I||∞ ≤ εnA.

Proof. Let εn = max1≤j≤m ||Dmn+j −M ||∞. Define Emn+j by

Dmn+j = M + εnEmn+j .

(If εn = 0, define Emn+j to be the p× p zero matrix). Note that the entries
in each matrix Emn+j are bounded in absolute value by 1. Let the matrix
Rn be as defined below.

Un =
m∏

j=1

Dmn+j =
m∏

j=1

(M + εnEmn+j)

:= Mm + εnRn = I + εnRn.

The elements of all the matrices Rn for n ≥ 0 are absolutely bounded
(independent of n) since Rn is formed from a sum of at most 2m products
of matrices, where each product contains m matrices and the entries in each
matrix are bounded by max{||M ||∞, εn}. Let A = sup{||Rn||∞}. Then

||Un − I||∞ = εn||Rn||∞ ≤ εnA.

�

Lemma 2. With the notation of the previous lemma, define

Fr =
r∏

n=0

Un.

Then limr→∞ Fr exists.

Proof. Let A be as defined in the previous lemma.
Claim 1:

||Fr||∞ ≤
r∏

j=0

(1 + pεjA) .

Proof of claim. For r = 0, F0 = U0 and

|F (i,j)
0 | = |U (i,j)

0 | ≤ 1 + ε0A ≤ 1 + pε0A.

Assume the claim is true for r = 0, 1, . . . s.

|F (i,j)
s+1 | =

∣∣∣∣∣
p∑

k=1

F (i,k)
s U

(k,j)
s+1

∣∣∣∣∣ ≤
p∑

k=1

∣∣∣F (i,k)
s

∣∣∣ ∣∣∣U (k,j)
s+1

∣∣∣ ≤ s∏
j=0

(1 + pεjA)
p∑

k=1

∣∣∣U (k,j)
s+1

∣∣∣
≤

s∏
j=0

(1 + pεjA)(1 + pεs+1A) =
s+1∏
j=0

(1 + pεjA).
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In particular, note that, for each r ≥ 0 and each index (i, j),

|F (i,j)
r | ≤

∞∏
j=0

(1 + pεjA) := C.

Note that the infinite product converges, since
∑∞

n=0 εn ≤
∑∞

n=0 ||Dn −
M || < ∞.

Claim 2: For each index (i, j), the sequence {F (i,j)
r } is Cauchy, and hence

convergent.
Proof of claim. By definition,

Fr+1 − Fr = FrUr+1 − Fr = Fr(Ur+1 − I).

Hence,

|F (i,j)
r+1 − F (i,j)

r | =

∣∣∣∣∣
p∑

k=1

F (i,k)
r (Ur+1 − I)(k,j)

∣∣∣∣∣
≤

p∑
k=1

|F (i,k)
r |

∣∣∣(Ur+1 − I)(k,j)
∣∣∣ ≤ pCAεr+1,

where C is as defined immediately above. This is sufficient to show the
sequence is Cauchy, since

∑∞
n=0 εn < 0. Define the matrix F by

F (i,j) := lim
r→∞

F (i,j)
r .

�

Proof of Proposition 1. This now follows easily from the above lemma,
since

lim
k→∞

km+j∏
n=1

Dn = lim
k→∞

km∏
n=1

Dn

km+j∏
n=km+1

Dn

= lim
k→∞

Fk−1

km+j∏
n=km+1

Dn = FM j .

�

3. Continued Fractions With Multiple Limits

Proposition 1 allows us to construct non-trivial divergent continued frac-
tions whose sequences of approximants in each of the arithmetic progressions
modulo m converge. We now prove Theorem 3.

Proof of Theorem 3. Let

M =
(

ω1 + ω2 1
−ω1ω2 0

)
.
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It follows easily from the identity 1 1

−ω2 −ω1

 ω1 0

0 ω2

 1 1

−ω2 −ω1

−1

=

 ω1 + ω2 1

−ω1ω2 0


that

(3.1) M j =


ω1

1+j − ω2
1+j

ω1 − ω2

ω1
j − ω2

j

ω1 − ω2

−
ω1 ω2

(
ω1

j − ω2
j
)

ω1 − ω2

−ω1
j ω2 + ω1 ω2

j

ω1 − ω2

 ,

and thus that

Mm =
(

1 0
0 1

)
, M j 6=

(
1 0
0 1

)
, 1 ≤ j < m.

For n ≥ 1, define

Dn :=

 ω1 + ω2 + pn 1

−ω1ω2 + qn 0

 .

Then ∑
n≥1

||Dn −M ||∞ < ∞.

Further,
||Dn −M ||∞ = max{|pn|, |qn|}.

Thus the matrix M and the matrices Dn satisfy the conditions of Proposition
1. Let the matrices Fi and F have the same meaning as in the proof of
Proposition 1.

By the correspondence between matrices and continued fractions, Pmn+i Pmn+i−1

Qmn+i Qmn+i−1

 =

 0 1

1 0

mn+i∏
j=1

Dj(3.2)

=

 0 1

1 0

Fn−1

mn+i∏
j=mn+1

Dj .

Now let n →∞ to get that

(3.3) lim
n→∞

 Pmn+i Pmn+i−1

Qmn+i Qmn+i−1

 =

 0 1

1 0

F M i.

