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ABSTRACT. Given a sequence of complex square matrices, a,, consider
the sequence of their partial products, defined by p, = pn_1a,. What
can be said about the asymptotics as n — oo of the sequence f(pn),
where f is a continuous function? This paper addresses this question
under the assumption that the matrices a, are an [; perturbation of a
sequence of matrices with bounded partial products. We chiefly apply
the result to investigate the asymptotics of the approximants of con-
tinued fractions. In particular, when a continued fraction is l; limit
1-periodic of elliptic type, we show that the set of limits of its sequence
of approximants have closures which are circles in C, or are a finite set of
points lying on a circle. More generally, similar results are found in the
context of Banach algebras. The theory is also applied to (r, s)-matrix
continued fractions, and recurrence sequences of Poincaré type.

1. INTRODUCTION

Consider the following recurrence:

3 1
T4+l = 5 — —.

2z,
Taking 1/00 to be 0 and vice versa, then regardless of the initial (real) value
of this sequence, it is an interesting fact that the sequence is dense in R.
The proof is illuminating.
Take g = 3/2 and view z;,, as n’th approximant of the continued fraction:

1 1 1 1
3/2—3/2—3/2—3/2— ...
Then, from the standard theorem on the recurrence for convergents of a
continued fraction, the n’th numerator and denominator convergents of this

(1.1) 3/2
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continued fraction, A, and B, respectively, must both satisfy the linear
recurrence relation

3
Y, = §Yn—1 - Yn—27
but with different initial conditions.
Now, the characteristic roots of this equation are a = 3/4 4 iv/7/4, and
3 = 3/4—i\/7/4. Thus from the usual formula for solving linear recurrences,
the exact formula for z,, is
Ap a™+b6"  aX"+b

wn:E_ca“+dﬂ"_cA"+d’

where a, b, ¢, and d are some complex constants and A = /3. Notice that
A is a number on the unit circle and is not a root of unity, so that A" is
dense on the unit circle. The conclusion follows by noting that the linear
fractional transformation

az+b

cz+d

Z

is a homeomorphism from C to C and must take the unit circle to R, since
the values of the sequence =z, are real. Starting with other real zy just
changes the constants in the transformation, so with a small modification
the proof works for other real starting values.

After seeing this argument, one is tempted to write down the equality

111 1
3/2—3/2—3/2—3/2 — ..

This is true so long as one interprets the value of the continued fraction to
be the set of limits of subsequences of its sequence of approximants. In this
paper we generalize such equalities.

Another motivating example of our work is the following theorem, one of
the oldest in the analytic theory of continued fractions [19, 31, 32]:

R =3/2

Theorem 1. (Stern-Stolz, [19, 31, 32]) Let the sequence {b,} satisfy > |by|
< o0o. Then

1
bo + K32y~
bn,
diverges. In fact, for p=0,1,
nhjgo Popyp = Ap # 00, nlggo Q2n+p = By # 00,

and
AlBo — A()Bl =1.

The Stern-Stolz theorem shows that all continued fractions of the gen-
eral form described in the theorem tend to two different limits, respectively
Ap/By, and A;/Bj. (These limits depend on the continued fraction.) Here

and throughout we assume the limits for continued fractions are in C. The
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motivation for this is that continued fractions can be viewed as the compo-
sition of linear fractional transformations and such functions have C as their
natural domain and codomain.

Before leaving the Stern-Stolz theorem, we wish to remark that although
the theorem is sometimes termed a “divergence theorem”, this terminology
is a bit misleading; the theorem actually shows that although the continued
fractions of this form diverge, they do so by tending to two limits according
to the parity of the approximant’s index.

A special case of the Stern-Stolz theorem is a fact about the famous
Rogers-Ramanujan continued fraction:

2 3 4
(1.2) 1404 ¢ ¢4

1+ 1+ 1+ 1

The Stern-Stolz theorem gives that for |¢| > 1 the even and odd approx-
imants of (1.2) tend to two limiting functions. To see this, observe that
by the standard equivalence transformation for continued fractions, (1.2) is
equal to

1 1 1 1 1 1
g+ g+ @+ TR+ g+ g

The Stern-Stolz theorem, however does not apply to the following contin-

ued fraction given by Ramanujan:
-1 -1 -1

1+qg+1+¢2+1+¢+--"

Recently in [1] Andrews, Berndt, et al. proved a claim made by Ramanu-
jan in his lost notebook ([24], p.45) about (1.3). To describe Ramanujan’s
claim, we first need some notation. Throughout take ¢ € C with |¢| < 1.
The following standard notation for ¢-products will also be employed:

(1.3)

n—1
(@o:=(a;qlo:=1, (a)n:=(a;q)n:=[[(1—ad"), ifn>1,
k=0
and
oo
(a; @)oo == [J(1 = adb), la < 1.
k=0
Set w = ¢*™/3, Ramanujan’s claim was that, for |¢| < 1,
(1.4)
, (1 1 1 1 ) Q(Q—w”“) (4% 4%)oo
lm |- @ — —— — )| =—w ) ,
n—oo 1_1+q_1+q2_..._1+qn+a 0 — n—1 (q,qg)oo
where

1 — aw? (w?q, q)so

1—aw (wq,q)o
Ramanujan’s notation is confusing, but what his claim means is that the
limit exists as n — oo in each of the three congruence classes modulo 3, and

Q=
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that the limit is given by the expression on the right side of (1.4). Also, the
appearance of the variable a in this formula is a bit of a red herring; from
elementary properties of continued fractions, one can derive the result for
general a from the a = 0 case.

The continued fraction (1.1), the Stern-Stolz theorem, and (1.3) are, in
fact, examples of the same phenomenon. We define this phenomenon and
investigate its implications.

Now (1.1) is different from the other two examples in that it has sub-
sequences of approximants tending to infinitely many limits. Nevertheless,
all of the examples above, including (1.1), are special cases of a general re-
sult on continued fractions (Theorem 7 below). To deal with both of these
situations we introduce the notion of the sequential closure of a sequence.

Define the sequential closure of the sequence in a topological space to
be the set of limits of convergent subsequences.! To avoid confusion we
designate the sequential closure of a sequence {sy}n>1 by s.c.(sp).

In this paper we study sequential closures in the specific context of se-

quences of the form
n
f (H Di) ;
i=1

where D; are elements in a unital Banach algebra and f is a function with
values in a metric space, often compact. Usually in this paper D; is a
sequence of complex matrices.

The main results of section 2 are Theorems 2, 3, and 4 which are the
most general result of the paper. Theorem 2 is the most general and is
stated in the setting of Banach algebras. In section 2 we also discuss recent
results of Beardon, [3], which apply hyperbolic geometry to the analytic
convergence theory of continued fractions. Some of the results of [3] are
related to ours in as much as they deal with generalizing the Stern-Stolz
theorem. Indeed, one of the conclusions of Theorem 2 is implied by one of
the theorems from [3]. The principle difference is that the theorems of [3],
which generalize the Stern-Stolz theorem, do not generalize the particular
conclusion of the Stern-Stolz theorem that the continued fraction’s even
and odd approximants tend to two different limits, and instead focus on the
fact of divergence. The approach of this present paper is to generalize the
convergence of subsequences in the Stern-Stolz theorem.

A special case of Theorem 2 is Theorem 4 which is used to prove Theorem
7 which gives detailed information about the sequential closures of continued
fractions. This result is studied in detail in sections 3 and 4. Section 5

IThus, for example, the sequence {1,1,1,...} has sequential closure {1} although the
set of limit (accumulation) points of the set of values of the sequence is empty. Note that
in a survey paper describing some of the research in this paper, the authors previously
used the phrase “limit set”, unaware of the use of this phrase in the theories of discrete
groups and dynamical systems. We thank Peter Loeb for the suggestion of the phrase
“sequential closure”.
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and 6 use Theorem 4 to study (r, s)-matrix continued fractions, and linear
recurrences of Poincaré type, respectively.

Section 3 focuses on limit periodic continued fractions of elliptic and loxo-
dromic types. We discover a rich tapestry of results which weave together the
sequential closure, modifications of the continued fraction, and the asymp-
totics of the approximants of a large class of continued fractions (including
many which represent naturally occurring special functions). Those of ellip-
tic type do not converge, but we find that their sequential closures are well
behaved, computable, and that their approximants have nice asymptotics.
This elliptic case has not previously been studied as far as we know.

We also address the statistics of the sequential closure. In particular, sup-
pose a continued fraction (or matrix generalization) has an infinite sequential
closure. Then which points in the set have the “most” approximants tending
to them, and which have the “fewest”? Thus for example, the approximants
of the continued fraction for R above hovers most frequently around which
real value(s)? These question are answered simply by considering the geom-
etry of the relevant linear fractional transformation.

Section 4 studies a non-trivial example of the theory. The section concerns
a particular continued fraction with three parameters which generalizes not
only the “3/2 continued fraction” above, but also the continued fraction
(1.4). An example of this theorem is a perturbation of the “3/2 continued
fraction”, specifically, the sequential closure of the continued fraction:

1 1 1 1

1.5 3/2 — )
(1:5) / q+3/2— ¢ +3/2— ¢+3/2— ¢*+3/2 —---

where |g| < 1 is complex, can be described exactly. In fact, this sequential
closure is a circle on the Riemann sphere. (Thus as a consequence, when
lgl < 1 and gq is real, (1.5) always has sequential closure R.) Viewing this
circle as a linear fractional transformation of the unit circle {z € C: |z]| = 1},

az+b
cz+d’

VAN e d

it transpires that the parameters a, b, ¢, and d are basic hypergeometric
functions.

More generally, in (1.5) if the numbers 1 and 3/2 are changed so that the
limiting recurrence for the convergents of the continued fraction have distinct
characteristic roots that are on the unit circle, there is a coherent formula, in
terms of basic hypergeometric functions, for the sequential closure regardless
of the nature of the roots on the unit circle. Indeed, cases in which the
characteristic roots are roots of unity lead to cases where the continued
fraction has a finite set of limits. Theorem 10 is the general result.

Remarks:

(i) All sequential closure equalities in this paper arise from the situation

lim d(sp,tn) =0
n—oo
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in some metric space (X, d). Accordingly, it makes sense to define the equiva-
lence relation ~ on sequences in X by {s,} ~ {t,} <= limp_oc d(Sn,tn) =
0. In this situation we refer to sequences {s,} and {¢,} as being asymp-
totic to each other. Abusing notation, we often write s, ~ t, in place of
{sn} ~ {tn}. More generally, we frequently write sequences without braces
when it is clear from context that we are speaking of a sequence, and not
the nth term. Note that the statements lim,, ..o x, = L and x, ~ L are
equivalent. In this paper, the general theorems are given in the case where
the metric space is a unital Banach algebra; the theorems are then applied
to spaces of matrices.

(ii) It is a fact from general topology that given a compact topological
space X and a Hausdorff space Y, then any continuous bijection g : X — Y
must be a homeomorphism and g and its inverse must both be uniformly
continuous. Under these assumptions an immediate consequence for sequen-
tial closures is: If {sp }n>1 is a sequence with values in X, then s.c.(g(sp)) =
g(s.c.(sn)).

(iii) Another basic fact is that If {s,} and {t,} are two sequences in
some metric space satisfying sy ~ tp, then s.c.(sp) = s.c.(t,). Additionally,
if f is some uniformly continuous function, then the following sequence of
implications holds:

Sp ~ln = f(sn) ~ f(tn) = S'C'(f(sn)) = Sc<f(tn))

2. ASYMPTOTICS AND SEQUENTIAL CLOSURES OF INFINITE PRODUCTS IN
UNITAL BANACH ALGEBRAS

The classic theorem on the convergence of infinite products of matrices
seems to have been given first by Wedderburn [36, 37]. Wedderburn’s the-
orem is maybe not as well known as it deserves to be, perhaps because
Wedderburn does not state it explicitly as a theorem, but rather gives in-
equalities from which the convergence of infinite matrix products can be
deduced under an [; assumption. Wedderburn also provides the key in-
equality for establishing the invertibility of the limit, but does not discuss
this important application of his inequality. It is not hard to see that Wed-
derburn’s equations hold in any unital Banach algebra. Because of these
factors, we provide both the statement of the theorem as well as its proof
in the setting of a unital Banach algebra. We will immediately apply the
theorem to obtain our most general result, which gives asymptotics for oscil-
latory divergent infinite products in Banach algebras. This theorem is then
applied to the Banach algebra M;(C) of d x d matrices of complex numbers
topologised using the [, norm, denoted by | - ||.

For any unital Banach algebra, let I denote the identity. When we use
product notation for elements of a Banach algebra, or for matrices, the
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product is taken from left to right; thus

n

HAi = Ay Ay - A,

i=1
Theorems with products taken in the opposite order follow from the the-
orems below by taking the products in the reverse order throughout the
statements and proofs.

