
SOME MORE IDENTITIES OF KANADE–RUSSELL TYPE

DERIVED USING ROSENGREN’S METHOD

JAMES MC LAUGHLIN

Abstract. In the present paper we consider some variations and gen-
eralizations of the multi-sum to single-sum transformation recently used
by Rosengren in his proof of the Kanade–Russell identities.

These general transformations are then used to prove a number of
identities equating multi-sums and infinite products or multi-sums and
infinite product × a false theta series. Examples include the following:

∞∑
j,k,p,r=0

(−1)j+kq(2j+k−p+r)2/2+k(k+4)/2+3j−p/2+3r/2(−q; q)r
(q2; q2) j(q; q)k(q; q)p(q; q)r

= 2

(
−q; q2

)
∞
(
−q2,−q14, q16; q16

)
∞

(q; q)∞
.

Let

Q(i, j, k, l, p) :=
1

2
(i+ 6j + 4k + 2l − p)(i+ 6j + 4k + 2l − p− 1)

+ 2k(k − 1) + l(l − 1) + 3i+ 15j + 14k + 5l − 2p.

Then
∞∑

i,j,k,l,p=0

(−1)l+kqQ(i,j,k,l,p)

(q; q) i (q6; q6) j (q4; q4) k (q2; q2) l(q; q)p

=
2(−q; q)2∞

q (q3; q6)∞ (q4; q4)∞

(
1 +

∞∑
r=1

(
q9r

2+6r − q9r
2−6r

))
.

∞∑
j,k,p=0

(−1)k
q(3j+2k−p)(3j+2k−p−1)/2+k(k−1)−p+6j+6k

(q3; q3)j(q2; q2)k(q; q)p

=
(−1; q)∞(q18; q18)∞
(q3; q3)∞(q9; q18)∞

.

1. Introduction

In the present paper we consider some variations and generalizations of
the multi-sum to single-sum transformation used by Rosengren [22] in his
proof of the Kanade–Russell identities.
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These identities were conjectured by Kanade and Russell in [13], and
were the result of a search conducted by them for Rogers–Ramanujan-type

identities related to level 2 characters of A
(2)
9 . They may be concisely stated

using the notation of Rosengren [22]. Define

F (u, v, w) :=
∞∑

i,j,k=0

(−1)kq3k(k−1)+(i+2j+3k)(i+2j+3k−1)uivjwk

(q; q)i(q4; q4)j(q6; q6)k
. (1.1)

The identities conjectured by Kanade and Russell may be stated as follows:

F (q, 1, q3) =
(q3; q12)∞
(q, q2; q4)∞

, (1.2)

F (q2, q4, q9) =
(q9; q12)∞

(q2, q3; q4)∞
, (1.3)

F (q4, q6, q15) =
1

(q4, q5, q6, q7, q8; q12)∞
, (1.4)

F (q, q6, q9) =
1

(q, q4, q6, q8, q11; q12)∞
, (1.5)

F (q2, q2, q9) =
(q6; q12)∞

(q2, q3, q4; q6)∞
, (1.6)

F (q3, q5, q12) =
1

(q3; q4)∞(q4, q5; q12)∞
, (1.7)

F (q, q3, q6) =
1

(q; q4)∞(q4, q11; q12)∞
, (1.8)

F (q, q, q6) =
1

(q3; q4)∞(q, q8; q12)∞
, (1.9)

F (q2, q−1, q6) =
1

(q; q4)∞(q7, q8; q12)∞
. (1.10)

Kanade and Russell [13] also gave a combinatorial interpretation of each
of these analytic identities in terms of integer partitions. Kurşungöz [16]
gave analytic sum sides (generating functions) for six of the Kanade–Russell
conjectures. Identities (1.2) - (1.6) were proved by Bringmann, Jennings–
Shaffer and Mahlburg in [7], where they also proved two other conjectured
identities of Kanade and Russell from [12].

A number of similar identities are stated elsewhere. Possibly two of the
most widely known are the Capparelli identities, which were stated by Cap-
parelli as conjectures in his thesis [8], not as analytic identities but as com-
binatorial identities involving certain types of restricted integer partitions.
The first identity was first proved by Andrews [3], and Lie theoretic proofs
of both conjectures were given by Tamba and Xie [28] and by Capparelli [9].
It is worth noting that the Capparelli identities arose from a study of level 3

standard modules for A
(2)
2 , and many of the other identities mentioned here

also arose through connections with affine Lie algebras.
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Analytic versions of both Capparelli identities first appeared in the pa-
per by Kanade and Russell [13], and were also given shortly afterwards by
Kurşungöz [15], where they were derived independently by different meth-
ods, and with a slightly different sum side for the first identity. The versions
stated by Kanade and Russell [13] were the following:

∞∑
i,j=0

q2i
2+6ij+6j2

(q; q)i (q3; q3)j
=

1

(q2, q3, q9, q10; q12)∞
,

∞∑
i,j,k,l=0

q
3(i+j+k+2l)(i+j+k+2l−1)

2
+3i+5j+

3j(j−1)
2

+k+
3k(k−1)

2
+3l

(q3; q3)i (q3; q3)j (q3; q3)k (q6; q6)l

=

∞∑
i,j=0

q2i
2+6ij+6j2+i

(q; q)i (q3; q3)j
+
∞∑

i,j=0

q2i
2+6ij+6j2+4i+6j+1

(q; q)i (q3; q3)j

=
(
−q,−q3,−q5,−q6; q6

)
∞ .

More recently, Takigiku and Tsuchioka [26] give similar series - product
identities for the principal characters of the level 5 and 7 standard modules

of the affine Lie algebra A
(2)
2 . An example of one of their identities from [26]

is the following:

∞∑
i,j,k,`=0

(−1)k
q(

i
2)+2(j2)+2(k2)+8(`

2)+ij+ik+2i`+4jk+4j`+4k`+i+3j+k+6`

(q; q)i(q2; q2)j(q2; q2)k(q4; q4)l

=
1

[q2, q3, q4, q5, q6, q7; q20]∞
. (1.11)

Here the notation (employed by the authors in [26])

[x; q]∞ = (x, q/x; q)∞, [a1, · · · , ak; q]∞ = [a1; q]∞ · · · [ak; q]∞

is used. In [27], Takigiku and Tsuchioka also prove three conjectures of
Nandi (which arose from his study of the standard modules level 4 for the

affine Lie algebra A
(2)
2 using a twisted vertex operator construction) from

his thesis. Here is an example of one of those modulo 14 identities:

∞∑
i,k=0

(−1)k
q(

i
2)+2(k2)+2ik+i+k

(q; q)i(q2; q2)k
=

1

[q2, q3, q4; q14]∞
. (1.12)

In [6], Berkovich and Uncu prove the following identity:

∞∑
m,n=0

q2m
2+6mn+6n2−2m−3n

(q; q)m(q3; q3)n

= (−q2,−q4; q6)∞(−q3; q3)∞ + (−q,−q5; q6)∞(−q3; q3)∞. (1.13)

Note that the right side is the sum of the products in the analytic versions
of the Capparelli identities [8].
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Kanade and Russell have continued the study of the affine Lie algebra

A
(2)
2 in their recent (2022) paper [14], where their results include producing

Andrews–Gordon-type identities for standard modules levels 2 through 7.
An example of one of their identities from that paper is the following (related
to level 2):∑
j1≥j3≥0

(−1)j1+j3qj
2
3−j3+(j12 )+(j1−j3

2 )(−q; q)j3
(−q; q)j1(q; q)j1−j3(q; q)2j3

=
(q2, q3, q5; q5)∞(q, q9; q10)∞

(q; q)∞
.