This proves (1.8).
Now let Ai := limn→∞ Pmn+i, and Bi := limn→∞ Qmn+i. Notice by

definition that the sequences {Ai} and {Bi} are periodic modulo m.
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It easily follows from (3.3) that Ai Ai−1

Bi Bi−1

 =

 Aj Aj−1

Bj Bj−1

M i−j .

(3.1) also gives that

(3.4) Ai = Aj
ω1

1+i−j − ω2
1+i−j

ω1 − ω2
−Aj−1

ω1 ω2

(
ω1

i−j − ω2
i−j
)

ω1 − ω2
,

and

(3.5) Bi = Bj
ω1

1+i−j − ω2
1+i−j

ω1 − ω2
−Bj−1

ω1 ω2

(
ω1

i−j − ω2
i−j
)

ω1 − ω2
.

Thus

AiBj −AjBi =
(Aj B−1+j −A−1+j Bj) ω1 ω2

(
ω1

i−j − ω2
i−j
)

ω1 − ω2
.

(1.9) and (1.10) follow from (3.4) and (3.5) by setting j = 1. (1.11) follows
after applying the determinant formula

AjBj−1 −Aj−1Bj = − lim
k→∞

mk+j∏
n=1

(ω1ω2 − qn)

= −(ω1ω2)j
∞∏

n=1

(
1− qn

ω1ω2

)
.

Since
∑∞

j=1 |qj | converges to a finite value, the infinite product on the right
side converges.

For the continued fraction to converge, AiBi−1 −Ai−1Bi = 0 is required.
However, (1.11) shows that this is not the case.

Also from (1.11) we have that AiBj − AjBi = 0, and thus that Ai/Bi =
Aj/Bj in the extended complex plane, if and only if ωi−j

1 = ωi−j
2 . This

happens if and only if

(i− j)a ≡ (i− j)b mod m.

It follows easily from this that
Aj

Bj
, 1 ≤ j ≤ m

gcd(b− a,m)
=: r,

are distinct and that
Aj+kr

Bj+kr
=

Aj

Bj
, 1 ≤ j ≤ r, k ≥ 0.

�

It is easy to derive general divergence results from this theorem, including
the classical Stern-Stolz Theorem [7]. In fact, Stern-Stolz can be seen as
the beginning of an infinite family of divergence theorems. We first derive
the Stern-Stolz theorem as a corollary, generalize it, then give a corollary
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describing the infinite family. Last, we list the first few examples in the
infinite family.

Corollary 1. (Stern-Stolz) Let the sequence {bn} satisfy
∑
|bn| < ∞. Then

b0 + K∞
n=1

1
bn

diverges. In fact, for p = 0, 1,

lim
n→∞

P2n+p = Ap 6= ∞, lim
n→∞

Q2n+p = Bp 6= ∞,

and
A1B0 −A0B1 = 1.

Proof. This follows immediately from Theorem 3, upon setting ω1 = 1,
ω2 = −1 (so m = 2), qn = 0 and pn = bn. �

Note that by taking qn = an we immediately obtain a generalization.

Corollary 2. Let the sequences {an} and {bn} satisfy an 6= −1 for n ≥ 1,∑
|an| < ∞ and

∑
|bn| < ∞. Then

b0 + K∞
n=1

1 + an

bn

diverges. In fact, for p = 0, 1,

lim
n→∞

P2n+p = Ap 6= ∞, lim
n→∞

Q2n+p = Bp 6= ∞,

and

A1B0 −A0B1 =
∞∏

n=1

(1 + an).

Proof. This follows immediately from Theorem 3, upon setting ω1 = 1,
ω2 = −1 (so m = 2), qn = an and pn = bn. �

We have not been able to find Corollary 2 in the literature.
A natural infinite family of Stern-Stolz type theorems is described by the

following corollary.

Corollary 3. Let the sequences {an} and {bn} satisfy an 6= 1 for n ≥ 1,∑
|an| < ∞ and

∑
|bn| < ∞. Let m ≥ 3 and let ω1 be a primitive m-th root

of unity. Then

b0 + K∞
n=1

−1 + an

ω1 + ω−1
1 + bn

does not converge, but the numerator and denominator convergents in each
of the m arithmetic progressions modulo m do converge. If m is even, then
for 1 ≤ p ≤ m/2,

lim
n→∞

Pmn+p = − lim
n→∞

Pmn+p+m/2 = Ap 6= ∞,

lim
n→∞

Qmn+p = − lim
n→∞

Qmn+p+m/2 = Bp 6= ∞.
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If m is odd, then the continued fraction has rank m. If m is even, then the
continued fraction has rank m/2. Further, for 2 ≤ p ≤ m′, where m′ = m if
m is odd and m/2 if m is even,

ApBp−1 −Ap−1Bp = −
∞∏

n=1

(1− an).

Proof. In Theorem 3, let ω2 = 1/ω1. �

Some explicit examples are given below.

Example 1. Let the sequences {an} and {bn} satisfy an 6= 1 for n ≥ 1,∑
|an| < ∞ and

∑
|bn| < ∞. Then each of the following continued fractions

diverges:
(i) The following continued fraction has rank three:

(3.6) b0 + K∞
n=1

−1 + an

1 + bn
.