Proposition 1. (Wedderburn [36, 37]) Let the sequence A; consist of el-
ements of a unital Banach algebra U for i > 1. Then Y o, ||Ai]| < oo
implies that [[;~,(I + A;) converges in U. Moreover, all the elements of
the sequence I + A; are invertible if and only if the limit o1+ A) is
invertible.

The following corollary provides a convenient estimate of the convergence
rate of the product.

Corollary 1. Under the conditions of Proposition 1, let L =[], (I + A;)
and Py, = [[;2,(I + A;). Then

B1) (D= Pl < S 1Al _ Srcienlidl _ g (Z HAZ»H) .
i>m
Proof of Proposition (Wedderburn). Put
Pp=I+A)(I+Ag) - (I+ Ap),
and
Qm = (L +[[ADA + [[A2]]) - - (1 + [[Am]])-
Expanding the product for P, gives

(22) Pu=I+ > A+ Y.  AnyA,

1<ni<m 1<ni<n2<m
+ > Ap Apy Ay + -+ A1 Ag - Apy.
1<ni<n2<nz<m
Similarly,
Qu=1+ > [[Aull+ > [[AullllAnl
1<n1<m 1<ni<na<m
+ > An [ Ana [ [ Ans || + -+ 4 [[AL|[ [ Az][ - - [[ Ama]]-
1<ni<na2<nz<m
Thus for m > k,
(2'3) ||Pm_PkH§Qm_Qk7
and

(2.4) 1P — I|| < Qun — 1 < Znzalnll _ 1,
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From the standard condition for the convergence of infinite products of com-
plex numbers, the convergence of > -, ||A,|| implies the convergence of
[T;>1(1+[|4;]]), and this implies that the sequence Q,, is Cauchy. Thus by
(2.3), Py, is also Cauchy, and so [[,~,(I + A;) exists.

Recall that an element 2 in a Banach algebra is invertible if ||z — I]| < 1.
For [[,5; (L +A;) to be invertible, it is obviously necessary that the elements
of the sequence I + A; be invertible. We show that this is sufficient. Since
Y i1 [JAil| < oo, there exists j € Z1 such that Y, . |[A,|| < log(2). Then
(2.4) gives that

n>j

I+ Agia) -+ (14 Agyn) = ) < Sl
Letting m — oo yields

Hm |[(I+ Ajr) - (T + Ajo) = I|| < eXnzillAnll 1 < glos®) 1 — 1,
m—0oQ

Hence limy,—oo({ + Aj41)--- (I + Ajiy,) is invertible. Multiplying this on
the left by the invertible elements I + A;, 1 < i < j gives the conclusion. [J

Proof of Corollary. From Proposition 1,

1L — Pl = |[JJa+4) - J] @+4)

i>1 1<i<m

< H 1+ A;)

1<i<m

H(lJrAi)*I

i>m

i>m

O

There have been a number of theorems more recently on the convergence
of matrix products, see [2, 3, 5, 6, 9, 12, 27, 33, 34]. Closely related to
Wedderburn’s theorem are Theorems 3.7 and 3.8 of [3], originally given in
[10], which gives essentially the same result, restricted to SL2(C).

Our focus here is on cases of divergence and our results concern finding
asymptotics for the nth partial products. These in turn can be used to
describe the sequential closures.

We set some further conventions and fix notation. Let G be a metric
space, typically a subset of C9, where C is the Riemann sphere and g is
some integer ¢ > 1. Here C is topologised with Ehe chordal metric and
the corresponding product metric is employed for CY9. (This is defined by
taking the maximum of the metrics of all the corresponding elements in two
g-tuples.) Let f be a continuous function from a compact subset (to be
specified) of a unital Banach algebra U, (usually M;(C)) to G. Typically
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we do not distinguish different norms, the correct one being supplied from
context. The topological closure of a set S is denoted by S.

Our first theorem is a perturbation result giving the asymptotics of di-
vergent infinite products in a unital Banach algebra. Although we will only
use a special case of this result, we believe the general result is of sufficient
interest to warrant inclusion, especially since the proof of the general result
requires no additional work. We denote elements of the Banach algebra by
capitol letters to suggest matrices, which is the case to which the result will
be applied.

Theorem 2. Suppose {M;} and {D;} are sequences in a unital Banach
algebra U such that the two sequences (for e = +1)

(1)

are bounded and {D; — M;} € 1;(U), that is,

(2.6) > D — M| < oc.
i>1

Let en = o, |[|1Di — M;||. Then

exists and F' is invertible if and only if D; is invertible for all i > 1. Also,

n n -1
(2.8) F— (H Di) (H Mi> = O(eyn).
=1 =1

As sequences

n n
(2.9) [1D: ~ F]] M
=1 =1

and moreover

(2.5)

(2.10) = O(en)-

{o rlln
=1 =1

More generally, let f be a continuous function from the domain

{FﬁMi:nzh}U U {ﬁD}

i=1 n>h li=1

for some integer h > 1, into a metric space G. Then the domain of f is
compact in U and f([]_ Di) ~ f(F 1, M;). Finally

(2.11) s.c. (ﬁ Di> = s.c. (FﬁMZ> ,
i=1 i=1
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and

01 se ( f (H D>> e ( f (FHM>> |

We do not assume compactness of GG so it is possible that the equalities
in the theorem are between empty sets. When G is compact these sets are
clearly non-trivial. Note that the conditions of the theorem imply that all
the elements M; are invertible. When M; = I for ¢ > 1, the first conclusion
of the theorem reduces to Wedderburn’s theorem, Proposition 1.

An interesting special case of Theorem 2 is when the elements M; are
unitary matrices. The following matrix norm will be used:

1/2
Ml = > Imiy

1<i,j<d

It is clear that ||[M|| = v/d when M is a d x d unitary matrix (for then
||M]|? = tr(MMT) = tr(/) = d), and thus the hypothesis on the sequence
M; is satisfied. More generally, one can assume that the sequence of matrices
{M;} are elements of some subgroup of GL4(C) that is conjugate to the
unitary group. This case is important enough that we distinguish it in the
following theorem.

Theorem 3. Let {M;} be a sequence of elements of a subgroup of GLg4(C)
that is congugate to the unitary group. Then, if {D;} is a sequence GL4(C)
and {D; — M;} € l1, all of the conclusions of Theorem 2 hold.

The special case of Theorem 2 that will be applied in the next section is
U = My(C), M; = M, where M be a diagonalizable complex matrix with
eigenvalues on the unit circle. Since M is diagonalizable, put M = CEC~!.
Then M* = CE*C~!, and so it follows that |[M*|| < ||C] - [|C~!|| and
|AM*|| is bounded for k& € Z. Thus the boundedness hypothesis is satisfied
and Theorem 2 simplifies to the following.

Theorem 4. Under the above conditions,

F= lim (H Di> M
i=1
exists in My(C) and det(F) # 0. Moreover, ||F — ([[;—; Di)M~"|| = O(en),
and
(1) || 1172y Di — FM™|| = O(ep) . Thus s.c.(I[;—; Di) = s.c.(FM™).
(ii) Let f be a continuous function from the domain

{FM™:n>h}u | {ﬁD}

n>h li=1

for some integer h > 1, into a metric space G. Then the domain of f is com-
pact and f([[;—, Di) ~ f(FM™). Hence s.c.(f (I[i~, Di)) = s.c.(f(FM™)).



ASYMPTOTICS OF CONTINUED FRACTIONS 11

Note that because M is diagonalizable, this theorem enables one to deter-
mine the exact structure of the sequential closure using Pontryagin duality.

A special case of Theorem 4 is Proposition 1 of [7] in which the eigenvalues
are roots of unity. It considers asymptotics, but not the limit set. This
special case is roughly equivalent to Theorem 1.1 of [28].

Proof of Theorem 2. Observe that

n n -1 n i—1 i—1
(H DZ») < M,-) = H HMj D; [ M2,
=1 =1

i i=1 j=1 j=0
n i—1 i—1 i—1 i—1
=[] (7+ My | D [[ M = | T Ms ) M [ M2
=1 7j=1 7=0 7j=1 7=0
n i—1 i—1
=II|7+ Mj | (D — My) | [ M,
i=1 7j=1 7=0
n
i=1
where
i—1 i—1
A= T]M; ) (Di = M) ] M2,
j=1 7=0
Hence
i—1 i—1
A < |[T] M| - 1D: = Ml - | ] M| < CllDs = M,
j=1 j=0

for some real absolute bound C. The second inequality followed from the
boundedness assumption on the sequences (2.5). By (2.6) it follows that
> >0 llAi]] < oo, and so by Proposition 1, it follows that F' exists and is
invertible when the D; are invertible for ¢ > 1. Thus we have proved that

Then again from the boundedness of the sequences in (2.5),

n n
FHMZ»—HDi
=1

i=1

(2.14) lim = 0.

n—oo

That is,

n n
H D;~F H M;.
=1 =1
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Using this and the boundedness of the sequences in (2.5) gives that the
domain of f is compact. Thus f is not only continuous, but is uniformly
continuous. This uniform continuity and (2.14) give

() o) o

(L) i1

The sequential closure equalities in the theorem follow from the third
remark in the introduction and the error estimates follow from Corollary 1
and the boundedness assumption. O

lim
n—oo

and so

We conclude this section by comparing these results to some of those
from the recent paper [3], which mainly focuses on applying the hyperbolic
geometry of Mobius maps to the convergence theory of continued fractions
with complex elements. Consider the following two results from [3] that are
closely related the results of this section:

Theorem 5 (Theorem 4.2 of [3]). Suppose that G is a topological group
whose topology is derived from a right-invariant metric oo, and that (G, og)
is complete. Let f1, fa,... be any sequence of elements of G. Then, for each
k, there is a neighborhood Ny, of fi such that if, for all j, g; € Nj, then
(g1 gn)(f1- - fu)~! converges to some element h of G.

The above theorem shares some of the structure of Theorem 2. In par-
ticular it gives the existence of a limit similar to the limit F' in Theorem 2.
The hypotheses are quite different, however, and asymptotics are not given
in Theorem 5. Also, sizes of the neighborhoods are not provided.

For the following corollary, some dg\ﬁnitions involving hyperbolic geometry
are useful. A Mébius map acting on RY is a finite composition of maps each
of which is an inversion or reflection in some N —1-dimensional hyperplane or
hypersphere in RN. The Mébius group acting on RY is the group generated
by these inversions or reflections. The conformal Mébius group, denoted
My is the subgroup of those maps that are orientation preserving which
means that they can be expressed as the composition of an even number of
such inversions. See [3, 4].

Corollary 2 (Corollary 4.3 of [3]). Let f1, fa,... be any sequence of Mébius
maps. Then, for each k, there is a neighborhood Ny of fr such that if
gj €Nj, 5 =1,2,..., then there is some Mébius map h such that for all z,
(g1 gn(2),hfi-+ fn)) — 0 as n — oo. In particular, for each point z,
lim, g1 - - - gn(2) exists if and only if lim,, f1--- fn(z) exists.

The differences with our theorem are that the setting in Theorem 2 is
more general and the sizes of the neighborhoods are not given in Corollary
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2. However, in the case of complex M6bius maps, in [3] it is shown that the
neighborhoods N}, can be taken to be the set of Mobius maps g that satisfy

1
(2.15) o= < oo AR

Here the norms are of the matrix representations of the Mobius maps f; and
g.

Comparing this with Theorem 2, it can be seen that for the case of com-
plex Mobius maps, unless enough of the norms || f;|| are small, one expects
our condition {D; — M;} € l; to be weaker in general, and thus our result to
be stronger. Note that Theorem 2 also gives information about the sequen-
tial closure as well as asymptotics with error terms. Information about the
sequential closure is implicit, however, in Corollary 4.3 of [3] above.

There is another theorem in [3] which is also related to Theorem 2. In
fact, it is a generalization of the Stern-Stolz theorem presented in the in-
troduction. Before stating the theorem, a couple definitions concerning the
hyperboloid model of hyperbolic space are required.

For z and y in RVt let

q(z,y) = z1y1 + T2y2 + -+ + TNYN — TNLIYN+I,

and

Hy = {z e RN g(z,2) = 1, xy4q > 0}
‘Hy is one branch of a hyperboloid of two sheets. It can be shown that
Hn can be endowed with a hyperbolic metric and that the matrix group
O'(N + 1,1) which preserve q as well as th condition xy41 > 0 act as
isometries on this space. Let g be a Mdbius map which acts on RY, and
hence by the Poincaré extension, on HY 1. Suppose then that g corresponds
to the (N +2) x (N +2) matrix A which acts on Hy42. In [3] the following
beautiful generalization of the Stern-Stolz theorem is given:

Theorem 6 (“The General Stern-Stolz Theorem” [3]). Suppose that g1, go
. are Mdébius maps in My, and that g, is represented by the (N + 2) x
(N + 2) matriz A, as above. If

(2.16) > VAR =TI
n=1

converges, then the sequence gy --- gn 1s strongly divergent.