(1.14)
Since several authors refer to the series side of identities of this type as

“Andrews–Gordon type series”, we recall the theorem of Andrews [1], con-
taining the referenced series, and which gave a generalization of the Rogers–
Ramanujan identities.

Theorem 1.1 (Andrews, [1]). Let 1 ≤ i ≤ k be integers; then

∞∑
n1,··· ,nk−1=0

qN
2
1+···+N2

k−1+Ni+···+Nk−1

(q; q)n1 · · · (q; q)nk−1

=
(qi, q2k+1−i, q2k+1; q2k+1)∞

(q; q)∞
. (1.15)

where Nj = nj + · · ·+ nk−1.

Note that the Rogers–Ramanujan identities follow from the cases k = 2
and i = 1, 2. One observable difference between the identities listed above
and (1.15) is the presence of q-products with different moduli in the de-
nominators of the series sides in the former. The series side in some of the
series-product identities in Section 4 of the present paper are like the series
in (1.15), in that the moduli in the q-products in the denominators are all
the same (see Example 7).

In the present paper we prove a number of general transformations from
a multi-sum to a single sum, such as

∞∑
i,p,j1,...jv ,k1,...,ks=0

(−1)i+p+n1j1+···+nvjv+(m1+1)k1+(ms+1)ks

×
ql(l−1)/2+

∑s
t=1 mtkt(kt−1)/2uidp

∏s
t=1 a

kt
t

∏v
t=1 c

jt
t

(q; q)t(q; q)p
∏v

t=1(q
nt ; qnt)jt

∏s
t=1(q

mt ; qmt)kt

=
(a1d

m1 ; qm1)∞ . . . (asd
ms ; qms)∞(qd, 1/d; q)∞

(c1dn1 ; qn1)∞ . . . (cvdnv ; qnv)∞(ud; q)∞

×
∞∑
k=0

(c1d
n1 ; qn1)k . . . (cvd

nv ; qnv)k(ud; q)k
(a1dm1 ; qm1)k . . . (asdms ; qms)k(q; q)k

(
1

d

)k

,

where

l = i− p+ n1j1 + · · ·+ nvjv +m1k1 + · · ·+msks

and the integer parameters m1, . . . ,ms, n1, . . . , nv satisfy

m1 + · · ·+ms = n1 + · · ·+ nv.



SOME MORE IDENTITIES OF KANADE–RUSSELL TYPE 5

These general transformations are then used to prove some multi-sum to
infinite product (or in some cases, infinite product × false theta series)
identities. Several of these identities have the flavour of the Kanade–Russell
identities. Some examples are the following.

∞∑
j,k,p,r=0

(−1)j+kq(2j+k−p+r)2/2+k(k+4)/2+3j−p/2+3r/2(−q; q)r
(q2; q2) j(q; q)k(q; q)p(q; q)r

= 2

(
−q; q2

)
∞
(
−q2,−q14, q16; q16

)
∞

(q; q)∞
.

Let

Q(i, j, k, l, p) :=
1

2
(i+ 6j + 4k + 2l − p)(i+ 6j + 4k + 2l − p− 1)

+ 2k(k − 1) + l(l − 1) + 3i+ 15j + 14k + 5l − 2p.

Then

∞∑
i,j,k,l,p=0

(−1)l+kqQ(i,j,k,l,p)

(q; q) i (q6; q6) j (q4; q4) k (q2; q2) l(q; q)p

=
2(−q; q)2∞

q (q3; q6)∞ (q4; q4)∞

(
1 +

∞∑
r=1

(
q9r

2+6r − q9r2−6r
))

.

∞∑
j,k,p=0

(−1)k
q(3j+2k−p)(3j+2k−p−1)/2+k(k−1)−p+6j+6k

(q3; q3)j(q2; q2)k(q; q)p

=
(−1; q)∞(q18; q18)∞
(q3; q3)∞(q9; q18)∞

.

2. Some General Transformations

Before stating and proving some general transformations, we recall the
statement of the q-binomial theorem and two special cases of it (see, for
example, [4], equations (2.2.1), (2.2.5) and (2.2.6)).

∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

. (2.1)

∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
, |z| < 1, |q| < 1. (2.2)

∞∑
n=0

(−z)nqn(n−1)/2

(q; q)n
= (z; q)∞, |q| < 1. (2.3)

The following is a special case of a statement in [10, pages 125 - 127],
which follows as a result of applying Cauchy’s residue theorem.
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Proposition 2.1 ([10], pages 125 - 127). Let |q| < 1 and define

P (z) :=
(a1z, . . . , aAz, qz, 1/z; q)∞
(c1z, . . . , cAz, uz, d/z; q)∞

. (2.4)

Let the contour K be a deformation of the positively oriented unit circle
so that the poles of 1/(c1z, . . . , cAz, uz; q)∞ lie outside K and the poles of
1/(d/z; q)∞ lie inside K.

Let

I :=

∫
K
P (z)

dz

2πiz
. (2.5)

If |1/d| < 1, then

I =
(a1d, . . . , aAd, qd, 1/d; q)∞

(q, c1d, . . . , cAd, ud; q)∞

∞∑
k=0

(c1d, . . . , cAd, ud; q)k
(a1d, . . . , aAd, q; q)k

(
1

d

)k

. (2.6)

Sketch of proof (see [10], pages 125 - 127 for details). Consider the region
whose outer boundary is the curve K and whose inner boundary is the
circle CN defined by the equation |z| = δ|q|N with N sufficiently large so
that the circle defined by this equation is entirely inside the curve K. The
parameter δ is chosen so that δ|q|N 6= d|q|n for any integer n (so that the
circle |z| = δ|q|N does not pass through any of the poles of 1/(d/z; q)∞, and
this is also true if the integer N in the equation |z| = δ|q|N is replaced with
any integer m > N).

It can be shown (see [10, page 126] for details) that

lim
N→∞

∫
CN

P (z)
dz

2πiz
= 0 (2.7)

The residue at z = dqn of P (z)/z, after some simplification, is

(a1d, . . . , aAd, qd, 1/d; q)∞
(q, c1d, . . . , cAd, ud; q)∞

(c1d, . . . , cAd, ud; q)n
(a1d, . . . , aAd, dq; q)n

(dq; q)n
(q; q)n

(
1

d

)n

.

Then (2.6) follows from applying the Cauchy residue theorem in conjunc-
tion with (2.7). �

Next, continuing as Rosengren did, we can use the Cauchy integral for-
mula to treat (q; q)∞I as being equal to the constant term in the Laurent
series expansion about 0 of (q; q)∞P (z), and thus get the result in the next
theorem.

