POWERS OF A MATRIX AND COMBINATORIAL
IDENTITIES

J. MC LAUGHLIN AND B. SURY

ABSTRACT. In this article we obtain a general polynomial identity in k
variables, where k > 2 is an arbitrary positive integer.

We use this identity to give a closed-form expression for the entries
of the powers of a k x k matrix.

Finally, we use these results to derive various combinatorial identities.

1. INTRODUCTION

In [4], the second author had observed that the following ‘curious’ poly-
nomial identity holds:

> (=1) <n . Z) (x+y)" 2 (ay) =a"+ 2"y 4+ +ay -y

The proof was simply observing that both sides satisfied the same recursion.
He had also observed (but not published the result) that this recursion de-
fines in a closed form the entries of the powers of a 2 x 2 matrix in terms of
its trace and determinant and the entries of the original matrix. The first
author had independently discovered this fact and derived several combina-
torial identities as consequences [2].

In this article, for a general k, we obtain a polynomial identity and show
how it gives a closed-form expression for the entries of the powers of a
k x k matrix. From these, we derive some combinatorial identities as conse-
quences.

2. MAIN RESULTS

Throughout the paper, let K be any fized field of characteristic zero. We
also fix a positive integer k. The main results are the following two theorems:

Theorem 1. Let z1,- -,z be independent variables and let s1,--- , s de-
note the various symmetric polynomials in the x;’s of degrees 1,2--- |k re-
spectively. Then, in the polynomial ring Klx1,--- , x|, for each positive
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integer n, one has the identity

§ T1,.72 Tk

ri+-+rg=n

D i, e g, m)sy TR (L gg)yi2gl L (1) sy,
2ig+3iz+--+kip<n

where

, ,  (n—ig—2i3— - — (kK — 1)ig)!
iz i) = o 2ip — 81— — (ki)

Theorem 2. Suppose A € M (K) and let
TF — s T psoTh 2 4o (—1)hs, T

denote its characteristic polynomial. Then, for all n > k, one has
A" = b AR b 0 AR b

where

bp—1 =a(n —k+1),
bp—2 =a(n —k+2) —sja(n —k+1),

by =a(n—1) —sia(n—2)+ -+ (=125, _sa(n — k+ 1),
bo = a(n) — sia(n — 1) + -+ (=1)* sy _ja(n — k +1)
= (=D Lspa(n — k).

and
a(n) _ C(ig, o ;ik7 n)8?7i272i3*---7(7€71)’ik(_82)1'25? . ((_1)k718k)z’k’
with
. . . (n—i2—2i3—---—(k—1)ik)!
g, = o 21y — 313 — = (kin)l

as i Theorem 1.

Proof of Theorems 1 and 2. In Theorem 1, if a(n) denotes either side, it
is straightforward to verify that

a(n) = sja(n — 1) — sga(n — 2) +--- + (=1)* Lspa(n — k).
Theorem 2 is a consequence of Theorem 1 on using induction on n.

O

The special cases kK = 2 and k = 3 are worth noting for it is easier to derive
various combinatorial identities from them.
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Corollary 1. (i) Let A € M3(K) and let X3 = tX? — sX + d denote the
characteristic polynomial of A. Then, for allm > 3,

(21) A" =a, 1A+ an_QAdj(A> + (an — tan_1> 1,
where
i 95 L
ap = Z (_1)Z<Z—’T.7> <n ‘7/ ‘ .7>tn—21—3jszd]
2i+3j<n J vt

forn >0 and ag = 1.
(ii)) Let B € My(K) and let X?> = tX — d denote the characteristic
polynomial of B. Then, for all n > 2,

B" = b,I + b,_, Adj(B)

for all n > 2, where

b= <” . Z> (—1)it"=2igi,

Corollary 2. Let § € K, B € My(K) and t denote the trace and d the
determinant of B. We have the following identity in My (K) :

(ap—1 — Ban—2)B + (an, — (0 + t)an—1 + Oap_ot)I
=yp—18B + (yn - tynfl)la

where

. (—1)%(”@) <n_i_2j)(0+t)”2i3j(9t+d)i(0d)j

2i+3j<n J Lt
and
n—1 P
UYp = Z < ; )(_1)Ztn QZdl.
In particular, for any 0 € K, one has
b, — (9 + 1)bn_1 4+ 0b,_o =1,

where

b= 3 (1)%’(”@) <”_i_2j>(9+2)"—2i—3j(1+20)2‘91’.

2i+3j<n J vty
Corollary 3. The numbers ¢, = 22i+3j:n(—1)i(’”;])2i3j satisfy
Cn+Cp_1—2¢cp_o=1.