Consider the N = 0 case. Then, this theorem should be compared with
the case of Theorem 3 in which H is unitary, and the matrices M; represent
Mo6bius maps. In Theorem 6, (2.16) is exactly the condition required for
>0 P, 9n(J)) to be bounded in H. (Here p is the hyperbolic metric on
H, where H := {(z1,72,73) € R® : #3 > 0}, and j = (0,0,1).) Next,
(2.16) is sufficient to guarantee that p(j, g1 ---gn(j)) is finite, and thus the
orbits of the product ¢ --- g, never leave H. This later condition is what
is meant by “strong divergence”. Now the Mobius maps that fix j are the
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unitary maps and g(j) = j if and only if ||g||* = 2. The condition (2.16) can
thus be interpreted as saying that the elements g,, approach some sequence
of unitary elements sufficiently rapidly. This is roughly the same as the
condition on the sequence {D;} in Theorem 3 when H is unitary. Of course
the conclusion of the theorems go in different directions.

In the next section we apply the d = 2 case of Theorem 4 to get detailed
information about the sequential closures of continued fractions.

3. LIMIT 1-PERIODIC CONTINUED FRACTIONS OF ELLIPTIC TYPE

We begin by reviewing the correspondence between 2 x 2 matrices and
continued fractions. First recall that a finite continued fraction is a rational
function of the form:

ay

bo +
a2

b1 + u
bg—l—" nfla
bp_1+ —
n b,

For easier reading continued fractions are usually typeset as:
a as as Gnp,
bo+—  —  — —.

O b+ by F by + o+ by,

The correspondence between continued fractions and matrices is best un-
derstood by first remembering the correspondence between compositions of
linear fractional transformations and products of 2 x 2 matrices, and then
noting that the composition of linear fractional transformations can be writ-
ten as a continued fraction. To see the later, observe that for a general linear
fractional transformation (avoiding cases such as ¢ = 0):

bcgzad )

az+b a (

cz+d ¢ g+z

9

Thus, generically, any composition of a finite number of non-trivial linear
fractional transformations can be written as a finite continued fraction. But
to generate a continued fraction, one does not need to work with such gen-
eral linear fractional transformations. For example, working with transfor-

mations of the form
a; -1 B bz +1
by + 21  az

leads to the correspondence between matrices and continued fractions that
will be used below:

P, P, by 1 by 1 b, 1
(3.1) - .. 7
Qn Qn- 1 0 a 0 a, 0
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where

P, al a2 as G,

—=by+— | = - —.

Qn by + by + b3+ -+ by
Here P, and @, are the numerator and denominator polynomials (called
convergents) in the variables a; and b; obtained by simplifying the rational
function that is the finite continued fraction. Their ratio, P,/Q, is called
the nth approzimant of the continued fraction. From (3.1) one reads off

immediately the fundamental recurrences for the convergents P,, and Q,,:
Pn Pnfl Pnfl Pn72 bn 1

(3.2) =
Qn Qn Qn-1 Qn-2 an 0

Taking the determinant on both sides of (3.1) gives at once the determinant
formula for the convergents of a continued fraction:

(3.3) PnQn—l — Pn—lQn = (—1)”_1a1a2 RN ¢ 79
An infinite continued fraction
(3.4) o On a1 a2 a3

":15;54-5-1-@4-
is said to converge in C (respectively in (@) if
oy @ 02 a3 an
7"0—>00b1 + bg +b3 + oo +bn
exists in C (respectively in ((A:) Let {wy, } be a sequence of complex numbers.
If

lim & %2 9 an

ntoo by + by + by + 0+ by + wp
exist, then this limit is called the modified limit of K32 ay /by, with respect
to the sequence {wy}. Detailed discussions of modified continued fractions

as well as further pointers to the literature are given in [19]. Note that by
(3.1) and (3.2),

(35) byt ot 228 o _ Fhtwnbhos
by + by + b3 + 0+ by +wy Qn +wnQn-1

In the following theorem, the sequential closure of the sequence of approx-
imants of a general class of continued fractions is computed. It transpires
that the sequential closure is a circle (or a finite subset of a circle) on the
Riemann sphere.

The following theorem studies the continued fraction

—af+q —afB+q2 —afB+qn
a+fB+p ta+B+p+ +a+B+p,]

where the sequences p,, and ¢, approach 0 in /; and the constants a # (3 are
points in the complex plane. Specifically assume that

(3.7) Z |pn| < 00 and Z lgn| < oo.
n=1 n=1

(3.6)
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Let

i max (z |pi|,z|qi|) ,
>n >n
and put

Fulw) = —af+q —aftg —af + gn

a+f+p ta+f+pr+- +ta+B+p,+w

so that f, := P,,/Q, = fx(0) is the sequence of approximants of the contin-
ued fraction (3.6).

We follow the common convention in analysis of denoting the group of
points on the unit circle by T, (and also by T ), and its subgroup of roots
of unity of order m, m finite, by T,,. (Note: Ty often denotes the group of
all roots of unity; here it denotes the whole circle group.)

Theorem 7. Let {pp}n>1, {qn}n>1 be complex sequences satisfying (3.7).
Let a and ( satisfy || = |B] = 1, a # [ with the order of A = o/ in T
being m (where m may be infinite). Assume that q, # of for any n > 1.
The following asymptotics for the convergents P, and @, hold as n — oo:

aa”™ +b8"| ca +dp"|
Also
L p(ant _az+b
(3.9) fa~h(N")  where h(z) = o d
Moreover
aT,, +b
1 e (fn) = h(T,,) = L=m T2
(310) s (fa) = h(T) = S
with the constants a,b,c,d € C given by the (existent) limits
(3.11) a= lim o (P, — BPy-1),
b=— lim 7"(P, — aP,_1),
e= lm a"(Qn — AQu-1).
d=— lim f(Qn —aQn 1),
Also,

(3.12) det(h) = ad — be = (8 — ) ﬁ (1 -~ q") £ 0.

n=1 04/3

Finally, if either |c| # |d|, or for 0 < n < m, cA\" +d # 0 when |c| = |d|
and X\ is a root of unity, then as n — oo,

(3.13) | fo = R(A"TH| = O(en).
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This theorem is foundational for what follows. We give two corollaries
before the proof. Further results follow the proofs. The next corollary gives
enough information for specifically identifying the linear fractional transfor-
mation h in the theorem in terms of modifications of the original continued
fraction. The succeeding corollary makes that identification.

Corollary 3. Under the conditions of the t/i\teorem the following identities
involving modified versions of (3.6) hold in C:

(3.14)
a .
h(occ) = = Jim fn(=5)
~ lim —af+q —af + q2 —af + qn—1 —af + qn
nscoat+f+prtatftprto tatBdpat oatpy
(3.15)
b
h(0) = i lim f,(—«)
~ lim —af+q —afB+ q —af+ g1 —af+qn

n—ooa+f+prtatBtpto FatBtpart Btpn ]
and for k € Z, we have

RARHL) = m = lim Jn(wWn—t)
(3.16) ~ lim —af+q —af+q2 —af +qn ,
n—ooa+f+pr tat+tfB4pr+ o Fat+f+pntwnk
where . .
W = ikl C, n € Z.

an—l _ ﬂn—l

The following corollary gives (up to a factor of £1) the numbers a, b,
¢, and d in terms of the (convergent) modified continued fractions given in
Corollary 3.

Corollary 4. The linear fractional transformation h(z) defined in Theorem
7 has the following expression
A(C—-B)z+ B(A-0C)

(C—B)z+A-C

where A = h(o0), B = h(0), and C = h(1). Moreover, the constants a, b, c,
and d in the theorem have the following formulas

a=sA(C—-B), b=sB(A-C), c=s(C—-B), d=s(A-C0C),

h(z) =

where
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Some remarks before the proofs:

(i) It is interesting to note that the sequence of modifications of (3.6)
occurring in (3.16) converge exactly to the sequence h(A"*!) which is as-
ymptotic to the approximants f,, of (3.6).

(ii) Dividing through the numerator and denominator of the definition of
wy, by "1 gives that the sequence w,, occurring in (3.16) is either a discrete
or a dense set of points on the line

—aT+
T+1

according to whether A is a root of unity or not. Observe that —w, 42 is the
nth approximant of the continued fraction

—af —af —af
a+fB+a+8+ Ta+pg’

which, except for the initial o 4+ (3, is the non-perturbed version of the
continued fraction under study. That the sequential closure of w,, lies on a
line follows from Theorem 8 below. Combining the continued fraction for
wy, with (3.16) and Theorem 7 yields the intriguing equation:

a+ [+

—af + q1 —af + q9 —af + qg
at+B+pr ta+B+p T+ a+B+py
. —af+q —af+q
= 11m
n—ooa+fB+p +a+pB+p o
(3.17)
—af+ g1  —af+q, —af  —af —af3
et fBtpiat opn T atftatft et s

n —k — 1 terms

The continued fraction on the left hand side is divergent, while its trans-
formed version on the right hand side converges to the kth approximant of
the continued fraction on the left. (3.17) is naturally valid under the condi-
tion of Theorem 7 and can be viewed as a continued fraction manifestation
of Theorem 4.

(iii) We have assumed that |a| = |3 = 1 and « # (. Actually, by using
an equivalence transformation on the continued fraction (3.6), the theorem
can be applied under the weaker assumptions |a| = |8| and a # (3 to yield
asymptotics for the approximants in these cases. To be more specific, if
¢; # 0 for ¢ > 1, then the continued fractions

al a9 as

3.18 — = —

( ) b1+b2+b3+"'
and

(3 19) c1a1 C1C2a9 CoC3a3

Clbl + Cgbg + Cgb3 + -

are said to be equivalent since they have the same set of approximants.
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The continued fraction at (3.18) is called a limit I-periodic continued
fraction when lim, .o a, = a and lim,_ .o b, = b, for some a,b € C.
The associated linear fractional transformation for the continued fraction

above is
a

z2+0b
Denote the fixed points of this transformation by

b+ VY +4a b=V +4a

21 Z9
' 2 2 2

The continued fraction at (3.18) is said to be a limit 1-periodic continued

fraction of elliptic type when z; # 22, but |z1| = |22], see [19].

We consider the case where the continued fraction at (3.18) is a limit
1-periodic continued fraction of elliptic type and, in addition,

Z|an—a|<oo, Z|bn—b|<oo.

n>1 n>1
Set
g b+ Vb2 +4a|  |b— Vb +4a
o 2 N 2 ’
and define

b+ +da ﬁ_b—\/b2+4a
B 2d ' B 2d
Then a # 3, |a| = |5| = 1. Define, for n > 1, p, and ¢, by

a

an = Q + Pn, bn:b"’_Qn‘

Thus
n=1 - danl 3
b+ pn o+ B+ pn/d

this equality following upon setting ¢; = 1/d in (3.19). The second contin-
ued fraction satisfies the conditions of Theorem 7. Thus this theorem can
be applied to all limit 1-periodic continued fractions of elliptic type with
lim, o0 ap = @ and lim, .. b, = b, providing ) -, |a, —a| < oo and
> o1 |bn — bl < 0o. Our theorem thus gives detailed information about
limit 1-periodic continued fractions of elliptic type of this general class.

Of course, it is known that without any restrictions on how the limit
periodic sequences tend to their limits, the behavior can be quit complicated,
see [19].

(iv) Our last remark showed that we can loosen the assumption that
o] = |f] = 1 and o # [ to just |a| = |G| and a # (. In fact, suitably
interpreted, the asymptotic formula for the f, in the theorem continues to
hold even when |«| # |3]. This is the loxodromic case.
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To see this, recall the asymptotic for f,, in the theorem in the following

form:
a(a/B)" T +b
(3.20) fn o~ W.

Clearly when |a| < || and n — oo the right hand side tends to b/d = h(0),
assuming that this makes sense. Thus the conclusion of the theorem would
be:

b

(3.21) fur

However, in this case, the continued fraction is limit 1-periodic of loxodromic
type, and thus converges to a value f. Moreover, it has attractive fixed
point —a. In this situation it is well-known, see [19], that its modified
limit f,,(—«) also tends to f. But f,(—«) is exactly the modified continued
fraction (3.15) converging to h(0) = b/d. Thus (3.21) holds if b/d is defined
by (3.15). Obviously the same argument holds when |a] > ||, only with
the limit a/c = h(oco) in this case. Thus, interpreting the right hand side
of (3.20) as the convergent limit (3.15) for b/d when |a| < || and as the
convergent limit (3.14) for a/c when |a| > |f], it follows that (3.20) is true
for all finite o # .