Theorem 2.1. Let max{|c1d|, |c2d|, . . . , |cAd|, |ud|, |1/d|} < 1 and let I be
as at (2.5). Then

(q; q)∞I =

∞∑
i,p,j1,...jA,k1,...,kA=0

(−1)i+p+j1+···+jA
ql(l−1)/2+

∑A
t=1 kt(kt−1)/2uidp

∏A
t=1 a

kt
t c

jt
t

(q; q)i(q; q)p
∏A

t=1(q; q)jt(q; q)kt
,

(2.8)
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where
l = i− p+ j1 + · · ·+ jA + k1 + · · ·+ kA.

Proof. By (2.4), (2.2), (2.3) and (3.2)

(q; q)∞P (z) =

∞∑
k1=0

(−a1z)k1qk1(k1−1)/2

(q; q)k1
· · ·

∞∑
kA=0

(−aAz)kAqkA(kA−1)/2

(q; q)kA

×
∞∑

l=−∞
ql(l−1)/2(−1/z)l

∞∑
j1=0

(c1z)
j1

(q; q)j1
· · ·

∞∑
jA=0

(cAz)
jA

(q; q)jA

∞∑
i=0

(uz)i

(q; q)i

∞∑
p=0

(d/z)p

(q; q)p
.

The exponent of z in this multi-sum is

k1 + · · ·+ kA + j1 + · · ·+ jA + i− p− l,
and this exponent is zero if l has the value stated in the theorem, and the
result follows. �

Upon equating the expressions for I in the two theorems, we get a multi-
sum to single sum identity.

Theorem 2.2. Let max{|c1d|, |c2d|, . . . , |cAd|, |ud|, |1/d|} < 1. Then

∞∑
i,p,j1,...jA,k1,...,kA=0

(−1)i+p+j1+···+jA
ql(l−1)/2+

∑A
t=1 kt(kt−1)/2uidp

∏A
t=1 a

kt
t c

jt
t

(q; q)i(q; q)p
∏A

t=1(q; q)jt(q; q)kt

=
(a1d, . . . , aAd, qd, 1/d; q)∞

(c1d, . . . , cAd, ud; q)∞

∞∑
k=0

(c1d, . . . , cAd, ud; q)k
(a1d, . . . , aAd, q; q)k

(
1

d

)k

, (2.9)

where
l = i− p+ j1 + · · ·+ jA + k1 + · · ·+ kA.

Remark: If the value of some af is the same as the value of one of the
cg or of u, then the terms involving this common value cancel on the right
side of (2.9) cancel, so this right side becomes independent of this common
value. Thus the left side is also independent of this common value, indeed
the coefficient of any non-zero power of it being identically zero. To see
this, supposes v := af = cg (or u). Make a change of summation variables
(kf , jg)→ (kf , r), where r = kf + jg or jg = r − kf . The coefficient of vr is
a nested sum over the remaining variables, but it can be seen that the sum
over kf is

r∑
kf=0

(−1)kf qkf (kf−1)/2

(q; q)kf (q; q)r−kf

=
1

(q; q)r

r∑
kf=0

(−1)kf qkf (kf−1)/2
[
r
kf

]
=

{
1, if r = 0

0, otherwise,
(2.10)

by the z = 1 case of (3.1). Thus the only value of r = kf +jg that contributes
a non-zero term to the multi-sum is r = 0. The upshot of this is that if some
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af is set equal to some cg or u in (2.9), then these terms and the sums over
the corresponding summation variables kf and jg may be eliminated from
the multi-sum. A similar conclusion could have been reached by just letting
v → 0, which would not have interfered with the requirements of the contour
integral.

By similar reasoning to that used in the proof of the previous theorem, it
is easy to give a generalization of the result in that theorem.

Theorem 2.3. Let max{|c1dn1 |, |c2dn2 |, . . . , |cvdnv |, |ud|, |1/d|} < 1. Let
m1,. . . , ms, n1, . . . ,nv be integers such that

m1 + · · ·+ms = n1 + · · ·+ nv.

Then

∞∑
i,p,j1,...jv ,k1,...,ks=0

(−1)i+p+n1j1+···+nvjv+(m1+1)k1+(ms+1)ks

×
ql(l−1)/2+

∑s
t=1 mtkt(kt−1)/2uidp

∏s
t=1 a

kt
v

∏v
t=1 c

jt
t

(q; q)t(q; q)p
∏v

t=1(q
nt ; qnt)jt

∏s
t=1(q

mt ; qmt)kt

=
(a1d

m1 ; qm1)∞ . . . (asd
ms ; qms)∞(qd, 1/d; q)∞

(c1dn1 ; qn1)∞ . . . (cvdnv ; qnv)∞(ud; q)∞
∞∑
k=0

(c1d
n1 ; qn1)k . . . (cvd

nv ; qnv)k(ud; q)k
(a1dm1 ; qm1)k . . . (asdms ; qms)k(q; q)k

(
1

d

)k

, (2.11)

where

l = i− p+ n1j1 + · · ·+ nvjv +m1k1 + · · ·+msks.

Proof. Both sides of (2.11) come from consideration of the product

P2(z) :=
(a1z

m1 ; qm1)∞ . . . (asz
ms ; qms)∞(qz, 1/z; q)∞

(c1zn1 ; qn1)∞ . . . (cvznv ; qnv)∞(uz, d/z; q)∞
. (2.12)

The left side is the constant term in the series expansion of (q; q)∞P2(z).
The right side comes from applying Theorem 2.1 to P2(z), employing the
elementary identities (where ζ = exp(2πi/r) is a primitive r-th root of unity)

(ezr; qr)∞ =
r−1∏
i=0

( r
√
eζiz; q)∞,

(ezr; qr)k =
r−1∏
i=0

( r
√
eζiz; q)k

first to P2(z) to write the all infinite products in the form (x; q)∞ so that
Theorem 2.1 can be applied, and then to recombine finite- and infinite prod-
ucts on the right side of (2.6). �

Another variation is necessary in order to handle identities like the Kanade
–Russell identities.
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Theorem 2.4. Let max{|c1dn1 |, |c2dn2 |, . . . , |cvdnv |, |ud|, |1/d|} < 1. Let
m1,. . . , ms, n1, . . . ,nv and r > 1 be integers such that

m1 + · · ·+ms = n1 + · · ·+ nv + r − 1.

Then

∞∑
i,p,j1,...jv ,k1,...,ks=0

(−1)i+p+n1j1+···+nvjv+(m1+1)k1+(ms+1)ks

×
qrl(l−1)/2+

∑s
t=1 rmtkt(kt−1)/2uidp

∏s
t=1 a

kt
t

∏v
t=1 c

jt
t

(q; q)i(qr; qr)p
∏v

t=1(q
rnt ; qrnt)jt

∏s
t=1(q

rmt ; qrmt)kt

=
(a1d

m1 ; qrm1)∞ . . . (asd
ms ; qrms)∞(qrd, 1/d; qr)∞

(c1dn1 ; qrn1)∞ . . . (cvdnv ; qrnv)∞(ud; q)∞
∞∑
k=0

(c1d
n1 ; qrn1)k . . . (cvd

nv ; qrnv)k(ud; q)kr
(a1dm1 ; qrm1)k . . . (asdms ; qrms)k(qr; qr)k

(
1

d

)k

, (2.13)

where

l = i− p+ n1j1 + · · ·+ nvjv +m1k1 + · · ·+msks.