In fact, for p = 1, 2, 3,

lim
n→∞

P6n+p = − lim
n→∞

P6n+p+3 = Ap 6= ∞,

lim
n→∞

Q6n+p = − lim
n→∞

Q6n+p+3 = Bp 6= ∞.

(ii) The following continued fraction has rank four:

(3.7) b0 + K∞
n=1

−1 + an√
2 + bn

.

In fact, for p = 1, 2, 3, 4,

lim
n→∞

P8n+p = − lim
n→∞

P8n+p+4 = Ap 6= ∞,

lim
n→∞

Q8n+p = − lim
n→∞

Q8n+p+4 = Bp 6= ∞.

(iii) The following continued fraction has rank five:

(3.8) b0 + K∞
n=1

−1 + an

(1−
√

5)/2 + bn

.

In fact, for p = 1, 2, 3, 4, 5,

lim
n→∞

P5n+p = Ap 6= ∞, lim
n→∞

Q5n+p = Bp 6= ∞.

(iv) The following continued fraction has rank six:

(3.9) b0 + K∞
n=1

−1 + an√
3 + bn

.

In fact, for p = 1, 2, 3, 4, 5, 6,

lim
n→∞

P12n+p = − lim
n→∞

P12n+p+6 = Ap 6= ∞,

lim
n→∞

Q12n+p = − lim
n→∞

Q12n+p+6 = Bp 6= ∞.
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In each case we have, for p in the appropriate range, that

ApBp−1 −Ap−1Bp = −
∞∏

n=1

(1− an).

Proof. In Corollary 3, set
(i) ω1 = exp(2πi/6);
(ii) ω1 = exp(2πi/8);
(iii) ω1 = exp(2πi/5);
(iv) ω1 = exp(2πi/12). �

The cases ω1 = exp(2πi/m), m = 3, 4, 10 give continued fractions that are
the same as those above after an equivalence transformation and renormal-
ization of the sequences {an} and{bn}. Note that the continued fractions
(3.7) and (3.9) are, after an equivalence transformation and renormalizing
the sequences {an} and {bn}, of the forms

(3.10) b0 + K∞
n=1

−2 + an

2 + bn
,

and

(3.11) b0 + K∞
n=1

−3 + an

3 + bn
,

respectively. Because of the equivalence transformations employed, the con-
vergents do not tend to limits in (3.10) or (3.11). Also, it should be men-
tioned that Theorem 3.3 of [2] is essentially the special case an = 0 of part
(i) of our example. Nevertheless (3.10) and (3.11) have ranks 4 and 6 re-
spectively.

Theorem 3 now makes it trivial to construct q-continued fractions with
arbitrarily many limits.

Example 2. Let f(x), g(x) ∈ Z[q][x] be polynomials with zero constant
term. Let ω1, ω2 be distinct roots of unity and suppose m is the least positive
integer such that ωm

1 = ωm
2 = 1 . Define

G(q) :=
−ω1ω2 + g(q)
ω1 + ω2 + f(q) +

−ω1ω2 + g(q2)
ω1 + ω2 + f(q2) +

−ω1ω2 + g(q3)
ω1 + ω2 + f(q3) + · · · .

Let |q| < 1. If g(qn) 6= ω1ω2 for any n ≥ 1, then G(q) does not converge.
However, the sequences of approximants of G(q) in each of the m arithmetic
progressions modulo m converge to values in Ĉ. The continued fraction has
rank m/ gcd(b− a,m), where a and b are as defined in Theorem 3.

From this example we can conclude that (1.1) and (1.2) are far from
unique examples and many other q-continued fractions with multiple limits
can be immediately written down. Thus, to Ramanujanize a bit, one can
immediately see that the continued fractions

(3.12)
∞
K

n≥1

−1/2
1 + qn

and
∞
K

n≥1

−1/2 + qn

1 + qn
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both have rank four, while the continued fractions

(3.13)
∞
K

n≥1

−1/3
1 + qn

and
∞
K

n≥1

−1/3 + qn

1 + qn

both have rank six. We do not dwell further on q-continued fractions here,
but in section 5 we will study a direct generalization of (1.2).

4. Recurrence relations with characteristic equations whose
roots are roots of unity

Theorem 2 follows easily from Proposition 1. We now prove Theorem 2.

Proof of Theorem 2. Define

M :=


ap−1 ap−2 . . . a1 a0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

By the correspondence between polynomials and companion matrices, the
eigenvalues of M are α1, . . . , αp, so that M is diagonalizable and satisfies

Mm = I, M j 6= I, 1 ≤ j ≤ m− 1.

For n ≥ 1, define

Dn :=


an−1,p−1 an−1,p−2 . . . an−1,1 an−1,0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

Thus the matrices M and Dn satisfy the conditions of Proposition 1. From
the recurrence relation at (4.2) we get

xmn+i+p−1

xmn+i+p−2
...

xmn+i

 =
mn+i∏
j=1

Dj


xp−1

xp−2
...

x0

 .