Proof. This is the special case of Corollary 2 where we take § = —2. Note
that the sum defining ¢, is over only those 4, j for which 2i + 35 = n. U

Note than when k = 3, Theorem 1 can be rewritten as follows:
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Theorem 3. Letn be a positive integer and x, y, z be indeterminates. Then

(2.2)
iftti\[(n—i—2j n—2i—3j i j
Z (-1 - it (z+y+2) (zy +yz + 21)" (2y2)
2i+3j<n J J
Ty (xn-l—l . yn-‘rl) —rz (xn—i—l o Zn—i—l) 4 Yz (yn+1 . Zn—i—l)

(z—y) (x—2) (y—2)

Proof. In Corollary 1, let

r+y+z 1 0

A=|—zy—xz—yz 0 1

TYZz 0 0
Then t =z +4+y+2, s =2y +2x2z+yz and d = zyz. It is easy to show
(by first diagonalizing A) that the (1,2) entry of A™ equals the right side
of (2.2), with n + 1 replaced by n, and the (1,2) entry on the right side of
(2.1) is ap—1. O

Corollary 4. Let x and z be indeterminates and n a positive integer. Then
2 =924 L . )
Z (_1)1 <Z4T]> (n .Z ‘ .7> (2x+z)n_22_3](.1‘2+21‘2)1( 2 )j
2i+3j<n J vt
P g (- 2) — 2211 2 4 2P
(z—2)?

Proof. Let y — x in Theorem 3. (]

Some interesting identities can be derived by specialising the variables
in Theorem 1. For instance, in [5], it was noted that Binet’s formula for
the Fibonacci numbers is a consequence of Theorem 1 for k = 2. Here is a
generalization.

Corollary 5. (Generalization of Binet’s formula)
Let the numbers Fy(n) be defined by the recursion

F(0) =1, Fi(r) = 0Vr <0,
Fk(n) :Fk(n—1)+Fk(n—2)+-~+Fk(n—k‘).

Then, we have

Z (n—i2—2i3—---—(k‘—1)ik)!

Fi(n) = '
k(n) irlig!- - igl(n — 2ig — iz — -+ - — kiy)!

Qig+--+kip<n
Further, this equals Zr1+-~+rk:n At NE where N, 1 < i < k are the roots
of the equation TF — Tk=1 —Tk=2 _ ... _1=0.

Proof. The recursion defining Fy(n)’s corresponds to the case s; = —s9 =
- = (=1)*"1s; = 1 of the theorem. O
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Corollary 6.

§:dm~-nbmwgl<ﬁ4y4”ﬁcg>”:<n+z_1>

J
where
3 3 . (n—i2—2i3—---—(k—1)ik)!
iz i) = 0 — 21— Bis — - — ki)l
Proof. Take x; = 1 for all 4 in Theorem 1. The left side of Theorem 1 is
simply the sum >, .. _ 1. O

From Theorem3 we have the following binomial identities as special cases.

Proposition 1. (i) Let A be the unique positive real number satisfying A3 =
A+ 1. Let z,y denote the complex conjugates such that xy = X,z +y = A2,
and let z = —%. Then,

Z (_1)j<”—.2j): Z 2y

2i4-3j<n J r4+s+t=n
Ty (xn-i—l o yn-‘rl) —rz (xn—i—l o Zn—i—l) + Yz (yn+1 o Zn—i—l)
- (x—y) (@—2) (y—>2) '
(it)
N1/ n—1—2j i
3 ()Y e
(i)
n—2j . ) n n+1 _1\n
Z( j23>(—4)f3"3ﬂ AL LS
(iv)
(7
_ (1 + \/g)n-i-l _ (1 _ \/g)n-l-l N (1 + \/g)n—i-l + (1 _ \/g)n—&-l B 1

24/3 6 3

3. COMMUTATING MATRICES

In this section we derive various combinatorial identities by writing a
general 3 x 3 Matrix A as a product of commuting matrices.

Proposition 2. Let A be an arbitrary 3 x 3 matriz with characteristic
equation 3 — tx®> + sz —d = 0, d # 0. Suppose p is arbitrary, with
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PP+ p*t+ps+d#0, p#0, —t. If n is a positive integer, then

B1) A"= (p +p2t+sp+d>n§:zn:2< )( )( —j—k)

r=0 j=0 k=0

X <—p(p+t) > ' <—<p+t)>k ( —A>T.
d P p+t
Proof. This follows from the identity
-1
TP +pittsptd

after raising both sides to the n-th power and collecting powers of A. Note
that the two matrices pA%2 — Ap(p+t) —dI and A + pI commute. O

(pA* — Ap(p+1t) —dI) (A+pI),

Corollary 7. Let p, =, y and z be indeterminates and let n be a positive
integer. Then