If 8 = «, then the continued fraction at (3.6) is equivalent to one of the
form K° a,/1, where a,, — —1/4. The convergence of continued fractions
of this type were studied in [14], [15], [16] and [20]. We remark in passing
that they may converge or diverge, depending on the direction and speed of
convergence of the a,, to —1/4 (see [19], page 158).

Proof of Theorem 7. Define
_(atB+pn 1 _fa+p 1
R o I T )

For later use, note that

(TN )

that for n € Z
an+1 _ /Bn+1 a — ,Bn

(3.24) M" = ,
—aB(a"—p") apr—ang | ¢7F
and that for n € Z
n—1 _ gn-—1 ot = pn
« J6] 7@5
(3.25) M™ = Ins
. . ﬂn—&-l o an—i—l
B -« T

where, to save space later, we have put g, = (a!™"8'"") /(3 — a).
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Clearly
[|Dy, — Moo = max{|py|, |¢n}-
and thus
> [Dn = Ml|o < o0.
n>1

It follows that the matrix M and the matrices D,, satisfy the conditions of
Theorem 4.

Let P, and @,, denote the nth numerator and denominator convergents of
the continued fraction (3.6). By the correspondence between matrices and
continued fractions (3.1),

P, P, 0 1 n

(3.26) = D;,
Qn Qn—l 1 0 ]1;[1 ’

and using Theorem 4, there exists F' € GL2o(C) defined by
(3.27)

0 1\ =»
— 3 . -n
F = lim [ DM
1 0/ j=1
Pn Pn—l
= lim M
n—oo
Qn Qn—l
(3.28)
T (7 Y L) (T _a_1>—1
T ns 1 1 0 -n 1 1
"2\ Qn Qu b
(3.29)
an—1 — ﬂn—l ot — B
Pn Pn,1 Odﬁ Ozl_nﬁl_n
n—oo J—
QTL anl Bn o Bn-‘rl _ Oén+1 (0%
af
Taking determinants in (3.28) gives an expression for det(F'):
1 = q
Fi1Fy9 — FioFy 1 = — lim (Py,Qn_1 — P — = 1—=).
1,192 — F12F5 1 nLH;O( Q-1 — Pn_1Qn) (ap)" };Il < aﬁ)

The last equality follows from the determinant formula for continued frac-
tions (3.3). Note that ¢, # af implies that P,Qn-1 — P—1Q, # 0, for
n > 1.
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Let f : GLy(C) — C be given by

A

Note that f is continuous, and thus using Theorem 4, is uniformly continuous
on the compact set

n>1

Theorem 4 and the matrix product representation of continued fractions
then give that
P,

D f(FM™).
O f( )
Hence using (3.24) and the definition of f,
(3 30) Pn Fl 1( n+1 ﬁn-}-l) + Fl 2( ( n __ /Bn))
) Qn F2 1(an+1 /3n+1) F2 2( ozﬁ (an ﬂn))
F11—ﬁF12 (%) + (aF1 2 — Fi1)
(Foq — BFy2) (%) + (aFa9 — Fa ;)
— h()\n+1)7
where
az+b

witha = F11 — fF12,b=al12 — F11, c=Fy1 — BFys, d=alFys — Fy;,
and F;; € C are the elements of F'. The limit expressions for a, b, ¢, and
d in the theorem follow by simplifying the constants in h defined here, and
then using (3.29). The non-vanishing and the product formula for ad — bc
follow immediately from the product for det(F') above and the expressions
for a, b, ¢, and d. Note that we can compactly express the definition of a, b,
¢, and d in the following matrix equation:

a b . Fl,l FLQ 1 -1
c d ) \Fa1 Faa -8 « '

Solving for F' gives

(3.32) Fz(i 2 ><g i )oaiﬁ

Now h : C — C is a continuous bijection (since det(h) # 0), and thus by
the remarks in the introduction,

s.c. (SZ) = s.c.(h(A") = h(s.c.(\"T1)) = h(T,,).
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From Theorem 4 (i),

(3.33) <£Z S’E )NFM”.

Substituting (3.24) and (3.32) into (3.33) yields
Pn Pnfl
<Qn Qn—l >
a b a 1 an+1 _ ﬂn—i—l a — ﬂn 1
- ( d > (ﬂ 1 ) (—aﬁ(a” —A") ap" = pa ) (o= B)?
_fa b an ok 1
()G e

_<aa”+1+bﬁ”+1 * ) 1

CO[n-i-l +dﬁn+l % o _ﬁ'

Thus the sequences P, and @),, have the claimed asymptotics by Theorem
4.
Finally, put A, = aa™ + b6", B, = ca™ + dG", and observe that

P. A,| _|P.By—A,By| |A,B, —QnA
=R =\ = B S| aun OnBn
1 A,
<|—1e,+ En,
anle" T anB,

and this error is O(e,) providing that B, is bounded away from 0. (Recall
that @ ~ By/(a — 3).) It is easy to see that B, is bounded away from 0
under precisely the two conditions given in the theorem. ([

Proof of Corollary 3. (3.14) and (3.15) follow immediately from the value
of a modified continued fraction (3.5), with w, = —( and w,, = —«, respec-
tively, and the limit expressions for a, b, ¢, and d.

To get (3.16), observe that

iy Ky . Pn Pnfl —nrk
h(A*)—f(FM)—f<,}Lm< Qn Qn1>M M)

o0

=i (G gty are)

—k —k

anv—k=1 _ ﬁnfkfl ot h =g

— /| tim (Pn Pnl) " G
n—oo Qn anl ﬁn_k+1 7Ozn_k+1 "

n—k n—k
—
p o

i (an—k—l . ﬁn_k_l)Pn . (an—k - ﬂn_k)Pnfl

n— oo (anfkfl _ /ank’fl)Qn _ (anfk _ Bnik)Qn—l
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n—k _ an—k
a B

Pn B an—k-1 _ ﬁnfkfl P”_l
= lim
n—oo an~k — Bn—kz
n an—k-1_ ankfl Qn—l
— ] Pn + wnfkpn—l
= lim ,
n—oo Qn + wnkan—l
where
al — 37
4 T T
The result now follows from (3.5). O

Proof of Corollary 4. The expression for h(z) follows immediately using al-
gebra from (3.14), (3.15), and (3.16) with £ = —1. The expressions for a,
b, ¢, and d follow by using (3.12) along with the fact that the coefficients in
the two expressions for the linear fractional transformation must be equal
up to a constant factor. ([

Note that putting £ = 0 and £ = —1 in (3.30) gives the following identi-
ties:

Fi

(3.34) = 5
Fi9

h(l) = —=.

(1) Fo

Let T/ denote the image of T under h, that is, the sequential closure of
the sequence {f,}. The asymptotic for f,, given in Theorem 7 is

(3.35) o~ hOA™,

where h is the linear fractional transformation defined in the theorem.

Some observations can immediately be made. It is well known that when
A is not a root of unity, A”*! is uniformly distributed on T. However, the
linear fractional transformation h stretches and compresses arcs of the circle
T, so that the distribution of hA(A"*!) in arcs of T’ is no longer uniform.
(Recall uniform distribution on a curve happens when as n — oo each
segment of the curve get’s the proportion of the first n points equal to the
ratio of the segment’s length to the length of the whole curve.) Additionally,
T’ may not be compact in C. So we consider a probability measure on T’
giving the probability of an element h(A"*!) being contained in a subset
of T'. This measure is easy to write down. Let S C T, then h=1(S) is
a subset of the unit circle. Then since A" is uniformly distributed on T,
P(S) := u(h=1(8))/27 gives the probability that for any n, h(\") € S.
Here i denotes the Lebesgue measure on T. Note that P depends entirely
on h, and thus only on the parameters a, b, ¢, and d.

In general f,, ¢ T', but because of (3.35), as n — oo, the terms of the
sequence f,, get closer and closer to the sequence h(A"*1) which lies on T'.
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Thus we speak of P as the limiting probability measure for the sequence f,
with respect to T’.

More specifically, (3.35) implies that there is a one-to-one correspondence
between the convergent subsequences of h(A"*!) and those of f,, such that
the corresponding subsequences tend to the same limit. As h is a homeomor-
phism and A" is uniformly distributed on T, it follows that the probability
of an element of s.c.(f,) being contained in a subset S of T’ is exactly
P(S) = u(h~1(S))/2r.

Fortunately, this distribution is completely controlled by the known pa-
rameters a, b, ¢, and d. The following theorem gives the points on the
sequential closures whose neighborhood arcs have the greatest and least
concentrations of approximants.

Theorem 8. When m = oo and cd # 0, the points on

aT +b
cT +d
with the highest and lowest concentrations of approximants are
del g Sl g
] + |d] —le[+d]

respectively. If either ¢ = 0 or d = 0, then all points on the sequential
closure have the same concentration. The radius of the sequential closure

circle in C is
o — dn
P 1 2n
e L ( aﬁ) |

=1

and its center is the complex point

UL ~ hi)) + b(DIE(hG) — h(D) + (BB ~ h(-1))
h(1)(h(i) — h(=1)) + h(=1)(h(1) = h(i)) + k(i) (h(=1) — k(1))
The sequential closure is a line in C if and only if |c| = |d|, and in this
case the point of least concentration is co.

Proof. Let g(0) = h(e?). Thus g(#) parametrizes T for 6 € [0, 27] and e*
moves with a uniform speed around T as # moves uniformly from 0 to 2.
Then ¢(#) moves around T’ at different speeds depending on how the length
g(0) change with 6. Accordingly, we wish to compute the rate of change of
the length of g(6) with respect to . We then wish to know when this value
is minimum and maximum. To this end put

0
16) = /0 14/(6)/db.

Accordingly, '(6) = |¢'(0)]. An easy computation gives
/(0 = lad ibc[
|2 + |d|? + cde?® + Ede—10’
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and thus o
1(0) = i lad — bc|(cd€ 2 — cde’ ) .
(|| + |d|? + cdet? + ede—19)2
Clearly I”(6) = 0 if and only if e = +|c|d/c|d|. Plugging these values into
h gives the points where the length of g(0) is changing most and least with
respect to 6.
To compute the radius of T’, one computes [(27)/27:

(2m) 1/27r lad — be] "
2r 21 Jo |c|2 + |d|?2 + cde®® + cde—*

_|ad — bl f dz
270 (c+dz)(d +¢cz)’

where the contour on the last integral is the unit circle. A routine evaluation
by the residue theorem along with (3.12) gives the result. The center can
easily be computed as it is the circumcenter of the triangle formed by any
three points on the circle, for example, z; = h(1), zo = h(—1), and z3 = h(i).
The well-known formula for the circumcenter of three non-collinear points
in the complex plane

217 (22 — 23) + |22]*(23 — 21) + |23/° (21 — 22)
21(Z3 — 22) + 22(Z1 — 23) + 23(%2 — 71)
thus gives the center of the sequential closure circle. The final conclusions of

the theorem follow immediately from the formulas for the points of highest
and lowest concentration. (]

Corollary 5. If the sequential closure of the continued fraction in (3.6) is
a line in C, then the point of highest concentration of approximants in the
sequential closure is exactly

h(c0) + h(0) 1<a b>,

2 2\c d

the average of the first two modifications of (3.6) given in Corollary 3. More-
over, if the sequential closure is R, then the limiting probability density func-
tion for the approximants is given by

B h(oo) — h(0)
(3.36) P) = i — (o)) (& — (0))’

Proof. If the sequential closure is a line, then Theorem 8 implies that |¢| =
|d|. The same theorem also implies that the point of highest concentration
is given by

&l + gld
] + |d]
When |c| = |d|, this simplifies to

Lfa b
2\c d)’
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which is the average of h(co) and h(0).
Suppose the sequential closure is R. Let the point z € R be related to
the point z on the unit circle via

x=h(z) =

and suppose z = €. Let 6y € (0,27] be the angle for which z is mapped
to 0o by h(z), and put zg = €'%. Let p(x) denote the probability density
function and let f; denote the i-th approximant of (3.6). Then for any
interval [a, b],

az+b
cz+d’

/bp(x)d:c _ iy i € [0, BlYo<icn

n—00 n
p(h~([a,b]))
2 ’
where, the second equality follows from remarks made in the discussion
preceding Theorem 8. In particular,

r length of the arc clockwise from zy to z 6y — 6
p(t)dt = = .
—o0 27 27
Using the Fundamental Theorem of Calculus, one obtains
—1do -1 dz ad — be
pE)= 5o = o = 5 :
2r dx  2mizdx  2mi(cx — a)(dx — b)
The result now follows from the definition of h(z). O

It is also possible to derive convergent continued fractions which have the
same limit as the modified continued fractions in Theorem 7.