Proof. As in the previous theorem, each side of (2.13) comes from consider-
ation of an infinite product, this time

P3(z) :=
(a1z

m1 ; qrm1)∞ . . . (asz
ms ; qrms)∞(qrz, 1/z; qr)∞

(c1zn1 ; qrn1)∞ . . . (cvznv ; qrnv)∞(uz; q)∞(d/z; qr)∞
.

The left side is the constant term in the series expansion of (q; q)∞P3(z). The
proof of the right side is similar to the proof of the right side in Theorem
2.3, except with qr instead of q. Also, in P3(z), (uz; q)∞ is written as
(uz, uzq, . . . , uzqr−1; qr)∞, in the infinite product in front of the series on
the right side, (ud, udq, . . . , udqr−1; qr)∞ is written as (ud; q)∞, and in the
series on the right, (ud, udq, . . . , udqr−1; qr)k is written as (ud; q)kr. �

Remark: Even though Theorem 2.4 is a generalization/extension of the
previous two theorems, we find it simpler to build up to Theorem 2.4 through
proving, in turn, Theorems 2.2 and 2.3, rather than trying to prove Theorem
2.4 from scratch.

We consider one further variation, where (ez; q)∞/(fz; q)∞ is expanded
using the standard q-binomial theorem (2.1),

(ez; q)∞
(fz; q)∞

=

∞∑
n=0

(e/f ; q)n
(q; q)n

(fz)n, (2.14)

rather than using the special cases (2.2) and (2.3) to expand the numerator
and denominator separately.

Let

P4(z) :=
(a1z, . . . , aAz, e1z, . . . , eBz, qz, 1/z; q)∞
(c1z, . . . , cAz, f1z, . . . , fBz, uz, d/z; q)∞

. (2.15)
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Let the contour K be a deformation of the positively oriented unit circle
so that the poles of 1/(c1z, . . . , cAz, f1z, . . . , fBz, uz; q)∞ lie outside K and
the poles of 1/(d/z; q)∞ lie inside K.

Let

I4 :=

∫
K
P4(z)

dz

2πiz
. (2.16)

Let

Theorem 2.5. Let max{|c1d|, . . . , |cAd|, |f1d|, . . . , |fBd|, |ud|, |1/d|} < 1 and
let I4 be as at (2.16). Then

(q; q)∞I4 =
∞∑

i,p,j1,...jA,k1,...,kA,r1,...rB=0

(−1)i+p+j1+···+jA+r1+···+rB

×
ql(l−1)/2+

∑A
t=1 kt(kt−1)/2uidp

∏A
t=1 a

kt
t c

jt
t

∏B
t=1(et/ft; q)rtf

rt
t

(q; q)i(q; q)p
∏A

t=1(q; q)jt(q; q)kt
∏B

t=1(q; q)rt
, (2.17)

where

l = i− p+ j1 + · · ·+ jA + k1 + · · ·+ kA + r1 + · · ·+ rB.

Proof. The proof is similar to the proof of Theorem 2.1, except that there
is an extra set of series expansions,

∞∑
r1=0

(e1/f1; q)r1(f1z)
r1

(q; q)r1
· · ·

∞∑
rB=0

(eB/fB; q)rB (fBz)
rB

(q; q)rB
.

The details are omitted. �

The equivalent of Theorem 2.2 follows easily, by combining the result in
the previous theorem with a slightly amended version of Theorem 2.1.

Theorem 2.6. Let max{|c1d|, . . . , |cAd|, |f1d|, . . . , |fBd|, |ud|, |1/d|} < 1.
Then

∞∑
i,p,j1,...jA,k1,...,kA,r1,...rB=0

(−1)i+p+j1+···+jA+r1+···+rB

×
ql(l−1)/2+

∑A
t=1 kt(kt−1)/2uidp

∏A
t=1 a

kt
t c

jt
t

∏B
t=1(et/ft; q)rtf

rt
t

(q; q)i(q; q)p
∏A

t=1(q; q)jt(q; q)kt
∏B

t=1(q; q)rt

=
(a1d, . . . , aAd, e1d, . . . , eBd, qd, 1/d; q)∞

(c1d, . . . , cAd, f1d, . . . , fBd, ud; q)∞

×
∞∑
k=0

(c1d, . . . , cAd, f1d, . . . , fBd, ud; q)k
(a1d, . . . , aAd, e1d, . . . , eBd, q; q)k

(
1

d

)k

, (2.18)

where

l = i− p+ j1 + · · ·+ jA + k1 + · · ·+ kA + r1 + · · ·+ rB.
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Proof. The proof is essentially the same as that of Theorem 2.2, so the
details are omitted. �

It is also possible to give slight generalizations of Theorem 2.6, as was done
with Theorem 2.2 in Theorems 2.3 and 2.4. We state one such generalization
and give an application.

Theorem 2.7. Let m1,. . . , ms, n1, . . . ,nv be positive integers such that

m1 + · · ·+ms = n1 + · · ·+ nv.

Let

max{|c1dn1 |, |c2dn2 |, . . . , |cvdnv |, |f1d|, . . . , |fBd|, |ud|, |1/d|} < 1.

Then

∞∑
i,p,j1,...jv ,k1,...,ks=0

(−1)i+p+n1j1+···+nvjv+(m1+1)k1+(ms+1)ks+r1+···+rB

×
ql(l−1)/2+

∑s
t=1 mtkt(kt−1)/2uidp

∏s
t=1 a

kt
t

∏v
t=1 c

jt
t

∏B
t=1(et/ft; q)rtf

rt
t

(q; q)i(q; q)p
∏v

t=1(q
nt ; qnt)jt

∏s
t=1(q

mt ; qmt)kt
∏B

t=1(q; q)rt

=
(a1d

m1 ; qm1)∞ . . . (asd
ms ; qms)∞(qd, 1/d; q)∞(e1d, . . . , eBd; q)∞

(c1dn1 ; qn1)∞ . . . (cvdnv ; qnv)∞(ud; q)∞(f1d, . . . , fBd; q)∞
∞∑
k=0

(c1d
n1 ; qn1)k . . . (cvd

nv ; qnv)k(ud; q)k(f1d, . . . , fBd; q)k
(a1dm1 ; qm1)k . . . (asdms ; qms)k(q; q)k(e1d, . . . , eBd; q)k

(
1

d

)k

, (2.19)

where

l = i− p+ n1j1 + · · ·+ nvjv +m1k1 + · · ·+msks + r1 + · · ·+ rB.

Proof. The proof is essentially the same as the proof of Theorem 2.3, except
that instead of considering the product P2(z) at (2.12), each side of (2.19)
arises from consideration of the product

P5(z) := P2(z)
(e1z, . . . , eBz; q)∞
(f1z, . . . , fBz; q)∞

. (2.20)

The details are omitted. �

3. Some Examples That Follow from the general results

Before deriving some consequences of the transformations in the previous
sections, we recall some other well-known series product identities.