Let F have the same meaning as in Proposition 1 and then

(4.1) lim
n→∞


xmn+i+p−1

xmn+i+p−2
...

xmn+i

 = F M i


xp−1

xp−2
...

x0

 .

(1.6) now follows immediately by letting n →∞ in (1.3). This completes
the proof. �
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When a specific M is known, (4.1) can sometimes be used to obtain further
relations between the different limits. This is illustrated in the following
corollary.

Corollary 4. Let u and v be complex numbers, (u, v) 6= (0, 0) and let
{an}n≥1, {bn}n≥1 be sequences of complex numbers such that

∞∑
n=1

|an| < ∞,

∞∑
n=1

|bn| < ∞.

Let ω1 and ω2 be distinct roots of unity and let m be the least positive integer
such that ωm

1 = ωm
2 = 1. Let the sequence {xn}n≥0 be defined by x0 = u,

x1 = v and, for n ≥ 2 by

(4.2) xn = (ω1 + ω2 + an−1)xn−1 − (ω1ω2 + bn)xn−2.

Then,
(i) For fixed integer j the sequence {xmn+j}n≥0 is convergent;
(ii) If we set lj := limn→∞ xmn+j, then for integer j,

lj+1 = (ω1 + ω2) lj − ω1ω2lj−1;

(iii) If m is even and ω1 and ω2 are primitive m-th roots of unity, then

lm/2+j = −lj , 0 ≤ j ≤ m/2− 1;

(iv)For j ∈ {1, 2, . . . m− 2}, at most one of lj−1, lj and lj+1 is zero.

Proof. Define

M =

 ω1 + ω2 −ω1ω2

1 0

 ,

and, for n ≥ 1, set

Dn =

 ω1 + ω2 + an −ω1ω2 − bn

1 0

 ,

Statement (i) follows from the p = 2 case of Theorem 2, since the equation

t2 − (ω1 + ω2)t + ω1ω2 = 0

has roots ω1 and ω2. Statement (ii) follows immediately from Theorem
2. Statement (iii) follows from the fact that under the given conditions,
Mm/2 = −I and (4.1) gives lm/2+j+1

lm/2+j

 = F Mm/2+j

 u

v

 = −F M j

 u

v

 = −

 lj+1

lj

 .
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If any two of lj−1, lj and lj+1 were zero, (iii) would then give that the third
would also be zero. Thus lj+1

lj

 =

 0

0

 = F M j

 u

v

 ,

which is a contradiction, since det F = detM = 1 and (u, v) 6= (0, 0). �

Theorem 3.1 from [2] follows from the above corollary, upon setting ω1 =
exp(2πi/6), ω2 = exp(−2πi/6) and bn = 0 for n ≥ 1.

5. A Generalization of the Ramanujan Continued Fraction

We now study a generalization of Ramanujan’s continued fraction (1.2).
As above, let m be any arbitrary integer greater than 2, let ω be a primitive
m-th root of unity and, for ease of notation, let ω̄ = 1/ω. Define

(5.1) G(q) :=
1
1 −

1
ω + ω̄ + q −

1
ω + ω̄ + q2 −

1
ω + ω̄ + q3 + · · · .

We let PN (q)/QN (q) denote the N -th approximant of G(q). From Theo-
rem 3, the sequence of approximants in each of the m arithmetic progressions
modulo m converges (set g(x) := 0 and f(x) = x in this theorem). We pro-
ceed initially along the same path as that followed by the authors in [2]. We
recall the q-binomial theorem [1], pp. 35–36.

Lemma 3. If
[

n
m

]
denotes the Gaussian polynomial defined by

[
n
m

]
:=
[

n
m

]
q

:=


(q; q)n

(q; q)m(q; q)n−m
, if 0 ≤ m ≤ n,

0, otherwise ,

then

(z; q)N =
N∑

j=0

[
N
j

]
(−1)jzjqj(j−1)/2,(5.2)

1
(z; q)N

=
∞∑

j=0

[
N + j − 1

j

]
zj .

Lemma 4.

PN (q) =
∑

j,r,s≥ 0
r+j+s+1=N

qj(j+1)/2ωr−s

[
j + r

j

] [
j + s

j

]
.

Proof. For N ≥ 2, the sequence {PN (q)} satisfies

(5.3) PN (q) = (ω + ω̄ + qN−1)PN−1(q)− PN−2(q),
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with P1(q) = 1 and P0(q) = 0. Define

F (t) :=
∞∑

N=1

PN (q)tN .

If the recurrence relation (5.3) is multiplied by tN and summed for N ≥ 2,
we have

F (t)− t = (ω + ω̄)tF (t) + tF (tq)− t2F (t).
Thus

F (t) =
t

(1− ωt)(1− ω̄t)
+

t

(1− ωt)(1− ω̄t)
F (tq).

Iterating this equation and noting that F (0) = 0, we have that

F (t) =
∞∑

j=0

tj+1qj(j+1)/2

(ωt; q)j+1(ω̄t; q)j+1

=
∞∑

j,r,s=0

tj+r+s+1qj(j+1)/2ωr−s

[
j + r

j

] [
j + s

j

]
,

where the last equation follows from the second equation of (5.2). The
result follows upon comparing coefficients of tN . �

Lemma 5.