Corollary 6. Let o, B, {pn}, {qn}, h(2), and the matriz F' be as in Theorem
7 and its proof. Then

q + Bp (@1 — aB)(q2 + Bp2)

a+pr + (a+p2)(q+ Bp1) + B(q2 + Bp2)

00 (qﬂ—l - O‘/B)(Qn + ﬁpn)(Qn—2 + ﬂpn—Q)
"= (@ + o) (@n-1 + Bpn—1) + B(an + Bpn)’

(3.37) h(co) = —f +

_|_

q1+ apr (@1 — aB)(g2 + apa)
B+p1 + (B+p2)(q1+api) + alg + aps)
00 (Qn—l - O‘ﬁ) (qn + apn)(Qn—2 + apn—2)
+ 7" (B + pu) (@n-1 + A1) + (gn + apn)’
Let k € Z and assume that o/ is not a root of unity. Set

anfk _ ﬁnfk
_an—k—l _ ﬁn—k—l ’

(3.38) h(0) = —a+

Wy, = for n > k' := max{3,k + 3}.
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Then
—afB+q —off + qrr—1 —af + q
a+fB+pr t Fa+B4py_1 T a+ B+ py +w
—of + Qi1 — we (o + B+ prrgr + wir41) o Cn
+ a+ B+ prg1 + Wi + =k

(3.39) h(A\FF1) =

where
o _aﬁ‘{'Qn_wnfl(a‘Fﬁ‘{'pn‘*'wn)
Cn = (Qn—l - a/@)
—afB + Gn—1 — wn—2 (Oé + 0B+ pn—1+ wnfl)

—af + qn — wp—1 (@ + B+ pp + wn)
dp=a4+ 084 pn+wn — wWn_s .
" b " " —af+ qn-1— wn—2 (a + B+ pn—1+ wnfl)
Proof. The continued fraction (3.37) above is equivalent (after a sequence
of similarity transformations have been applied to simplify it) to the Bauer-
Muir transformation (see [19], page 76, for example) of the continued fraction
—af+q  —af+q —af+tqg —af+q
atf+ptat+Bt+ptat+B+pstatftpst

with respect to the sequence w, = —3, n > 0. This in turn equals h(cc) by

(3.40)

(3.14).
The continued fraction at (3.38) is likewise equivalent to the Bauer-Muir
transformation of (3.40) with respect to the sequence w, = —«, n > 0. This

in turn equals h(0) by (3.15).
The continued fraction at (3.39) above is the Bauer-Muir transformation
of the continued fraction

—afB+q —af +qo —af+q3 —af+q4
a+0+p ta+8+p +a+B+ps ta+B+ps T

with respect to the sequence {w,}, where w, =0 for 0 <n <k’ — 1 and

a — /Bn ,
wn:—m, fornzk.
This in turn equals (A1) by (3.16). O

An interesting special case of Theorem 7 occurs when « and 3 are distinct
m-th roots of unity (m > 2). In this situation the continued fraction

—af+q —afb+q —af+q3  —af+aq
at+pB+p+ta+tB+prtat+B+pstat+B+pst
becomes limit periodic and the sequences of approximants in the m different

arithmetic progressions modulo m converge. The corollary below, which is
also proved in [7], is an easy consequence of Theorem 7.

Corollary 7. Let {pn}n>1, {qn}n>1 be complex sequences satisfying

o0 o0
> Ipal < o0, > lgn| < oo
n=1 n=1
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Let a and 3 be distinct roots of unity and let m be the least positive integer
such that o™ = ™ =1 . Define

_ —abta —aftq  —aftg
atfB+ptat+B4+p T at+Btpsto
Let {P,/Qn}o2, denote the sequence of approximants of G. If ¢, # af for

any n > 1, then G does not converge. However, the sequences of numerators
and denominators in each of the m arithmetic progressions modulo m do

converge. More precisely, there exist complex numbers Ao, ..., Am—1 and
By, ..., By_1 such that, for 0 <i<m,
k—o0 k—o0

Ezxtend the sequences {A;} and {B;} over all integers by making them peri-
odic modulo m so that (3.41) continues to hold. Then for integers i,

— Al — BAO i CYAO — Al i
(5 (35)+
and

Moreover,

. ai_j _ 3 a q
3.44 AiBj — A;B; = —(afB) T ——— = — <1—n> .
(344) 4B = ~(a) (-
Put o = exp(2mia/m), B = exp(2mib/m), 0 < a < b < m, and r :=
m/ged(b — a,m). Then G has r distinct limits in C which are given by
A;j/Bj, 1 <j <r. Finally, fork>0and1 <j<r,

Aj-i-kr o Aj

Bjikr By

Remark: We refer to the number r in the corollary as the rank of the
continued fraction.

Proof. Let M be as in Theorem 7. It follows from (3.23) that

alti — glti al — (37
- -8
(3.45) M = : ¢ :
aﬁ(oﬂ—ﬁj) —ajﬁ+aﬁj
B a—pf a—f(

and thus that
m 10 j 10 )
M —< 0 1) M7 £ 0 1) 1<5<m.
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Let the matrix F be as in Theorem 7. From the second equality at (3.29),
we have that
Pmn-l—i Pmn—l—i—l ) )
(3.46) lim = lim FM™" = F M.

00 00
" an+i an+i—1 "

This proves (3.41).

Now let A; := limp—oo Prnti, and B; = limy,_o0 Qmn+i- Notice by
definition that the sequences {4;} and {B;} are periodic modulo m. It
easily follows from (3.46) that

Ai Aia Aj Aj o
= M.
(3.45) also gives that
alti=i — glti=g ap (Ozifj — gifj)
3.47 A=A —Aj ,
( ) J o — ﬁ Jj—1 a— B
and
ol +i—i _ glti=i o (a9 — gid)
4 B; = B; —B;_
(3.48) J a— it a—pf
Thus

(4j Bo14j — A1y Bj) ap (o'™7 — )
a—p3

Equations (3.42) and (3.43) follow from (3.47) and (3.48) by setting j = 1.

(3.44) follows after applying the determinant formula

AZ‘B]‘ — Asz' =

mk—+j
Aij_l — Aj_lBj = — kli»n;o H (aﬂ - Qn)
n=1

(o]
i dn
=—(aB) [] (1 - ) .
n=1 Oéﬂ

Since Z(;il lgj| converges to a finite value, the infinite product on the right
side converges.

For the continued fraction to converge, A;B; 1 — A;_1B; = 0 is required.
However, (3.44) shows that this is not the case. O

3.1. Computing subsequences of approximants converging to any
point on the sequential closure. We recall one of the main conclusions
of Theorem 7. Namely, that if > |p,| < 00, > |gn] < 00, |a] = |3] =1 and
A = «a/f is not a root of unity, then the n-th approximant of K(—af +

qn)/ (@B + pn), fn, satisfies

n+1
N nily  GA )
fn h()‘ )_ C)\n+1+d’
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for some a, b, c and d € C. Thus the approximants densely approach a
circle in the complex plane and a natural question is the following: is it
possible explicitly to determine a subsequence of approximants converging
to h(e* ), for any 6 € [0,1)? Using the regular continued fraction for 6
this question is answered in the affirmative with the following algorithm.

Let A = €™ 4 € (0,1) and let {a,/b,} denote the sequence of even
indexed approximants in the regular continued fraction expansion of . Since
A is not a root of unity, it follows that « is irrational. For real z, let {z}
denote the fractional part of z. Thus {z} = z — |z|. Let 6 € [0,1) and, for
n > 1, let 7, denote the least positive integer satisfying 0 < r,, /b, —0 < 1/b,,.
For any positive integer x,

x’y—ﬁzx(’y—?)—i—W—F(?—@).

Since ged(ay, by,) = 1, there exists a non-negative integer x < by, satisfying
anr = 1y, (mod by,). Let k, be this solution. Since (ank, — 1,)/by € Z, it

follows that
an, Tn
ko A—0) =<k, - — — -0 .
{ J { (’Y bn>+<bn >}

If the sequence {k,} is unbounded, let {j,} be a strictly increasing sub-
sequence. If {k,} is bounded, replace each k, by k, + b, and once again
let {jn} be a strictly increasing subsequence. From the theory of regular
continued fractions we have that in either case

2
< (kn +bp)

Ea

an
-1l <
T

n

Qn

ko |y —
Ty

and thus that
{jny =0} — 0.
It now follows that f;, 1 ~ h(y9") — h(e*™?). Thus

lim f;, 1 = h(e*™).
n—oo

Note that for rational A = m/n, one takes approximants in arithmetic
progressions modulo n to obtain the subsequences tending to the discrete
sequential closure.

Finally, we briefly compare our results with a theorem of Scott and Wall
[26, 35].

Consider the continued fraction

1 1 1
(349) by + by + b3+
Theorem 9 (Scott and Wall). If the series > |bapi1| and Y- |bopy152|, where
sp = by + by + - + by, converge, and liminf |s,| < oo, then the continued
fraction (3.49) diverges. The sequence of its odd numerator and denomina-
tors convergents, {Agpt1} and {Bapy1}, converge to finite limits Fy and Gy,
respectively. Moreover, if s is a finite limit point of the sequence {s,}, and
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lims, = s as p tends to co over a certain sequence P of indices, then Asgp
and Bo, converge to finite limits F(s) and G(s), respectively as p tends to
oo over P, and
F1G(s) — G1F(s) = 1.

If the sequence {s,} has two different finite limit points s and t, then

F(s)G(t) — F(t)G(s) =t — s.
Finally, corresponding to values of p for which lim s, = oo, we have
Ay _ 1

lim = —,
B2p Gl
finite or infinite.

As far as we know, this theorem is closest in theme to the idea of this
paper. On the one hand it makes no assumptions about the size of the
sequential closure. On the other hand, it retains much of the structure
of the Stern-Stolz theorem, in as much as it focuses on the parity of the
index of the approximants. To understand sequential closures in general, all
subsequences need to be considered. At any rate, Theorem 9 does not focus
on the sequential closure, but rather on loosening the /7 assumption to the
subsequence odd indexed elements of the continued fraction.

One naturally wonders just how effectively the parameters a, b, ¢, and d
in Theorem 7 can be computed. In the next section, a particular contin-
ued fraction is considered which generalizes one of Ramanujan’s, as well as
the 3/2 continued fraction given in the introduction, and these parameters
explicitly are computed as well-behaved meromorphic functions of the vari-
ables in the continued fraction. Thus, for the g-continued fraction studied
in the next section, the parameters can not only be computed, but also have
nice formulas.

4. A GENERALIZATION OF A RAMANUJAN CONTINUED FRACTION

In this section we study the non-trivial case of Theorem 7 in which the
perturbing sequences p,, and ¢, are geometric progressions tending to 0. The
inspiration for this is the beautiful continued fraction (1.3) of Ramanujan.
Our theorem is interesting in that it covers both the loxodromic (convergent)
as well as the elliptic (divergent) cases simultaneously. Another point of this
section is that it shows how Theorem 7 gives another approach evaluating
continued fractions. In fact it is interesting to compare the proof of Theorem
10 to the proofs of special cases given previously by different methods, see
1,7, 13).

We first recall that a 1¢; basic hypergeometric series is defined for |¢| < 1
by

= (a;@)n (n—1)/2
11(a; b ) =Y — —— (=g
n=0 (q7 Q)n(b7 Q)n

For the ¢-product notation used here, please see the introduction.
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Theorem 10. Let |q| < 1 and a # 8 and put A\ = a/3. Then,

—af + xq —af + zqg? —af + zg® —af + xq"
atft+yqtat+ftyd +at+Pftye +o+at+ Bty

—xq. Bq. , —yq° 1 —aq. aq.  —yq°
(22— ) 16n (5285 200, 2L At — (B — ) 161 (55 %0, 4L
101 (;%q; a4, ’qu) AL — ¢y (;—?; Fi1a %’q)
Finally, assuming || = |B| = 1, let the order of A in T be m # 1. Then,

(42) sc —af+zq —af+z¢® —af 4z
' T \a+ Bty ta+ftyi tat+B+yed oo

_ 02 _ 02
(%= 8) 161 (ﬁ B4, q, =u- )Tm = (%" —a) 161 (ﬁ; Fia. =5 >

101 (%‘1; b q, _f;’q) Ty — 161 (%}f; Fia, _7%)

(4.1)

Note that when |a| # |3|, (4.1) shows that the continued fraction con-
verges and provides its limit. It is also in agreement with remark (v) follow-
ing Theorem 7. For this theorem, we have not provided the error term for
the difference between the left and right hand sides of (4.1). But Theorem 7
implies that in the elliptic case (when |a| = |f]), this error is O(¢"). In the
loxodromic case (|a| # |3]), the error term can be computed from Corollary
11 in Chapter IV of [19].