N∑
n=0

[
N
n

]
(−z)nqn(n−1)/2 = (z; q)N , (3.1)

∞∑
n=−∞

(−1/z)nqn(n−1)/2 = (1/z, zq, q; q)∞. (3.2)
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∞∑
k=0

(A,B,C; q)k
(D,E, q; q)k

(
DE

ABC

)k

=
(E/A,DE/BC; q)∞
(E,DE/ABC; q)∞

∞∑
k=0

(A,D/B,D/C; q)k
(D,DE/BC, q; q)k

(
E

A

)k

. (3.3)

∞∑
k=0

(A,B; q)k
(Aq/B, q; q)k

(
−q
B

)k

=
(−q; q)∞(Aq,Aq2/B2; q2)∞

(Aq/B,−q/B; q)∞
. (3.4)

Identities (3.1) (a special case of the q-binomial theorem) and (3.2) (the
Jacobi triple product identity) may be found in the book of Andrews [4],
being respectively, equations (3.3.6) and (2.2.10). Identities (3.3) - (3.4)
above may be found in the book by Gasper and Rahman [10], being respec-
tively, equations (III.9) in Appendix III and (II.9) in Appendix II.

It can be seen from the general transformations in the previous section
that multi-sum- to single-sum identities are very plentiful, so instead we
would like to give some multi-sum to infinite product/infinite product ×
false theta series identities. We give a number of applications of Theorems
2.3 and (2.4), some of which have something of the flavor of some of the
Kanade–Russell identities. We need the following identities [18, Eqs. (3.11)
- (3.13)]:

∞∑
n=1

(q; q2)nq
n

(−q; q2)n+1
= 1 +

∞∑
r=1

q8r
2
(q4r − q−4r), (3.5)

∞∑
n=0

(−q2; q2)nqn

(q2; q2)n+1
=

(−q; q2)∞
(q2; q2)∞

(−q2,−q14, q16; q16)∞, (3.6)

∞∑
n=0

(q3; q3)n(−q)n

(q2; q2)n+1(q; q)n
=

(q; q2)∞
(q2; q2)∞

(q18; q18)∞
(q9; q18)∞

. (3.7)

To avoid repetition, we state here that the summation variables j1 and
k1 arising from the various multi-sum to single-sum transformations stated
above are replaced with j and k in the following examples (for the purpose
of making the identities easier to read).

Example 1. If |q| < 1, then

∞∑
i,j,k,p=0

(−1)j+k q
(i+2j+2k−p)(1+2j+2k−p−1)/2+k(k−1)+2i−p+3j+5k

(q; q)i(q2; q2)j(q2; q2)k(q; q)p

=
(−1; q2)∞

(q; q)∞

(
1 +

∞∑
r=1

q8r
2
(q4r − q−4r)

)
. (3.8)
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Proof. In (2.11), set s = t = 1, m1 = n1 = 2, a1 = q5, c1 = −q3, d = −1/q
and u = −q2, so that the left side of (2.11) becomes the left side of (3.8).
That the right side of (2.11) becomes the right side of (3.8) follows upon
making the indicated substitutions, effecting some elementary q-product ma-
nipulations, and noting that the right side of (3.5) is invariant under the
substitution q → −q (and hence so also is the left side). �

The next example illustrates how one single-series-to-product identity can
give rise to more than one multi-sum identity.

Example 2. If |q| < 1, then

∞∑
j,k,p=0

(−1)k
q(2j+k−p)(2j+k−p−1)+k(k−1)−p+6j+5k

(q4; q4)j(q2; q2)k(q2; q2)p

=
(−q; q2)∞(−q2,−q14, q16; q16)∞

(−q2; q2)∞(q4; q4)∞
; (3.9)

∞∑
i,j,k,p=0

(−1)j+k q
(i+2j+2k−p)(1+2j+2k−p−1)/2+k(k−1)+2i−p+4j+6k

(q; q)i(q2; q2)j(q2; q2)k(q; q)p

= 2
(−q; q2)∞(−q2,−q14, q16; q16)∞

(q; q)∞
. (3.10)

Proof. For (3.9), in (2.13) set r = 2, s = t = 1, m1 = 1, n1 = 2, a1 = −q5,
c1 = q6, d = −1/q and u = 0 (so that the sum over i vanishes). Then (3.9)
follows almost directly, with all that is necessary being to simplify the result-
ing series on the right side with some elementary q-product manipulations,
and to then employ (3.6) (with q replaced with −q).

For (3.10), in (2.11) set s = t = 1, m1 = n1 = 2, a1 = q6, c1 = −q4,
d = −1/q and u = −q2. The result follows once again after employing (3.6)
(again with q replaced with −q). �

Example 3. If |q| < 1, then

∞∑
j,k,p=0

(−1)k
q(3j+2k−p)(3j+2k−p−1)/2+k(k−1)−p+6j+6k

(q3; q3)j(q2; q2)k(q; q)p

=
(−1; q)∞(q18; q18)∞
(q3; q3)∞(q9; q18)∞

. (3.11)

Proof. In Theorem 2.3, let s = 2 with m1 = 2 and m1 = 1, let v = 1 with
n1 = 3, and set a2 = u, so that by the remarks preceding Theorem 2.3,
a2, u and the sums over i and k2 vanish from the multi-sum. Next, set
a1 = q6, c1 = −q6 and d = −1/q, replace j1 with j and k1 with k, so that
l = 3j + 2k − p and the left side of (2.11) becomes the left side of (3.11).
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The right side of (2.11) becomes

(q4; q2)∞(−1,−q; q)∞
(q3; q3)∞

∞∑
k=0

(q3; q3)k(−q)k

(q4; q2)k(q; q)k
,

and the result follows from (3.7), after some simplification �

Before proving the next multi-sum identity, it is necessary to prove the
false theta identity in the following lemma.

Lemma 3.1. If |q| < 1, then
∞∑
r=0

(−1)r
(
q3; q6

)
rq

2r

(q2; q4) r+1 (q; q2) r
= 1 +

∞∑
r=1

q9r
2 (
q6r − q−6r

)
. (3.12)

Proof. This follows from inserting Slater’s Bailey pair ([24, page 467]) with
respect to a = q

βn(q) =
(q3/2; q3)nq

n

(q2; q)2n(q1/2; q)n
,

α3r−1(q) = (−1)rq(9r
2−6r)/2,

α3r(q) = (−1)rq(9r
2+6r)/2,

α3r+1(q) = (−1)r+1(q(9r
2+6r)/2 − q(9r2+12r+3)/2)

into the particular case of the Bailey transform (with respect to a = q)
∞∑
n=0

(aq; q2)n (−1)n βn =
1

(aq2; q2)∞(−1; q)∞

∞∑
n=0

(−1)n αn, (3.13)

then making the replacement q → q2, and finally multiplying both sides by
1/(1− q2). Note that the sum over the (−1)n αn on the right side of (3.13)
(with the replacement q → q2) leads to twice the sum on the right side
of (3.12). Then with all the indicated changes, the factor multiplying the
series on the right side of (3.12) becomes 2/(q2; q4)∞(−1; q2)∞ = 1, giving
the result. �

Example 4. Let

Q(i, j, k, l, p) :=
1

2
(i+ 6j + 4k + 2l − p)(i+ 6j + 4k + 2l − p− 1)

+ 2k(k − 1) + l(l − 1) + 3i+ 15j + 14k + 5l − 2p.