QN (q) =
∑

j,r,s≥ 0
r+j+s+1=N

qj(j+1)/2ωr−s

[
j + r

j

] [
j + s

j

]
−

∑
j,r,s≥ 0

r+j+s+2=N

qj(j+3)/2ωr−s

[
j + r

j

] [
j + s

j

]
.

Proof. The proof is similar to that of Lemma 4. For N ≥ 2, the sequence
{QN (q)} satisfies

(5.4) QN (q) = (ω + ω̄ + qN−1)QN−1(q)−QN−2(q),

with Q1(q) = Q0(q) = 1. Define

G(t) :=
∞∑

N=1

QN (q)tN .

If the recurrence relation (5.3) is multiplied by tN and summed for N ≥ 2,
we have

G(t)− t = (ω + ω̄)tG(t) + tG(tq)− t2G(t)− t2.

Thus

G(t) =
t(1− t)

(1− ωt)(1− ω̄t)
+

t

(1− ωt)(1− ω̄t)
G(tq).
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Iterating this equation and noting that G(0) = 0, we have that

G(t) =
∞∑

j=0

tj+1(1− tqj)qj(j+1)/2

(ωt; q)j+1(ω̄t; q)j+1

=
∞∑

j,r,s=0

tj+r+s+1(1− tqj)qj(j+1)/2ωr−s

[
j + r

j

] [
j + s

j

]
,

where the last equation follows from the second equation of (5.2). The
result follows upon comparing coefficients of tN . �

Lemma 6. Let ω be a primitive m-th root of unity and let |q| < 1.
(i) For j ≥ 0, k ≥ 0 and i ∈ Z define

Gk(ω, i, j, q) :=
mk+i∑
u=0

ωu(qu+1; q)j .

Then

(5.5) G(ω, i, j, q) := lim
k→∞

Gk(ω, i, j, q) =
(q; q)j

(ωq; q)j(1− ω)
− ωi+1

1− ω
.

(ii)For j ≥ 0, k ≥ 0 and i ∈ Z define

Fk(ω, i, j, q) :=
bmk+i

2
c′∑

u=0

(qu+1; q)j(α2u−i + αi−2u),

where the summation
∑bmk+i

2
c′

u=0 means that if mk + i is even, the final term
in the sum is (q(mk+i)/2+1; q)j, rather than 2(q(mk+i)/2+1; q)j.

Then

(5.6) F (ω, i, j, q) := lim
k→∞

Fk(ω, i, j, q)

=
(q; q)j

ω−1 − ω

(
ω−i−1

(qω2; q)j
− ωi+1

(q/ω2; q)j

)
.

Proof. Clearly we may assume 0 ≤ i ≤ m− 1. The proof in each case is by
induction on j.

(i) Both sides of (5.5) are easily seen to be true for j = 0, since

lim
k→∞

mk+i∑
u=0

ωu =
i∑

u=0

ωu.

Suppose j ≥ 1 and that (5.5) is true for each i, with j replaced by j − 1.

G(ω, i, j, q) = lim
k→∞

mk+i∑
u=0

ωu(qu+1; q)j

= lim
k→∞

mk+i∑
u=0

ωu(1− qu+1)(qu+2; q)j−1
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= lim
k→∞

mk+i+1∑
u=1

ωu−1(1− qu)(qu+1; q)j−1

= ωu−1

(
lim

k→∞

mk+i+1∑
u=1

ωu(qu+1; q)j−1 − lim
k→∞

mk+i+1∑
u=1

(qu+1; q)j−1(ωq)u

)

= ωu−1

(
lim

k→∞

mk+i+1∑
u=0

ωu(qu+1; q)j−1 − lim
k→∞

mk+i+1∑
u=0

(qu+1; q)j−1(ωq)u

)

= ωu−1

(
G(ω, i + 1, j − 1, q)− (q; q)j−1 lim

k→∞

mk+i+1∑
u=0

(q; q)u+j−1

(q; q)u(q; q)j−1
(ωq)u

)

= ω−1

(
(q; q)j−1

(ωq; q)j−1(1− ω)
− ωi+2

1− ω
− (q; q)j−1

(ωq; q)j

)
.

The first equality follows from (5.5) and the second from (5.2). Some simple
manipulations now give the result.

Remark: The proof of (i) is not necessary for the proof of our theorem
and we give it for completeness only.

(ii) Equality for j = 0 follows since

lim
k→∞

bmk+i
2

c′∑
u=0

(ω2u−i + ωi−2u) =
b i
2
c′∑

u=0

(ω2u−i + ωi−2u) =
ω−i−1 − ωi+1

ω−1 − ω
.

Now suppose j ≥ 1 and (5.6) holds for each i and with j replaced by j − 1.