EEEQ( 1 Jor (o2

=0 j=0 k=0 eI Yz
" pt+rt+y+z kazy(:cr—yr)—xz(xr—z”)—kyz(yr—zr)
P p+x+y+2)
=y @"—y") vz (@" -2")+yz (y" —2"))
y pPAp?(rty+2)+p(rytrztyz)fayz)\"
bxryz

Proof. Let A be the matrix from Theorem 3 and compare (1, 1) entries on
both sides of (3.1). O

Corollary 8. Let p, x and z be indeterminates and let n be a positive
integer. Then

EEEO0( ) (25

r—j— x
r=0 j=0 k=0 J

y (p—i—Qm—&-z)krx”r—:c"z—rxrz—i-zl”
p (p+2z+2)

14+n 1+n)

—z"z—na"z+z2

y <p3+p2 2z +2)+p (x2+2xz)—|—x22>n

= (nx

px?z

Proof. Divide both sides in the corollary above by x — y and let y — z. [
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Corollary 9. Let p and x be indeterminates and let n be a positive integer.
Then

23S ) ()

8 (p—i—Saz)k r(147r) 277
P 2(p+ 3x)"

~n (1+n)z " ((p+x)3>n.

N 2 pas

Proof. Divide both sides in the corollary above by (r—z)%? and let z — z. [

Corollary 10. Let p be an indeterminate and let n be a positive integer.
Then

55 (L ez

n(l+n)(p+1)>"
2 pn

Proof. Replace p by px in the corollary above and simplify. ([l

Various combinatorial identities can be derived from Theorem 3 by con-
sidering matrices A such that particular entries in A™ have a simple closed
form. We give four examples.

Corollary 11. Let n be a positive integer.
(i) If p # 0,—1, then

S5 (NI T Y tpaes a0

7
r=0 j=0 k=0 p

(ii) Let F,, denote the n-th Fibonacci number. If p #0,—1,¢ or 1/¢ (where
¢ 1is the golden ratio, then

BZnI Z Z @ @ ( —j - k) (=17 (p + 2T,

=0 j=0 k=0
(L+p)"(-1+p+p?)"

= (—p)"
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(iii) If p # 0,—1 or —2, then

% Zn: i <?> (Z) (r _j B k) (—1)TTRFrpI =R (p 4 4)2TRmro=i (2 — 1)

r=0 j=0 k=0
2 n

(iv) If p#0,—1,—g or —h and gh # 0, then

inj >y <?> (Z> (r —? - k) (LR (p 1 g+ )

r=0 j=0 k=0
(1 +p)(9+p)(h+p)>"
ghp '

gT' + hT
(gh)’

Proof. The results follow from considering the (1,2) entries on both sides in
Theorem 3 for the matrices

X

:(g”+h”)<

g+h (g=h)°

110 110 3 10 > 1 0
010,100,—200,1 g+h0,
00 1 00 1 0 0 1 9
0 0 1
respectively. O

4. A RESULT OF BERNSTEIN
In [1] Bernstein showed that the only zeros of the integer function
ji(n—2j
f(n) =7 (-1) ,
>0 J

are at n = 3 and n = 12. We use Corollary 1 to relate the zeros of this
function to solutions of a certain cubic Thue equation and hence to derive
Bernstein’s result.

Let

With the notation of Corollary 1,¢ =1, s =0, d = —1, so that

=3 (1 (”.2j> — £,

3j<n J
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and, for n > 4,
A" = f(n —2)A2 4 (f(n) = f(n —2)A+ (f(n) = f(n— 1)1

f(n) fln=1)  f(n=2)
= (~f=2) Sfn-3) ~f(n-1)
—fn=1) —f(n=2) —f(n=3)
The last equality follows from the fact that f(k+ 1) = f(k) — f(k — 2), for
k> 2.
Now suppose f(n—2) = 0. Since the recurrence relation above gives that
f(n—4)=—f(n—1) and f(n) = f(n—1) — f(n —3), it follows that

fin=1)=f(n=3) fln-1) 0
(~1)" = det(A") = 0 “Hn-3) fn-1)
—f(n—1) 0 —f(n—23)

=—f(n—1)° = f(n=3)° + f(n — 1) f(n - 3)%.
Thus (x,y) = £(f(n — 1), f(n — 3)) is a solution of the Thue equation
2?4y —ryt =1

One could solve this equation in the usual manner of finding bounds
on powers of fundamental units in the cubic number field defined by the
equation 23 —x+1 = 0. Alternatively, the Thue equation solver in PARI/GP
[3] gives unconditionally (in less than a second) that the only solutions to
this equation are

(x’ y) € {(47 _3)7 (_17 1)’ (17 0)7 (07 1)7 (la 1)} )
leading to Bernstein’s result once again.
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