If |q| < 1, then

∞∑
i,j,k,l,p=0

(−1)l+kqQ(i,j,k,l,p)

(q; q) i (q6; q6) j (q4; q4) k (q2; q2) l(q; q)p

=
2(−q; q)2∞

q (q3; q6)∞ (q4; q4)∞

(
1 +

∞∑
r=1

(
q9r

2+6r − q9r2−6r
))

. (3.14)
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Proof. In (2.11), let s = 2 with m1 = 4 and m2 = 2, t = 1 with n1 = 6.
Set a1 = q14, a2 = q5, c1 = q15, d = −1/q2 and u = −q3. After making the
replacements k1 → k, k2 → l and j1 → j, the left side of (2.11) becomes the
left side of (3.14).

The right side of (2.11) transforms (without simplification) to

(q6; q4)∞(q; q2)∞(−1/q,−q2; q)∞
(q3; q6)∞(q; q)∞

∞∑
k=0

(q3; q6)k(q; q)k(−q2)k

(q6; q4)k(q; q2)k(q; q)k
,

which simplifies to the right side of (3.14) upon employing (3.12). �

Many of the details in the following example, a proof of one of the Kanade–
Russell identities, parallel details in the proof of Rosengren [22], as might
be expected, but we include this example to give an application of Theorem
2.4.

Example 5. If |q| < 1, then
∞∑

i,j,k=0

(−1)kq3(k−1)k+(i+2j+3k)(i+2j+3k−1)+i+3k

(q; q)i (q4; q4) j (q6; q6) k
=

(q3; q12)∞
(q, q2; q4)∞

. (3.15)

Proof. In (2.13), set r = 2, s = t = 1, m1 = 3 and n1 = 2 so that l =
i− p+ 2j1 + 3k1 and

∞∑
i,p,j1,k1=0

(−1)i+p q
(i−p+2j1+3k1)(i−p+2j1+3k1−1)+3k1(k1−1)uidpak11 c

j1
1

(q; q)i(q2; q2)p(q4; q4)j1(q6; q6)k1

=
(a1d

3; q6)∞(q2d, 1/d; q2)∞
(c1d2; q4)∞(ud; q)∞

∞∑
k=0

(c1d
2; q4)k(ud, udq; q2)k

(a1d3; q6)k(q2; q2)k

(
1

d

)k

, (3.16)

after writing (ud; q)2k = (ud, udq; q2)k.
Next, write

(c1d
2; q4)k = (

√
c1d,−

√
c1d; q2)k,

(a1d
3; q6)k = ( 3

√
a1d, ω 3

√
a1d, ω

2 3
√
a1d; q2)k

where ω = exp(2πi/3). Next, set c1 = 1, a1 = −q3 and u = −q, so that
after cancelling a factor of (−qd; q2)k, the series on the right side of (3.16)
becomes

∞∑
k=0

(d,−d,−dq2; q2)k
(−ωqd,−ω2qd, q2; q2)k

(
1

d

)k

=
(ω2q,−1; q2)∞

(−ω2qd, 1/d; q2)∞

∞∑
k=0

(−d,−ωq, ω/q; q2)k
(−ωqd,−1, q2; q2)k

(
ω2q
)k
, (3.17)

where the last equality comes from applying (3.3) to the series on the left.
Finally, after making the substitutions c1 = 1, a1 = −q3 and u = −q in

the series on the left of (3.16) and the infinite product on the right side of
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(3.16), let d→ 01, so that the sum over p on the left side of (3.16) is reduced
to the single value p = 0. The sum on the left side of (3.16) becomes the
sum on the right side of (3.15), after a relabelling of summation variables
(j1 → j and k1 → k). The left side of (3.16) simplifies to

(ω2q,−1; q2)∞

∞∑
k=0

(−ωq, ω/q; q2)k
(−1, q2; q2)k

(
ω2q
)k

= (−q2; q2)∞(ωq, ω2q; q4)∞,

(3.18)
after applying (3.4) to the series. This is equivalent to the infinite product
on the right side of (3.15). �

The next example is an illustration of Theorem 2.6. It also provides a
third application of the identity at (3.6) (the first two being (3.9) and (3.10)).
For readability reasons, the exponent of q on the left side of (3.19) has been
slightly rearranged (writing l(l− 1)/2 as l2/2− l/2, where l is as defined at
(2.6)).

Example 6. If |q| < 1, then

∞∑
j,k,p,r=0

(−1)j+kq(2j+k−p+r)2/2+k(k+4)/2+3j−p/2+3r/2(−q; q)r
(q2; q2) j(q; q)k(q; q)p(q; q)r

= 2

(
−q; q2

)
∞
(
−q2,−q14, q16; q16

)
∞

(q; q)∞
. (3.19)

Proof. In (2.19), let s = 2 and v = B = 1. Set m1 = m2 = 1, n1 = 2,
a1 = −q3, c1 = −q4, e1 = q3, f1 = −q2, d = −1/q and let a2 → 0, u → 0
(so that the sums over i and k2 vanish). After replacing j1 with j, k1 with
k and r1 with r, the left side of (2.19) becomes the left side of (3.19).

With the values stated above, the right side of (2.19) becomes

(q2; q)∞(−1,−q; q)∞(−q2; q)∞
(−q2; q2)∞(q; q)∞

∞∑
k=0

(−q2; q2)k(q; q)k
(q2; q)k(q; q)k(−q2; q)k

(−q)k,

which simplifies to the right side of (3.19) upon using (3.6) (with the re-
placement q → −q). �

Remark: We had initially believed the following identities to be new, but
a reviewer of an earlier version of this paper pointed out that they all could
be derived (and with less stringent conditions on the parameters than in the
versions derived from the theorems in the present paper) simply from using
only the q-binomial theorem.

∞∑
i,p=0

(−1)i+p q
(i−p)(i−p−1)/2uidp

(q; q)i(q; q)p
=

(u, qd; q)∞
(ud; q)∞

. (3.20)

1After substituting the right side of (3.17) for the left side in (3.16), and making
the other indicated substitutions, the resulting identity is valid for |qd| < 1, by analytic
continuation.
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∞∑
i,j,k,p=0

(−1)i+j+p q
(i+j+k−p)(i+j+k−p−1)/2+k(k−1)/2ui+kcj+kdp

(q; q)i(q; q)j(q; q)k(q; q)p

=
(c, u, qd; q)∞
(cd, ud; q)∞

. (3.21)

∞∑
i,j,k,p=0

(−1)k+j+p q
(i+j+k−p)(i+j+k−p−1)/2+k(k−1)/2+icj+kdp−i

(q; q)i(q; q)j(q; q)k(q; q)p

=
(−q, qd; q)∞(c/d; q2)∞

(−qd; q)∞(cd; q2)∞
. (3.22)

The following identity, which follows from (2.18), may also be derived
from repeated use of the q-binomial theorem together with some elementary
finite q-product transformations.