F (ω, i, j, q) = lim
k→∞

bmk+i
2

c′∑
u=0

(qu+1; q)j(ω2u−i + ωi−2u)

= lim
k→∞

bmk+i
2

c′∑
u=0

(1− qu+1)(qu+2; q)j−1(ω2u−i + ωi−2u)

= lim
k→∞

bmk+i
2

c′∑
u=0

(qu+2; q)j−1(ω2u−i + ωi−2u)

− lim
k→∞

bmk+i
2

c′∑
u=0

(qu+2; q)j−1(ω2u−i + ωi−2u)qu+1

= lim
k→∞

bmk+i+2
2

c′∑
u=1

(qu+1; q)j−1(ω2u−2−i + ωi+2−2u)

− lim
k→∞

bmk+i+2
2

c′∑
u=1

(qu+1; q)j−1(ω2u−2−i + ωi+2−2u)qu
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= lim
k→∞

bmk+i+2
2

c′∑
u=0

(qu+1; q)j−1(ω2u−2−i + ωi+2−2u)

− lim
k→∞

bmk+i+2
2

c′∑
u=0

(qu+1; q)j−1(ω2u−2−i + ωi+2−2u)qu

= F (ω, i + 2, j − 1, q)

− (q; q)j−1 lim
k→∞

bmk+i+2
2

c′∑
u=0

(q; q)u+j−1

(q; q)u(q; q)j−1
(ω2u−2−i + ωi+2−2u)qu

=
(q; q)j−1

ω−1 − ω

(
ω−i−3

(qω2; q)j−1
− ωi+3

(q/ω2; q)j−1

)
− (q; q)j−1

(
ω−i−2

(qω2; q)j
+

ωi+2

(q/ω2; q)j

)
.

The first equality follows from (5.6) and the second follows from (5.2). A
little algebraic manipulation now gives the result. �

We note for later use that |(qr; q)j − 1| ≤ 2j |q|r and hence, after sub-
tracting the zero sum

∑m−1
s=0 ωs from Fk+1(ω, i, j, q) − Fk(ω, i, j, q), we get

that

|Fk+1(ω, i, j, q)− Fk(ω, i, j, q)| ≤ m 2j |q|(mk+i)/2.(5.7)

Since limk→∞ Fk(ω, i, j, q) = F (ω, i, j, q), it now follows that

|F (ω, i, j, q)− Fk(ω, i, j, q)| ≤ m 2j |q|(mk+i)/2

1− |q|m/2
.(5.8)

It is clear from the definition that |F0(ω, i, j, q)| ≤ (|i|+2)2j , so that letting
k = 0 in (5.8) gives

|F (ω, i, j, q)| ≤ 2j

(
|i|+ 2 +

m|q|i/2

1− |q|m/2

)
.(5.9)

Lemma 7. Let 1 ≤ i ≤ m. With the notation of Lemma 6,

(5.10) lim
k→∞

Pmk+i(q) =
∞∑

j=0

qj(j+1)/2

(q; q)2j
F (ω, i− j − 1, j, q).

(5.11) lim
k→∞

Qmk+i(q) =
∞∑

j=0

qj(j+1)/2

(q; q)2j
F (ω, i− j − 1, j, q)

−
∞∑

j=0

qj(j+3)/2

(q; q)2j
F (ω, i− j − 2, j, q).
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Proof. From Lemma 4,

Pmk+i(q) =
∑

j,r,s≥ 0
r+j+s+1=mk+i

qj(j+1)/2ωr−s

[
j + r

j

] [
j + s

j

]

=
∑

j,r,s≥ 0
r+j+s+1=mk+i

qj(j+1)/2

(q; q)2j
ωr−s(qr+1; q)j(qs+1; q)j

=
mk+i−1∑

j=0

qj(j+1)/2

(q; q)2j

mk+i−j−1∑
r=0

ω2r−(mk+i−j−1)(qr+1; q)j(qmk+i−j−r; q)j

=
mk+i−1∑

j=0

qj(j+1)/2

(q; q)2j
Hk(ω, i, j, q),

where

Hk(ω, i, j, q) :=
mk+i−j−1∑

r=0

ω2r−(mk+i−j−1)(qr+1; q)j(qmk+i−j−r; q)j

=
bmk+i−j−1

2
c′∑

r=0

(qr+1; q)j(qmk+i−j−r; q)j(ω2r−(mk+i−j−1) + ωmk+i−j−1−2r)

=
bmk+i−j−1

2
c′∑

r=0

(qr+1; q)j(qmk+i−j−r; q)j(ω2r−(i−j−1) + ωi−j−1−2r).

Here the summation
∑bmk+i−j−1

2
c′

r=0 has a meaning similar to that in Lemma
6, in that if mk + i − j − 1 is even, then the final term is (q

mk+i−j+1
2 ; q)2j ,

rather than 2(q
mk+i−j+1

2 ; q)2j . The sequence {(qr+1; q)j}∞r=0 is bounded by 2j

and |ω2r−(i−j−1) + ωi−j−1−2r| ≤ 2. Thus

|Fk(ω, i− j − 1, j, q)−Hk(ω, i, j, q)| ≤ 2j+1

bmk+i−j−1
2

c∑
r=0

|1− (qmk+i−j−r; q)j |

(5.12)

= 2j+1
mk+i−j∑

r=dmk+i−j+1
2

e

|1− (qr; q)j | ≤ 22j+1
mk+i−j∑

r=dmk+i−j+1
2

e

|q|r

≤ 22j+1 |q|d
mk+i−j+1

2
e

1− |q|
.
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After applying the triangle inequality, we have that∣∣∣∣∣∣Pmk+i −
∞∑

j=0

qj(j+1)/2

(q; q)2j
F (ω, i− j − 1, j, q)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∞∑

j=mk+i

qj(j+1)/2

(q; q)2j
F (ω, i− j − 1, j, q)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
mk+i−1∑

j=0

qj(j+1)/2

(q; q)2j
(Hk(ω, i, j, q)− F (ω, i− j − 1, j, q))