Before preceeding with the proof, we note a couple of corollaries. Theorem
10 generalizes many well-known continued fraction evaluations. For exam-
ple, setting « =y = 0 and § = 1, dividing by z, changing z to z/q, taking
reciprocals, and letting n — oo in (4.1) yields the well-known evaluation of
the Rogers-Ramanujan continued fraction:

Corollary 8. For z,q € C and |q| < 1,

2
qnl l.m
I S V" by
1 + 1 + e m2+m m
ZmZO ! (Q)mx

The next corollary generalizes Ramanujan’s continued fraction (1.3) with
three limits given in the introduction.

Corollary 9. Let w be a primitive m-th root of unity and let w = 1/w. Let
1<i¢<m. Then

. 1 1
(4.3) lim - _ I, 5 1 gmk+i
k—oow+w+q —w+w+gq w+w+gq
_ w0 (00w g, —¢Pw) — w1 (0:0/w? g, —¢P/w)
w101 (0; qw?; ¢, —qw) — w161 (0;¢/w? g, —q/w)
Proof. This is immediate from (4.1), upon setting z = 0, y = 1, a = w,
B =w"t, n=mk+1, then noting that w™* = 1. O
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Remark: This result in its present form first appeared in [13]. A different
proof was given in our paper [7].

We now continue with the proof of Theorem 10. Following the proof,
other special cases are studied, including the 3/2 continued fraction from
the introduction.

Proof. First consider the case |a| = |3|. It is convenient to work with the
related continued fraction
(4.4) 1 —af + xq —af + zq? —af +x¢3

T+atftygtatftyd +atftyed +-

Let A,, and B,, denote the n-th numerator convergent and n-th denominator
convergent, respectively, of this continued fraction.
Let M be defined by (3.22) and recall from (3.23) that

w6 (T )

Note that by (3.1), (4.4) corresponds to the matrix product
o (An And) _ (0 1) (11 ’ﬁ atfB+yd 1
" \B, B,.1) \1 0/\1 0 L —afB+x¢ 0)°
]:
Put F, = U,M~". By Theorem 7, there exists a matrix F defined by

F =lim,_. F,. Following the ideas of Theorem 7, define the sequences G,
and H, by

Upt1 — BU, H. — Ups1 —aUy,

a™(a— )’ topMB-a)

From (3.11) one can see that lim,,_,o, Gy, and lim,, . H,, exist. It is clear
that

(4.7) U, = Gna™ + Hp 3"

We next determine lim,, .., G;,. For n > 1, let

D _ (@t B+ydt 1
"\ —af+zq" 0)°

(4.6) Gp =

Since Upt1 = UpDn,

G _ Un-l-l(Dn—i—l - ﬁI) _ UnDn(Dn—i-l - ﬁ-[)
T et (a - ) R CE)
= a 'Gu(D, — BI) Dy (Dyy1 — BI)
S\ —Bg+a gt 0 )
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Then
(4.8) aps1 =1 +aBg+atyg" Na, + (—Bq +a tzg" )b,
= (1+a 1 Bg+a Yy Va, + a Y=g+ ateg" Han 1.

We use the generating function F(t) := Y 7 | a,t" to find lim, . a,. Mul-
tiply (4.8) by ¢t"*! and sum over n > 1 to get

F(t) —ait = (1 +a 'BQtF(t) + o tqytF(tq) — a B qt*(F(t) + ao)
+ o 2xt?¢*(F(tq) + ao),

or

Har + (wg/a = Baogt/a) | ayt/el +wta/ye) b,
(1 =1)(1 = Bqt/c) (1—1)(1 - Bqt/a)

Upon iteration (note that F'(0) = 0) this yields

(4. 10)

(4.9)  F(t) =

1 i t"(y/a)" gD/ (—aqt [ya) 1 (a1 + ag(zq/a — B)tq" /o)
q = (t)n(Bat/a)n ’

Since |g| < 1, this series is convergent and satisfies (4.9). Thus

(4.11)  lim a, = lim (1 —¢)F(t)

n—0o0 t—1_
_ 1 Z (y/a)" " q" "2 (—aq/ya), -1 (a1 + ag(zg/a — B)q" /)
§ 2 (0o (Ga/a) |

We next find a; and ag. From (4.4),
01
01 1 1 10
U1_<1 0><1 0>_<1 1>’
s — 0 1\ /1 1\ [(a+B+yq 1\ _ yqg+a+ 1
27\1 0/\1 0 —af+zq 0) \zq+yqg+a+pf—af 1)°
From (4.6),

G_Ul—ﬂUo_ 1 (1 —5)
07 =3 T a-p\U-8 1)’

o U —pU; 1 < e 1 )
"“ala—p8)  ale—pB) \@z¢+yg+ta—aB 1-3
Thus,
1 Yyt
©T A " ala—p)
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and

(&) (53, (e -0 %)
(@)n-1(8q/a)n

n 1 n(n+1)/2(

n:l
_ — (y/a) 2q/ya)n—1
B nzl q n— 1(5(1/05)71 1

1 (y/a)” n(n D2 (—pq/ya)y,
-9 Zl (@1 (Ba/ )

nn+3)/2(

@)n(Ba/a)n

(
1 (y/a)"q" "2 (—aq/ya), (1 — ")
CErA Z (@n(Ba/a)

1 (y/a)"q" " V2 (—zq/ya),
- <a =5 2 @n(Fa]a)n

Bq  —yq
= ¢1 $q7 7Qa ) .
61 (

« «

Mg

lim a, =
n—oo

xq/yc)n

1 (y/a)"q
-

n=0

Since b, = o ta,_1,

) a1 T —
lim bn— 1¢1< qaﬁq7q7yq>

n—oo ﬂ « «

The sequence {c,} satisfies the same recurrence as {a,}, with

. 1-p . rq+yg+a—ap
0 — ) 1= )
a—f ala =)
and thus, by reasoning similar to that above,
1

lim ¢,

2" = o= )
S ()" e (S2) (1o g (1 8) (- 8) %)
= (@)n-1(Bq/a)n

(n+1)/2(

18 = W/a)"g" —2q/ya)n
~(a-p) HZ:O (@)n(Ba/a)n

q(z + By) Z (yg/a)"q" " V2 (—zq/ya),
(a=B)(a—pq) = (On(Bg?/a)n

_1=5 191 (—:rq;ﬁq;q’ —yq)
a

yo '« o

+
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q(z + By) p <—mﬁq2, —yq2>
(a—B)(a—pg) " Ta '

ya o« a

+

Also, d, = a ' ¢,_1, and so

lim d, = 761_1(1 ) 191 (—fnq;ﬁq; ’—yq>
n—oo a—pf ya o« o
'q(z + By) p (—xq_ﬂqQ_ —yq2>
(a—B)a—pg "'\ ya o’ a )
Thus,
lim G, (911 91,2)
n—o0 921 922)"
where
_ 1 yq
gl’l_a—ﬁ1¢1<y a)
_a! yq
91,2—a ﬂl¢1<y a)
1-6 o1 | — ﬂ
921 = a_ﬂl 1 y o
L (= +5y) b <—m,ﬂq2, —yq2>
(= B)(a — Bq) yao o«
—1 o . o
92,2270[ -5 161 (mq;ﬂq; ,yq)
a— ya '« !

_|_

(a—B)(a—pBg) " ot

« (67 (&%

o tq(x + By) s <—wqﬁq2_ —yq2>
Yy
From (4.6) H,, can be found from G,, by interchanging o and (3, so that

. (P11 hi2
nh—{go Hy = <h2,1 h2,2> ’
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where
e @3
b (250 7)

q(z + ay) p < zq og? —yq2>
B-a)B-aq) "\ ys B3P 8

71 _ o o
hago = v (1_ aa) 161 (36(1 M. q yq)

_l’_

B yd ' B’v B
N B q(x + ay) " < zq og® —yq2>
(B —a)(B—aq) v 3T )
Thus (4.7) gives
(4.12)
71151;0 U,M™™" = nlingo(Gna" + H,p")M™"
— 1 n n _ﬁ_l —a! a™" 0 —af -0 1
= Jim (G +H“ﬂ)< 11 )(0 ﬁ‘”)(aﬂ oz)a—ﬂ
(A A’ 1
- B B/ Oé—,B,
where
_ o (mTa P —va) g 09 —yq
A_1¢1<ya’a’q’a) ¢1<ﬁ ﬁa7ﬁ>
p_ 1 (—wa Ba.  -ya) 1 g aq  —yq
A—a1¢1<yaaaaQ7 a> ﬂlgbl(yﬁ ,67’ ﬂ)
B:(l_ﬁ)l(z)l <_xq ﬁq q>+ x—i_ﬁy ld)l( xq7/8q 34, _yq2>
Yo lo% o 0"
1 rq aq  —Yq 304'04/ zq 04(1 —yq2>
(]' Oé)l¢1< ,8 ﬂ” ,3) 1¢1<y6 57) /6
_ _ _ _ 2
B =1 ﬁlﬁbl ( xq;@;q, yq) + q(Hﬁy) 191 (xq;ﬂq;q, L )
« yoo o« ala — Bq) yo o« a
+ ay)

_1a1¢1< rq aq yq)_ q(x , 1< zq ag? yq2>
B R B(B — aq) w8t )

If we let C}, and F,, denote the n-th numerator convergent and denominator
convergent, respectively of the continued fraction

—afB+z2q —aB+ x¢? —af + z¢?

at Bty tatBtyl +atBtyed -
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L Cn Cn—l
Vn T (En Enfl ’
it can be seen that

0 1\/0 1\/0 1 -1 1
V”‘(l 0> <1 —1> (1 0> U”“_(l 0) Unt1.

If the matrix F' is defined by

()G Bt
_ <(a+ﬁ)(B—A)+aﬁ(4’—B') B—A> 1
(a+ B)A — aBA A )a=3

and the linear fractional transformation h(z) is as defined following (3.30),
we get that

(4.14) h(z) =
2 a2
(%_ﬁ) 1¢1<yzqa%qvqa Y )Z-(g—&) 1¢1<y%q 0/[3q7q7%>
1¢1(yzq7%qaq7 _gq)?«’* 1¢1 (Zfﬁ ; ﬁacb _ﬁyq)
and (4.1) now follows in the case |a| = |3]. (4.2) follows immediately from

(4.1) and the remarks at the end of the introduction.
Note that we have used the elementary identity

q<w+6y)1¢1( v pa yq) B161 ( xq,ﬂq,q,yq>

a— fBq ya o« Q@ ya  « Q@

(25 o (2, Y,

and similarly with o and 8 interchanged.
Now assume that |«| # |3]. First note that the difference equation

(4.15) Yo=04+X—2¢")Yoir1+ (=A+azq") Y40

has a solution Y,, = 1¢1(a;Aq;q,2¢"). (This can be checked simply by
equating coefficients.) By Auric’s theorem, see Corollary 11, Chapter IV of
[19], this solution of (4.15) is minimal if |A\| < 1, and thus for || < 1,
101(a; Ag; ¢, 2) A —aq —A+az —A+azq .
161(a; Ag; ¢, 2q) I+A—zqg + 1+A—z¢* +
Putting a = -8 'zy ¢, A = a/fB, and z = —B~lyq, taking reciprocals,
multiplying both sides by —a + zq/f and applying a simple equivalence
transformation to the continued fraction, yields that for |o| < |3],

(4.16) (% —a) 101 (554 %0 755) _
1¢1(y%'ﬂ’q’_7yq>

and define

)
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—afB+2x2q —aB+ x¢? —af + z¢?
a+B+yq+a+B+y® +a+B+yd +-

For |a| > ||, symmetry gives that
(E —Oé) l¢l ( yzqa %q,Q7 =7 )
1¢1 ( zqa [i?,q, 73(1)
—afB+2x2q —aB+ x¢? —af + z¢?
a+B+yq ta+B+y® +a+B+yg +--7

The conclusion follows by noting that for |a| < |],
—yq?