∞∑
i,p,r=0

(−1)i+r+p q
(i+r−p)(i+r−p−1)/2(u; q)ru

idpf r

(q; q)i(q; q)p(q; q)r
=

(u, f, qd; q)∞
(fd, ud; q)∞

. (3.23)

4. Multi-sum Identities arising from Identities of
Rogers–Ramanujan–Slater type

Almost all of the series-product identities on the Slater list of identities
[24, 25] have a power of q that is quadratic in the exponent on the series
side. On the other hand, all of the general multi-sum to single-sum trans-
formations like those at (2.9), and elsewhere in the second section of this
paper, have a term (1/d)k on the series side, so that any specialization of
d as a negative power of q will result in a series in which the power of q is
linear in the exponent.

For these reasons, some basic hypergeometric transformation has to be
applied to the single series side of special cases of these general transforma-
tions before they can be used to derive multi-sum expansion for the infinite
products in Slater-type identities.

In this section we consider one such transformation and give several ap-
plications. We start with Watson’s transformation (see [10, page 360, III.18]
or [19, page 33, Eq. (5.10)]), which states that for each positive integer n
there holds

n∑
k=0

1− aq2k

1− a
(a, b, c, h, e, q−n; q)k

(aq/b, aq/c, aq/h, aq/e, aqn+1, q; q)k

(
a2q2+n

bche

)k

=
(aq, aq/he; q)n
(aq/h, aq/e; q)n

n∑
j=0

(aq/bc, h, e, q−n; q)j
(aq/b, aq/c, heq−n/a, q; q)j

qj . (4.1)

Here we have replaced the d usually found in the statement of this trans-
formation with h, to avoid confusion with the use of the parameter d in the
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various general multi-sum to single-sum transformations in section 2. Upon
letting n→∞ and redefining a, b and c one arrives at the transformation

∞∑
k=0

(a, h, e; q)k
(f, g, q; q)k

(
fg

ahe

)k

=
(fg/ah, fg/ae; q)∞
(fg/a, fg/ahe; q)∞

×
∞∑
k=0

1− fgq2k/aq
1− fg/aq

(fg/aq, f/a, g/a, h, e; q)k
(f, g, fg/ah, fg/ae, q; q)k

(
−fg
he

)k

qk(k−1)/2. (4.2)

Next, after making the replacements a→ ad, e→ de, h→ dh, f → df, g →
dg followed by e→ fg/(ah) one gets

∞∑
k=0

(ad, dh, de; q)k(
daeh
g , dg, q; q

)
k

(
1

d

)k

=
(h, e; q)∞(
1
d , deh; q

)
∞

∞∑
k=0

(
1− dehq2k

q

)
(

1− deh
q

)
(
eh
g ,

g
a , dh, de,

deh
q ; q

)
k(

h, daehg , dg, e, q; q
)
k

(−a)kqk(k−1)/2.

(4.3)

Next, the special case of (2.2) is constructed which has as the series on its
right side the series on the left side of (4.3). This special case is achieved by
setting A = 2, a1 = g, a2 = aeh/g, c1 = a, c2 = e and u = h. Finally, (4.3)
is used to replace the resulting series on the right side and the limit d → 0
is taken (so that the sum over p on the left side of (2.2) vanishes) to get
the identity in the next theorem (for readability, the replacements j1 → j,
k1 → k, k2 → l and j2 → m are made).

Theorem 4.1. Let

Q(i, j, k, l,m)

=
(i+ j + k + l +m)(i+ j + k + l +m− 1)

2
+
k(k − 1)

2
+
l(l − 1)

2
.

If |q| < 1, then

∞∑
i,j,k,l,m=0

(−1)i+j+mqQ(i,j,k,l,m)ajemgkhi(aeh/g)l

(q; q) i (q; q) j (q; q) k (q; q) l(q; q)m

= (e, h; q)∞

∞∑
k=0

(g/a, eh/g; q)k
(e, h, q; q)k

(−a)kqk(k−1)/2. (4.4)

For ease of use, we note two special cases.
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Corollary 4.1. If |q| < 1, then

∞∑
i,k,m=0

(−1)i+mq(i+k+m)(i+k+m−1)/2+k(k−1)/2emgkhi

(q; q) i (q; q) k(q; q)m

= (e, h; q)∞

∞∑
k=0

(eh/g; q)kg
kqk(k−1)

(e, h, q; q)k
, (4.5)

∞∑
i,m=0

(−1)i+mq(i+m)(i+m−1)/2emhi

(q; q) i(q; q)m
= (e, h; q)∞

∞∑
k=0

(−eh)kq3k(k−1)/2

(e, h, q; q)k
.

(4.6)

Proof. For (4.5), let a → 0 in (4.4) (so that the sums over j and l on the
left side vanish). Likewise, (4.6) follows upon letting g → 0 in (4.5) (so that
the sums over k on the left side vanishes). �

Before giving some applications (multi-sum representations of infinite
products), we recall some identities from the Slater list (the labels refer
to the identity number in [25], but the series side of the identities may be
slightly re-written to fit the format of the transformations above, and the
product side may have the formulation given by Sills [23]). We remark that
there are additional identities on the Slater list [25] that may also be used
to produce multi-sum identities similar to those in Example 7.

∞∑
n=0

(−1)nq3n
2

(−q,−q2, q2; q2)n
=

(q2, q3, q5; q5)∞
(q2; q2)∞

. (S.19)

∞∑
n=0

q2n(n+1)

(q3, q2; q2)n
= (1− q)(q3, q5, q8; q8)∞(q2, q14; q16)∞

(q; q)∞
. (S.38)

∞∑
n=0

q2n
2

(q, q2; q2)n
=

(q, q7, q8; q8)∞(q6, q10; q16)∞
(q; q)∞

. (S.39)

∞∑
n=0

qn(3n−1)/2

(−q1/2, q1/2, q; q)n
=

(q4, q6, q10; q10)∞
(q; q)∞

. (S.46)

∞∑
n=0

(−1; q)nq
n2

(−q1/2, q1/2, q; q)n
= 1 + 2q

(−q,−q11, q12; q12)∞
(q; q)∞

. (S.56)

∞∑
n=0

qn(3n+2)

(q3,−q2, q2; q2)n
= (1− q)(q3, q7, q10; q10)∞(q4, q16; q20)∞(−q; q2)∞

(q2; q2)∞
.

(S.97)
∞∑
n=0

q3n
2

(q,−q2, q2; q2)n
=

(q, q9, q10; q10)∞(q8, q12; q20)∞(−q; q2)∞
(q2; q2)∞

.

(S.100)
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We recall one additional identity ([17, page 15, Eq. (2.8.11)]):

∞∑
n=0

(−q−1,−q5; q4)nq2n
2

(q2,−q4, q4; q4)n
=

(−q,−q7, q8; q8)∞(−q2; q4)∞
(q4; q4)∞

. (4.7)

We now use the above identities together with the transformations (4.4) -
(4.6) to derive multi-sum expansions for some infinite products.

Remark: The identities given in the next example possibly may be re-
garded as being not true identities of Kanade–Russell type, since the finite
q-products in the denominator of the general term on the series sides all
have the same modulus. The series sides can probably be more correctly
classified as being “Andrews–Gordon type series” (see (1.15)).