∣∣∣∣∣∣
≤

∞∑
j=mk+i

|q|j(j+1)/2

|(q; q)j |2
|F (ω, i− j − 1, j, q)|

+
mk+i−1∑

j=0

|q|j(j+1)/2

|(q; q)j |2
|Hk(ω, i, j, q)− Fk(ω, i− j − 1, j, q)|

+
mk+i−1∑

j=0

|q|j(j+1)/2

|(q; q)j |2
|Fk(ω, i− j − 1, j, q)− F (ω, i− j − 1, j, q)|.

Now apply (5.9) to the first sum, (5.12) to the second sum, and (5.8) to the
third sum to obtain∣∣∣∣∣∣Pmk+i −

∞∑
j=0

qj(j+1)/2

(q; q)2j
F (ω, i− j − 1, j, q)

∣∣∣∣∣∣
≤

∞∑
j=mk+i

|q|j(j+1)/2

|(q; q)j |2
2j

(
|i− j − 1|+ 2 +

m|q|(i−j−1)/2

1− |q|m/2

)
+

mk+i−1∑
j=0

|q|j(j+1)/2

|(q; q)j |2
22j+1 |q|d

mk+i−j+1
2

e

1− |q|
+

mk+i−1∑
j=0

|q|j(j+1)/2

|(q; q)j |2
m2j |q|

mk+i−j−1
2

1− |q|m/2
.

The first sum is the tail of a convergent series and thus tends to 0 as
k →∞. The second sum is majorized by the convergent series

|q|(mk+i−1)/2

1− |q|

∞∑
j=0

|q|j2/222j+1

|(q; q)j |2
,

and the third sum is majorized by the convergent series

m|q|(mk+i−1)/2

1− |q|m/2

∞∑
j=0

|q|j2/22j

|(q; q)j |2
.

Both sums clearly tend to 0 also as k →∞, thus proving (5.10). The proof
of (5.11) is virtually identical and so is omitted. �
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We now prove Theorem 4.

Proof of Theorem 4. Theorem 3 establishes the rank of the continued frac-
tion. The rest of the theorem follows immediately from Lemma 6, Lemma
7 and the definition of P (a, x, q) at (1.13). �

6. Constructing Analytic Continued Fractions with n limits,
using Daniel Bernoulli’s Continued Fraction

In 1775, Daniel Bernoulli [3] proved the following result (see, for example,
[5], pp. 11–12).

Proposition 2. Let {K0,K1,K2, . . .} be a sequence of complex numbers
such that Ki 6= Ki−1, for i = 1, 2, . . .. Then {K0,K1,K2, . . .} is the sequence
of approximants of the continued fraction

(6.1) K0 +
K1 −K0

1 +
K1 −K2

K2 −K0 +
(K1 −K0)(K2 −K3)

K3 −K1 +

. . . +
(Kn−2 −Kn−3)(Kn−1 −Kn)

Kn −Kn−2 + . . . .

Trivially, if limk→∞ Kmk+i = Li, for 0 ≤ i ≤ m − 1, where each Li is
different, one has a continued fraction where the approximants in each of
the m arithmetic progressions modulo m tend to a different limit. One easy
way to use Bernoulli’s continued fraction to construct continued fractions
with arbitrarily many limits is as follows. Let m be a positive integer, m ≥ 2.
Let {an}∞n=1, {cn}∞n=1, {dn}∞n=1 and {en}∞n=1 be convergent sequences with
non-zero limits a, c, d and e respectively. Define

K(n−1)m+j :=
dn + j en

an + j cn

for n ≥ 1 and 0 ≤ j ≤ m−1. Provided a+ j c 6= 0, for 0 ≤ j ≤ m−1 and no
two consecutive terms in the sequence {Ki} are equal, then the continued
fraction in (6.1) has the sequence of approximants{

d1

a1
,
d1 + e1

a1 + c1
,
d1 + 2e1

a1 + 2c1
, · · · ,

d1 + (m− 1)e1

a1 + (m− 1)c1
, · · · ,

dn

an
,
dn + en

an + cn
,
dn + 2en

an + 2cn
, · · · ,

dn + (m− 1)en

an + (m− 1)cn
, · · · ,

}
.

Thus this continued fraction has exactly the following m limits :{
d

a
,
d + e

a + c
,
d + 2e

a + 2c
, · · · ,

d + (m− 1)e
a + (m− 1)c

}
.

In [2], the authors defined a general class of analytic continued fractions
with three limit points as follows. Let F and G be meromorphic functions
defined on the unit disc, U := {z ∈ C : |z| < 1}, are analytic at the origin,
and satisfy the functional equation,

(6.2) F (z) + G(z) + zF (z)G(z) = 1.
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Further assume that zn, n ≥ 1, is not a pole of either F or G. The following
theorem was proved in [2].