(E - ﬂ) 1¢1 ( yzq7 iq7Q7 ) )‘TH_I (ﬂ a) 1¢1 (7 ﬁq )

1@1 ( yzqa %qa(b _gq) Al — 1¢1 ( y%q Oéqaq Ty)

1¢1 (;ﬁq ()qu7Q7 B )
while for |a| > |£],

2102 _ a2

(4 —p) 1¢1( zq7%q,q, —J1 )/\"H - (% Oé) 101 (ﬁ;%;% = )
1¢1 ( y2q7 quvqa _gq> )\n+1 - 1¢1 (7(1 %;q

(5 = 8) 101 (Gals Shra,

1¢1 ( yzqa iqa(b _gq)

~

O

Consider the special case of the continued fraction in the theorem in which
z=0and y =1. Then

2
_51¢1(7Q7Q7 a)2+a1¢1< /g7Q7Tq>
1¢1( ' o 7Q7 aq)z_ 1¢1 (OaﬁaQ7%)

and thus that the sequential closure of the continued fraction

1 af af af

(4.17) h(z) =

G(a, B,q) = =
(o, 6,9) l—a+f+q—a+p+¢@ —a+p+¢
is on the circle defined by
1
f(z) = Bq. o _ 2\
1 —ﬁ1¢1( 5 ,Tq)Z‘FOélel(O;Fq;q?Tq)
_l’_
1¢1< b, 77(1)2—1(1?1( 57%*)



ASYMPTOTICS OF CONTINUED FRACTIONS 41

Remark: Unless stated otherwise, we continue to restrict to the special case
x =0 and y = 1 for the remainder of this section, and continue to make use
of the simplified expression for h(z) given by (4.17).

Figure 1 shows the first 3500 approximants of G (exp(1v/7), exp(1v/5),0.1)
and the corresponding circle f(T) predicted by the theory. The larger dots
show the points, again predicted by the theory, of highest and lowest con-
centration of approximants. Note that the error, £, = O(10™") and experi-
mentally, min,er |4, /B, — f(2)] = 107" in agreement with the theory.

FIGURE 1. The convergence of G(exp(2v/7), exp(11/5),0.1)

Figure 2 shows the first 2700 approximants of G(exp(1/7),exp(1(v/7 +
27/11)),0.1) and its convergence to the eleven limit points f(2kw/11), where
f(z) is the associated linear fractional transformation, together with part of
the circle f(T) . The error is in agreement with theory: |A, /B, — f(2(n +
1)w/11))| &~ 10~™. This rapid convergence is the reason that the graph
appears to show only twelve approximants (the zeroth approximant is a
little removed from all of the limit points).

It was shown in the introduction that the sequence of approximants of
the continued fraction 3/2 + Kﬁim;/l? is dense in R. A natural question is:
what is the point of highest concentration of approximants? We can now
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FIGURE 2. The convergence of G (exp(2v/7), exp(2(v/7 + 27/11)),0.1)

answer this question. We can view the continued fraction 3/2 + K 00:13_712 as

n
—af3
a+ B+ K ——,
b "=lo+ B+ qn

with o = 3/4 +i\/7/4, 3 = 3/4 —iy/7/4 and q = 0. By Theorem 10

s.c.<a+ﬁ+K;;° —ap >:a+6—ﬁT°°_a—aT°°_ﬂ

o

“la+pB+qn Too—1  Too—1"
Thus a = a, b= -8, c =1, and d = —1. From Corollary 5, the point of
highest concentration of approximants is

Lfa b\ 1(fa -8B\ a+p 3
2<c+d>_2<1+—1>_ 2 4

and the limiting probability density function is:

() V7

) = .

P 9r(222 — 3z + 2)

Figure 3 shows the distribution of the first 3000 approximants of 3/2 +

5‘;13_—/12 (with about 300 extreme values omitted and scaled to have area

equal to 1), together with the point x = 3/4 of predicted highest concen-
tration and the limiting probability density function p(x) = V/7/(2r (222 —
3z + 2)). Once again, theory and experiment are in complete agreement.

Corollary 6 is now applied to obtain convergent continued fractions. This
corollary could be applied to the more general continued fraction in Theorem
10, but for the sake of simplicity and ease of notation we restrict once again
to the special case where x = 0 and y = 1. We also revert to series notation
for ease of understanding.

Corollary 10. Let |q| < 1 and let a and 3 be distinct points on the unit
circle such that oo/ 3 is not a root of unity.

(i) Set
an_ﬁn
Wn = _an—l _ﬁn—l'
Then
at+f+qgtatf+e Tatf+@+wstatB+g+uw

00 —qaﬁwnfl/wn,Q
+ n:5qnfwnflq+a+/3+wn
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0.4f
0.3
0.2
0.1
110 -5 0 5
F1GURE 3. The distribution of the first 3000 approximants of
3/2+ K. 13_/2, with the point © = 3/4 of predicted highest
Concentratlon and the limiting probability density function
p(z) = V7/(27(22% — 3z + 2)).
i a " n(n+3)/2 0 ﬁfnqn(n+3)/2
(@ On(Be/a)n = (G a)n(aq/B; O)n
= —a P~
a " n(n+1)/2 o0 g nn+1 )/2
o -8
n;) RTINS DelealBia)
(ii) Set
an+l _ ﬁnJrl
wy =—————"—
— B
Then
L atftgtat+ft@E tat+tBt@ tws tat B+t +ws
o) _qaﬁ anl/wn72
+ g —wp1g+a+ B+ wy
3 i o nqn(n+3)/2 B 0 8- nqn(n+3)/
=@ a)a(Be/asq)n — (¢; ))n(aq/B; q)n
00 o nqn(n+1)/2 i nqn(n )/2 ’

< (¢ 0)n(Ba/0: ) ZO< D09/ )

n= n=
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(iii)

i a—nqn(n+3)/2
120) g4 DU g —0Be i (4 )n(Bg/ v @n
: atq + "Fgnta+ fg 2 o ngn(nt/2

nz;) (¢; O)n(Bg/a; @)n

Proof. (i) In Corollary 6, let k = 0, g, = 0 and p,, = ¢", and then, for n > 5,
¢, simplifies to —qafwy—1/wn—9o and d, simplifies to o +  + ¢" + wy, —
wn_1q. The fourth partial numerator similarly simplifies to —wsq®. Thus
this continued fraction converges to h(A) and it can be seen from (4.17) that
h(A) has the valued claimed for the limit of the continued fraction.

The proof of (ii) is similar, except we take k = —1 in Corollary 6 and
noting from (4.17) that h(1) has the valued claimed for the limit of the
continued fraction.

Part (iii) follows from (3.37), after noting from (4.17) that h(oo) has the
valued claimed for the limit of the continued fraction. O

In some cases the infinite series in the theorem above can be expressed as
infinite products.

Corollary 11. Let |q| < 1. Then
2

4 e q _ (#¢)o(q" 070

L+g + " 21—+ 1 (635670 (@% 67)oo
Proof. In (4.20), replace q by ¢, set 3 = —q and a = ¢ and simplify the
resulting continued fraction by applying a sequence of similarity transfor-
mations.

For the right side we use two identities due to Rogers [25] (see also [30]
and [29], identities A.16 and A.20):

0 qn(n+2) 1

(4.21) 1

“(aha)n (6%6°)0(@%0%)oo(—a% D)oo

o] n2 1

q _
T;] (@5 aYn  (40°)0(0"67)oo (=0 oo’
Finally, cancel a factor of ¢ on each side O

Remark: The continued fraction above is clearly a transformed version
of the Rogers-Ramanujan continued fraction which converges to the same
limit as the original continued fraction.

4.1. Example: analytic behavior of K ﬁ for |g| < 1. The results of

this section provide the opportunity to examine in detail, for |¢| < 1, the
relationship between the continued fraction
—1

(4.22) K
a—+q”
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and its series equivalents. We begin with some remarks about the conver-
gence of the continued fraction (4.22) for |g| < 1.

First of all, for |g| < 1, (4.22) is a limit periodic continued fraction. Now,
depending on the complex value of a, (4.22) can be of either parabolic,
elliptic, or loxodromic type, see [19] for the definitions. More specifically,
it is easy to check that (4.22) is of parabolic type if and only if a = +2.
Theorem 32 (with p = 0) of chapter III of [19] gives that in this case the
continued fraction converges. In fact we will give the limit of the continued
fraction when a = £2 below.

A more involved computation yields that (4.22) is of elliptic type if and
only if a is both real and satisfies —2 < a < 2. It is easy to see that this
is equivalent to @ = w + @ with w on the unit circle and w # +1, which
is exactly the § = @ case of Theorem 10. The continued fraction (4.22) is
loxodromic in all other cases and hence converges by Theorem 28, chapter
III of [19]. This is, of course, the same as saying that its sequential closure
consists of a single point.

Note that the |a| # |3] case of Theorem 10 is in agreement with remark
(v) following Theorem 7. In this case we are able to conclude that the
constants a, b, ¢, and d still make sense. Putting 3 = a~! in Theorem 10
thus gives detailed asymptotics for the approximants when a # 2.

We now compute the limit of K ——L in the loxodromic and parabolic

at+q”
cases. Define

—a'b+ cq —a'b + cq?
+a+b+dg+ a+b+dg? +
—a'b+ cq”
b

1
H(d',b,c,d,q) = 1

Let A, denote the n-th numerator convergent of this continued fraction and
let B,, denote its n-th denominator convergent.
In Theorem 2.2 in [8], it was shown that if |a//b| < 1 and |¢| < 1, then

Ay (d/0) g IR (—cq/db)y,
(4.23) lim Z

NN (@@

By — Ay N (@)D (—cq/db)n
lim —x—— = -
i — (cq/b—a’) HZ:O (@ /D) ns1(Q)n ’

and thus that

_ S @) I (—cq/db)y
) Ccald =) Y @)

H(d',b,c,d,q) i (d/b)"q" "+ D/2(—cq/db),,
(@ D)na()n
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Notice that this equation is the same as (4.16). Indeed, we could have
finished the proof of Theorem 10 using these results from [8], but the self-
contained method used seemed preferable.
Let |a| > 2 and set b= (a++Va? —4)/2ifa>2and b= (a — Va® —4)/2
ifa<—-2,a=1/b,d=1and ¢=0. It is immediate that
i (1/b)nqn(n+3)/2 i (1/b)nqn(n+3)/2
-1 1= (1/0)nt1(@)n 142 (0/0)n(@)n

9]
n=1

R N N O Ll
n;] (1/6%)n+1(@)n nz:% (@/b)n(q)n

This gives the limit of the continued fraction in the loxodromic case.
To compute the limit in the parabolic case, we need the following result.

Lemma 1. If s(n) = 35 fk(n) is a finite sum (or a convergent series)
for each n, limy, oo fr(n) = fi, [fe(n)] < My, and Yy My < oo, then

lim s(n) = ka
k=0

This result follows as a consequence of the Weierstrass M-test and is also
known as Tannery’s Theorem (see [11], for example).

Let
K -

=19 41/ (n2 +n) + ¢k
Let C},, denote the k-th numerator convergent of G(n) and let Dy, ,, denote
its k-th numerator convergent. From (4.23), with b = (n+1)/n, ' = 1/b,
d=1and c=0,

G(n) :=

Cim _ 1 2 (n/(n + 1))kgkk+3)/2
G = h:go (14 1/n)k=1 1+1/n2 2/ (n+ 1)2)er1 (@)
i Die S 0/t D) DR
Dn = klggo (1+1/n)k-1 Z 2/ (n+ 1))t (@
Define
1+ 2n
Sl(n) = mcna
1+2n
82(n) = m ..
Next,
—1 : C . Sl(n)

k=1 2+ k T}LH;o Kk:l 2+ 1/(n2 + n) + qk 11151010 D, nhjlgo S9 (n) ’

Since s1(n) = Zk>0 fr(n), where
1 (n/(n+1))qu(k+3)/2
14+ 1/n (n2q¢/(n + 1)2:¢)k(q; @)k

fr(n) = —
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and
i qk(k+3)/2
|q|k k+3)/2
|fe(n)] <2 —rg =1 My,
(Iq\ laD)i
‘q’k (k+3)/

ZMk ZQ 2 <OO

= = (ks laD)i
it follows that

¢ +3) /2
i si(n) = > fi= =D T
k>0 k>0 4
Likewise
gF kD)2
lim sy(n) = —
and so
© n(n+3)/2
a7
-2
n=log 4 gn o0 gHnt1)/2’
T2
= (97
By a similar argument, we get that
i n q" (n+3)/2
0o -1 _ n=
=24 g i ) nn+1>/

5. APPLICATIONS TO (7, s)-MATRIX CONTINUED FRACTIONS

In [18], the authors define a generalization of continued fractions called
(r, s)-matrix continued fractions. This generalization unifies a number of
generalizations of continued fractions including “generalized (vector valued)
continued fractions” and “G-continued fractions”, see [19] for terminology.

Here we show that our results apply to limit periodic (7, s)-matrix con-
tinued fractions with eigenvalues of equal magnitude, giving estimates for
the asymptotics of their approximants so that their sequential closures can
be determined.