Example 7. If |q| < 1, then the following identities hold.

∞∑
i,m=0

q(i+m)2+i

(q2; q2)i(q2; q2)m
=

(q2, q3, q5; q5)∞
(q; q)∞

. (4.8)

∞∑
i,k=0

(−1)iq(i+k+1)2+k2−1

(q2; q2)i(q2; q2)k
=

(q3, q5, q8; q8)∞(q2, q14; q16)∞
(q2; q2)∞

. (4.9)

∞∑
i,k=0

(−1)iq(i+k)2+k2

(q2; q2)i(q2; q2)k
=

(q, q7, q8; q8)∞(q6, q10; q16)∞
(q2; q2)∞

. (4.10)

∞∑
i,m=0

(−1)iq(i+m)2/2

(q; q)i(q; q)m
=

(q4, q6, q10; q10)∞
(q2; q2)∞

. (4.11)

∞∑
i,k,m=0

(−1)iq((i+k+m)2+k2)/2

(q; q)i(q; q)k(q; q)m
= (q; q2)∞ + 2q

(−q,−q11, q12; q12)∞
(q2; q2)∞

. (4.12)

∞∑
i,m=0

(−1)iq(i+m)(i+m+1)+i

(q2; q2)i(q2; q2)m
=

(q3, q7, q10; q10)∞(q4, q16; q20)∞
(q2; q2)∞

. (4.13)

∞∑
i,m=0

(−1)iq(i+m)2+m

(q2; q2)i(q2; q2)m
=

(q, q9, q10; q10)∞(q8, q12; q20)∞
(q2; q2)∞

. (4.14)

∞∑
i,j,k,l,m=0

(−1)iq2(i+k+j+l+m)2+l(2l+3)+k(2k−3)+2m

(q4; q4)i(q4; q4)j(q4; q4)k(q4; q4)l(q4; q4)m
=

(−q,−q7, q8; q8)∞
(q4; q4)∞

.

(4.15)

Proof. Remark: In all the identities stated above, the exponent in the power
of q on the series side has been simplified.
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For (4.8), replace q with q2 in (4.6), then set e = −q, h = −q2, and
use (S.19). Note that (4.8) may also be proved by using the change in
summation variable N = i+ j on the left side, then employing the identity

N∑
i=0

[
N
i

]
q2
qi = (−q; q)N ,

and finally using one of the Rogers–Ramanujan identities.
In (4.5), replace q with q2 and set g = q4, e = 0 and h = q3. After

employing (S.38) then (4.9) follows. Here also (4.9) may also be proved by
using a change in summation variable N = i + k − 1 on the left side, then
employing a special case of the q-binomial theorem,

N∑
i=0

[
N
i

]
q2

(−1)iqi
2

= (q; q)N ,

and finally using another identity in the Slater list ([25, page 155, Eq. (34)],
after replacing q with −q):

∞∑
n=0

(−q; q2)nqn(n+2)

(q2; q2)n
=

(q, q7, q8; q8)∞(−q; q2)∞
(q2; q2)∞

.

For (4.10), replace q with q2 in (4.5) and then set g = q2, e = 0 and h = q,
and finally use (S.39). Note that (4.10) has an alternative proof similar to
the alternative proofs of (4.8) and (4.9). However, we omit the details, and
while similar alternative proofs may exist for the remaining identities proved
below, we do not consider that possibility further.

In (4.6), set e =
√
q, h = −√q, then use (S.46), and (4.11) follows.

Identity (4.12) follows from (4.5), upon making the replacements e =
√
q,

h = −√q, g = q and then using (S.56).

For (4.13), replace q with q2 in (4.6), set e = −q2, h = q3, and then use
(S.97). Identity (4.14) follows similarly from replacing q with q2 in (4.6),
this time setting e = −q2 and h = q, and then using (S.100).

Finally, for (4.15) replace q with q4 in (4.6), set a = −q2, e = q2, g = q7,
h = −q4 and then use (4.7).

�

Remarks: (1) The identity (4.14) was also proven by Sills [23, page 79,
Eq. (5.17)], using different methods.

(2) One of the anonymous referees asked if a number of similar identities,
which had been verified by them experimentally, could be proved by the
methods of the paper:

∞∑
i,m=0

q(i+m)2+2i+m

(q2; q2)i(q2; q2)m
=

(q, q4, q5; q5)∞
(q; q)∞

. (4.16)
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∞∑
i,k=0

(−1)iq(i+k)(i+k+2)

(q2; q2)i(q2; q2)k
=

1

(q8, q12; q20)∞
. (4.17)

The identity (4.16) follows from (4.6) upon replacing q with q2, setting
e = −q3, f = −q2 and then employing an identity of Ramanujan (see [5, p.
252 (11.2.7)], or [17, p.12 (2.5.6)])

∞∑
n=0

(−1)nq3n
2+2n

(−q; q2)n+1(q4; q4)n
=

(q, q4, q5; q5)∞
(q2; q2)∞

. (4.18)

to sum the resulting right side. Likewise (4.17) follows from (4.6) upon
replacing q with q2, setting e = −q3, f = q3 and using an identity of Rogers
([21, p. 330 (2), line 2])

∞∑
n=0

q3(n
2+n)/2

(q; q2)n+1(q; q)n
=

(q2, q8, q10; q10)∞
(q; q)∞

. (4.19)

(with q replaced with q2) to sum the resulting right side.
(3) The products at (4.9) and (4.10) are related (but not equal) to prod-

ucts appearing in principal characters of level 5 modules for A
(2)
2 in the

recent paper [14] of Kanade and Russell. Likewise, the products at (4.11)
(with q replaced by q2), (4.13), (4.14) and (4.17) are similar to products

related to level 7 modules for A
(2)
2 in the same paper.

5. Concluding Remarks

There is an obvious obstruction to the various theorems having more
widespread application to producing multi-sum-to-infinite product identi-
ties from identities of Rogers–Ramanujan–Slater type, similar to those in
the papers by Andrews [2] and Sills [23]. As mentioned at the start of
section 4, this obstruction stems from the fact that the exponent in (1/d)k

factor in the single series on the right side of each of the identities in the the-
orems is clearly linear in k rather than quadratic. Further, it is not possible
to produce such a term that is quadratic in the exponent without apply-
ing some transformation to the series, as was done at (4.4) above. Other
transformations may lead to similar applications.

Another limitation is the existence of −p in the formula for l in each of
the general transformations, for example

l = i− p+ j1 + · · ·+ jA + k1 + · · ·+ kA

in Theorem 2.2. This means that the theorems stated here cannot be used
to directly prove any of the summations stated in the introduction where the
variables in the exponent of q on the series side are all positive, the proof of
any of these requiring a transformation of the single series that would allow
d → 0 (as was done at (3.17) in the proof of one of the Kanade–Russell
identities, and at (4.4)).
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However, we believe that the usefulness of the general transformations
described in the present paper has been demonstrated. The reader may
be able to find additional applications. We also leave to the reader the
possibility of finding combinatorial interpretations of some of the identities
stated in the present paper and/or finding combinatorial proofs of them.
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