Theorem 6. Let F and G be meromorphic functions defined on U , as given
above, which are analytic at the origin and satisfy the condition (6.2). Then
the continued fraction

(6.3)
1
1 −

1
1 + zF (z) −

1
1 + zG(z) −

1
F (z) + G(z2) −

1
1 + z2F (z2) −

1
1 + z2G(z2) −

1
F (z2) + G(z3) − · · · −

1
1 + znF (zn) −

1
1 + znG(zn) −

1
F (zn) + G(zn+1) − · · ·

has exactly three limit points, L0, L1 and L2. Moreover,

L0 =
z

2z − zG(z)− 1
,(6.4)

L1 =
z + z G(0)− 1

(z + z G(0)− 1) (1−G(z)) + (z − 1) G(0)
,(6.5)

L2 =
1− z G(0)

(1− z G(0)) (1−G(z)) + (z − 1) (1−G(0))
.(6.6)

We give an alternative proof, based on Proposition 2.

Proof. If we substitute for F from (6.2) and simplify the continued fraction,
we get that the continued fraction in (6.3) is equivalent to

(6.7)
1
1 −

1 + zG1

1 + z −
1
1 −

1
1−G1 + (1 + zG1)G2 −

(1 + zG1)(1 + z2G2)
1 + z2 − · · ·

−
1
1 −

1
1−Gn−1 + (1 + zn−1Gn−1)Gn −

(1 + zn−1Gn−1)(1 + znGn)
1 + zn · · · .

Here we use the notation Gn for G(zn). Define

an := 1,

cn :=

−2 + 3 z − (−1 + 2 z) G1 − (1− 2 z + z G1) Gn

+ zn (−1 + G1) (z + Gn)
2 (1− z + (1− 2 z + zn) Gn + G1 (−1 + z + (z − zn) Gn))

,

dn :=
1− z + (−z + zn) Gn

1− z + (1− 2 z + zn) Gn + G1 (−1 + z + (z − zn) Gn)
,

en :=
−1 + 2 z − z1+n + (z − zn) Gn

2 (1− z + (1− 2 z + zn) Gn + G1 (−1 + z + (z − zn) Gn))
.
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In (6.1), set K0 = 0, and for n ≥ 0, define

K3n+1 :=
dn+1

an+1
,(6.8)

K3n+2 :=
dn+1 + en+1

an+1 + cn+1
,

K3n+3 :=
dn+1 + 2en+1

an+1 + 2cn+1
.

Then the continued fraction in (6.1) simplifies to give (6.7). If we simplify
the expressions on the right side of (6.8), we have that this continued fraction
has exactly the sequence of approximants

(6.9)
{

1− z + (−z + zn) Gn

1− z + (1− 2 z + zn) Gn + G1 (−1 + z + (z − zn) Gn)
,

1− z1+n + (−z + zn) Gn

− (z (−1 + zn)) + (1− 2 z + zn) Gn + G1 (−1 + z1+n + (z − zn) Gn)
,

− z (−1 + zn)
−1 + 2 z − z1+n + z (−1 + zn) G1

}∞
n=1

.

Finally, we let n → ∞ to get the three limits, noting that zn → 0 and
Gn = G(zn) → G(0). �

It is not difficult to create analytic continued fractions with m limit points,
where m is an integer, m ≥ 2. For example, Theorem 5 provides a continued
fraction which is less convoluted in its contrivance than the one in Theorem
6. It is clear that Bernoulli’s continued fraction can be used to construct
many similar examples.

Proof of Theorem 5. In (6.1), put, for i ≥ 0,

Ki = G(zi+1)−G(z) + i(mod m).

The sequence {Ki}∞i=0 has exactly the m limits stated in the theorem. For
i ≥ 1,

(6.10) Ki −Ki−1 =


G(zi+1)−G(zi)−m + 1, for i ≡ 0(mod m),

G(zi+1)−G(zi) + 1, otherwise.

(1.15) gives that Ki − Ki−1 6= 0 for i ≥ 1. The continued fraction (1.17)
above is simply Bernoulli’s continued fraction (6.1) for the stated sequence
{Ki}∞i=0. �

7. Concluding Remarks

It should be noted that the condition in Theorem 3 that ω1 and ω2 be
distinct is necessary, since otherwise the matrix M cannot be diagonalized.
Moreover substituting ω1 = ω2 = 1 (so m = 1) into the continued fraction G
in Theorem 3 does not necessarily give that G has m = 1 limit. An example
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of how dropping the condition that ω1 and ω2 be distinct can lead to a false
result is provided by the continued fraction

K∞
n=1

−1− 4/(4n2 − 1)
2

= 2K∞
n=1

−1/4− 1/(4n2 − 1)
1

.

Our Theorem 3 without the condition that ω1 and ω2 be distinct would
predict that the first continued fraction above, and hence the second, would
have one limit (m = 1) and hence converge, but the second continued frac-
tion diverges generally ([7], page 158).

Our formulas for the m limits in Theorem 4 lack the simplicity of Ramanu-
jan’s for the continued fraction with three limit points. Can the function
P (a, x, q) at (1.13) be expressed in terms of infinite products? Do the quo-
tients of series on the right side of (1.14) have expressions in terms of infinite
products?
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