For consistency we closely follow the notation used in [18] to define (r, s)-
matrix continued fractions. Let M, ,(C) denote the set of s x r matrices
over the complex numbers. Let 6, be a sequence of n X n matrices over
C. Assume that r +s =n. A (r, s)-matrix continued fraction is associated
with a recurrence system of the form Y = Y;_10;. The continued fraction
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is defined by its sequence of approximants. These are sequences of s X 7
matrices defined in the following manner.

Define the function f : D € M, (C) — M, ,(C) by
(5.1) #(D) = B1A,

where B is the s x s submatrix consisting of the last s elements from both
the rows and columns of D, and A is the s x r submatrix consisting of the
first r elements from the last s rows of D.

Then the k-th approximant of the (7, s)-matrix continued fraction associ-
ated with the sequence 6y is defined to be

(5.2) sg = f(OkOp—_1 - - 0261).

To apply Theorem 4 to this situation, we endow My, (C) with a metric by
letting the distance function for two such matrices be the maximum absolute
value of the respective differences of corresponding pairs of elements. Then,
providing that the f is continuous, our theorem can be applied. (Note that
f will be continuous providing that it exists, since the inverse function of a
matrix is continuous when it exists.)

Let limy_,o 0 = 0, for some 6 € M,,(C). Then the recurrence system is
said to be of Poincaré type and the (r, s)-matrix continued fraction is called
limit periodic.

After this definition Theorem 4 can be applied and the following theorem
results.

Theorem 11. Suppose that the condition Y .~ ||0x—0|| < oo holds, that the
matriz 0 is diagonalizable, and that the eigenvalues of 0 are all of magnitude
1. Then the kth approximant si has the asymptotic formula

(5.3) sp ~ f(O"F),
where F' is the matriz defined by the convergent product

F = klim 050,051 - 0261.

Note that because of the way that (r,s)-matrix continued fractions are
defined, we have taken products in the reverse order than the rest of the
paper.

As a consequence of this asymptotic, the sequential closure can be deter-
mined from

s.c.(sy) = s.c.(f(OFF)).

In one general case, detailed in the following theorem, we actually get a
convergence theorem.

Theorem 12. Let 0y be a sequence of n X n matrices over C satisfying

> 110 — 6] < oo,

k>1
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where 6 is a diagonal (or antidiagonal) matriz with all diagonal (or antidi-
agonal) elements of absolute value 1. Let r and s be positive integers with
r+s=n.

Then the matriz

F:= lim 07%0,0_1 - - - 620,

k—oo

exists. Suppose further that the bottom right s x s submatriz of F' is non-
singular. Then the (r,s)-matriz continued fraction defined by equation (5.2)
converges to f(F). If 0 is antidiagonal, then the even approzimants of (r, s)-
matriz continued fraction defined by equation (5.2) tend to f(F'), while its
odd approzimants tend to f(AF), where A is the antidiagonal matriz with
1s along its antidiagonal.

Proof. The matrix F' exists by Theorem 4 (or more precisely, the “trans-
posed” version of Theorem 4). Let

0 = diag(M1, ..., \n).

By (5.3),
Sk~ f((ng)

-1

)\2_54_1 v 0 anerl,nferl v anerl,n

0 D it Fon-st1 ...  Fup
A er . 0 Foosi11 - Fuosi1y
0 Ak Fn,l Fn,r
anerl,nferl s ans+1,n - anerl,l ans+1,r
an—s—i—l v Fn,n Fn,l o Fn,r
= f(F).

Thus s; converges to the final matrix product above.

For the case where @ is an antidiagonal matrix, 6%* is a diagonal matrix
and the proof for the even approximants is virtually the same as for the case
where 6 is a diagonal matrix. If @ is an antidiagonal matrix, #2*1 is also
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an antidiagonal matrix. Once again by (5.3),

S2k+1 f(GQkHF)

0 s (92k+1)n75+1,s Fl,nfs#»l s Fl,n
(02k+1)n,1 o 0 Fopn—st1 ... Fsp
0 RN (A an) I i ... Fi,
x S z o
02+, 1 ... 0 Fe1 ... Fs,
0 ... 1 Flp—si1 - Fia\\
1 ... 0 Fspnsy1 ... Fsn
0 1 Fi1 Fi,
x z
1 0 Fs,l Fs,r

where A is the antidiagonal matrix with 1’s along the antidiagonal. Thus
Sok+1 converges to the final matrix product above. [l

With additional information, this last conclusion can often be strength-
ened, for example, to s.c.(s,) = h(s.c.(0¥F)), as in the case of continued
fractions studied in section 3. The computation of s.c.(#*F) can then be
accomplished through Pontryagin duality.

Consider now the n = 2 antidiagonal case of Theorem 12. The matrix 6

then has the form
_ 0 1
o 1 0)°
Choose 6}, to have the form
. by, 1
O = < 14 ag 0> ’

Using the correspondence between matrices and continued fractions (3.1),
we at once obtain the following corollary, first given in [7].

Corollary 12. Let the sequences {a,} and {b,} satisfy a,, # —1 forn > 1,
> lan| < oo and ) |by| < co. Then

14+ a,

bo + K52y b
n
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diverges. In fact, for p=20,1,

nh—{go P2n+p = Ap # 00, nh—{go Q2n+p = Bp # 00,
and -
AlBQ — A()Bl = H(l + an).
n=1

In fact, Corollary 12 is also the a« = 1, § = —1 (so m = 2), ¢, = a,, and
pn = b, case of Corollary 7. When a,, = 0, this corollary reduces to the
famous Stern-Stolz theorem discussed in the introduction.

One of the main results of the paper [7] was Corollary 7, which we applied
to obtain an infinite sequence of theorems, similar to the Stern-Stolz theo-
rem, but with continued fractions of different ranks. Notice that Theorem
12 provides yet another family of generalizations.

It is interesting to compare Corollary 12 with the “The General Stern-
Stolz Theorem” from [3] in the case of continued fractions. The corollary
for the case of complex continued fractions is:

Corollary 13. [Corollary 7.5 of [3]] If >, |1 — |an|| and >, |bn| converge,
then K(anlby) is strongly divergent.

The first condition in this result is weaker than analogous condition in
Corollary 12 above. But it should be remarked that that Theorem 1, Corol-
lary 12, and Corollary 13 are, in fact, equivalent. In fact, the two corollaries
follow from Theorem 1 by an equivalence transformation (and a little analy-
sis). Next, the condition on the partial numerators in Corollary 13 encodes
the information that the matrices representing the continued fraction are a
perturbation of unitary matrices. We could have obtained the same result by
using Theorem 3, however in this situation one does not obtain as detailed
information about the limits of the convergents. In particular, Corollary 12
also proves the convergence of the subsequences of convergents {F,} and
{Qn} of equal parity. Corollary 13 does not furnish this part of the conclu-
sion. On the other hand, it does prove strong divergence, defined in section
2. Indeed, the continued fraction in Corollary 13 is not necessarily limit
peoridic.

6. POINCARE TYPE RECURRENCE RELATIONS WITH CHARACTERISTIC
ROOTS ON THE UNIT CIRCLE

Let the sequence {z,},>0 have the initial values x¢, ..., z,—1 and be
subsequently defined by
p—1
(61) Tntp = Z AnrTntr,
r=0
for n > 0. Suppose also that there are numbers ao, ..., a,—1 such that

(6.2) lim a,, = a,, 0<r<p-1.
n—oo
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A recurrence of the form (6.1) satisfying the condition (6.2) is called a
Poincaré-type recurrence, (6.2) being known as the Poincaré condition. Such
recurrences were initially studied by Poincaré who proved that if the roots
of the characteristic equation

(63) tp - ap,ltp_l - ap,gtp_Z — s —ag = 0

have distinct norms, then the ratios of consecutive terms in the recurrence
(for any set of initial conditions) tend to one of the roots. See [22]. Because
the roots are also the eigenvalues of the associated companion matrix, they
are also referred to as the eigenvalues of (6.1). This result was improved by
O. Perron, who obtained a number of theorems about the limiting asymptot-
ics of such recurrence sequences. Perron [21] made a significant advance in
1921 when he proved the following theorem which for the first time treated
cases of eigenvalues which repeat or are of equal norm.

Theorem 13. Let the sequence {xy}n>0 be defined by initial values xo,
.o, Zp—1 and by (6.1) for n > 0. Suppose also that there are numbers
ao, ..., ap—1 satisfying (6.2). Let qi, q2,...qs be the distinct moduli of the
roots of the characteristic equation (6.3) and let Iy be the number of roots
whose modulus is qy, multiple roots counted according to multiplicity, so that

lhi+l+...l, =p.

Then, provided an be different from zero for n > 0, the difference equation
(6.1) has a fundamental system of solutions, which fall into o classes, such
that, for the solutions of the \-th class and their linear combinations,

limsup v/|z,| = ¢).

n—oo

The number of solutions of the \-th class is ly.

Thus when all of the characteristic roots have norm 1, this theorem gives

that
limsup V/|z,| = 1.

n—oo

Another related paper is [17] where the authors study products of ma-
trices and give a sufficient condition for their boundedness. This is then
used to study “equimodular” limit periodic continued fractions, which are
limit periodic continued fractions in which the characteristic roots of the
associated 2 x 2 matrices are all equal in modulus. The matrix theorem in
[17] can also be used to obtain results about the boundedness of recurrence
sequences. We study a more specialized situation here and obtain far more
detailed information as a consequence.

Our focus is on the case where the characteristic roots are distinct num-
bers on the unit circle. Under a condition stronger than (6.2) we will show
that all non-trivial solutions of such recurrences are asymptotic to a linear
recurrence with constant coefficients. Specifically, our theorem is:
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Theorem 14. Let the sequence {xy}n>0 be defined by initial values xo,
.., Tp—1 and by (6.1) for n > 0. Suppose also that there are numbers
ap, . ..,ap—1 such that

o0

> ar — apg| < 0, 0<r<p-—L
n=0

Put

Suppose further that the roots of the characteristic equation
(6.4) P — ap_ltpil — ap_gtp72 —v—ap=0

are distinct and all on the unit circle, with values o, ..., op—1. Then there
exist complex numbers cy, . ..,cp,—1 such that

(6.5)

Proof. Define

ap—1 Ap—2 ai ag
1 0 0 O
M — 0 1 0 O
0 0 1 0
By the correspondence between polynomials and companion matrices, the
eigenvalues of M are aq,...,qp, so that M is diagonalizable. For n > 1,
define
ap—1p—1 Qn—-1p-2 --.- (ap-11 Gn-10
1 0 e 0 0
D, = 0 1 e 0 0
0 0 ces 1 0

Thus the matrices M and D,, satisfy the conditions of Theorem 4. From
(6.1) it follows that

Tn+p—1 Tp—1
Tn4p—2 ﬁ D Tp—2
: = Ji
: j=1

Tn i)
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Let F have the same meaning as in Theorem 4. Part (i) then gives that

Ln+p—1 Tp—1
Tn+p—2 Tp—2
—FM" ) =0 (en).
Tn i)

(6.5) follows immediately by considering the bottom entry on the left side.
This completes the proof. ([l

The following corollary, proved in [7], is immediate.

Corollary 14. Let the sequence {xy}n>0 be defined by initial values xo,
.oy Tp—1 as well as (6.1) for n > 0. Suppose also that there are numbers
ap, . ..,ap—1 such that

o
Z]ar—am«\<oo, 0<r<p-1.
n=0
Assume that the roots of the characteristic equation
tP — ap_ltpil — ap_ztp72 —r—ap=0
are distinct roots of unity ag, ..., ap—1. Let m be the least positive integer

such that, for all j € {0,1,...,p—1}, of' = 1. Then, for0<j<m-—1, the
subsequence {Tmn+j}oe, converges. Set lj = limp_oc Tpm+j, for integers
J > 0. Then the (periodic) sequence {l;} satisfies the recurrence relation

p—1
ln—i—p = E arlpyr,
r=0

and thus there exist constants cg,- - ,cp—1 such that
p—1
I, = Z cal
i=0

7. CONCLUSION

We have studied convergent subsequences of approximants of complex
continued fractions and generalizations. There is an interesting pattern of
relationships between the limits and asymptotics of subsequences and the
modified approximants of the original sequence. This suggests the general
question of in which other situations do similar patterns of relationships
exist? In section 2, it was shown that (at least some of) this behavour
extends to the setting of products of invertible elements in Banach algebras.
From of [3] it is clear that there are some similar results available in the
setting of topological groups. But more generally, are there other classes of
sequences that diverge by oscillation, but for which “nice” asymptotics for
the sequences exist thus enabling the computation of the sequential closure?
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Even more generally, when “nice” asymptotics do not exist, is the sequential
closure non-trivial and interesting or useful?
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