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Abstract. Ramanujan stated an identity to the effect that if three sequences
{an}, {bn} and {cn} are defined by r1(x) =:

∑∞
n=0 anx

n, r2(x) =:
∑∞

n=0 bnx
n

and r3(x) =:
∑∞

n=0 cnx
n (here each ri(x) is a certain rational function in x), then

a3
n + b3n − c3n = (−1)n, ∀n ≥ 0.

Motivated by this amazing identity, we state and prove a more general identity
involving eleven sequences, the new identity being ”more general” in the sense
that equality holds not just for the power 3 (as in Ramanujan’s identity), but for
each power j, 1 ≤ j ≤ 5.

1. Introduction

In the “lost notebook” [7, page 341], Ramanujan records the following remarkable
identity. If the sequences {an}, {bn} and {cn} are defined by

1 + 53x+ 9x2

1− 82x− 82x2 + x3
=:

∞∑
n=0

anx
n, (1.1)

2− 26x− 12x2

1− 82x− 82x2 + x3
=:

∞∑
n=0

bnx
n,

2 + 8x− 10x2

1− 82x− 82x2 + x3
=:

∞∑
n=0

cnx
n,

then
a3n + b3n − c3n = (−1)n, ∀n ≥ 0. (1.2)

As Hirschhorn remarks in [5], what is amazing about this identity is not only
that it is true, but that anyone could come up with it in the first place. As well as
giving a proof of the identity, Hirschhorn also gives a plausible explanation of how
Ramanujan might have discovered it. A second proof of the identity was given by
Hirschhorn in [6], and a third proof was given by Hirschhorn and Han in [4], where
the authors also prove that the sequences {an}, {bn} and {cn} may also be derived
from a certain matrix equation.

Motivated by this amazing identity of Ramanujan, and Hirschhorn explanation
of how Ramanujan might have found it, we present a more general identity in the
present paper, one where the three sequences in (1.2) are replaced by eleven se-
quences, and the identity holds not just for a single exponent (3 in the case of
(1.2)), but for all integer exponents j, 1 ≤ j ≤ 5.
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2. A Ramanujan-type Identity

The identity referred to is described in the following theorem.

Theorem 2.1. Let the sequences of integers ak, bk, ck, dk, ek, fk, pk, qk, rk, sk
and tk be defined by

x2 + 164x+ 3

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

akx
k,

−5x2 + 138x+ 3

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

pkx
k,

−7x2 + 134x+ 1

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

bkx
k,

3x2 + 244x+ 1

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

qkx
k,

−x2 + 298x− 1

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

ckx
k,

x2 + 254x− 7

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

rkx
k,

−5x2 + 228x− 7

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

dkx
k,

−7x2 + 148x− 5

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

skx
k,

3x2 + 258x− 5

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

ekx
k,

3

1− x
=:

∞∑
k=0

tkx
k,

−3x2 + 94x− 3

x3 − 99x2 + 99x− 1
=:

∞∑
k=0

fkx
k.

Then for 1 ≤ j ≤ 5, and each k ≥ 0,

ajk + bjk + cjk + djk + ejk + f j
k − pjk − qjk − rjk − sjk − tjk = 1. (2.1)

We note that (2.1) differs from Ramanujan’s identity (1.2), in that (2.1) is true
for each integer exponent j, 1 ≤ j ≤ 5, in contrast to (1.2), which is true only for
the fixed exponent 3. For example, one can check that

{a1, b1, c1, d1, e1, f1, p1, q1, r1, s1, t1}
= {−461,−233,−199, 465, 237, 203,−435,−343, 439, 347, 3}

and that

(−461)j + (−233)j + (−199)j + 465j + 237j + 203j

− (−435)j − (−343)j − 439j − 347j − 3j = 1, (2.2)

for 1 ≤ j ≤ 5. Like Ramanujan’s sequences, the terms in our sequences also grow
arbitrarily large (except for tk which has the constant value 3 for all k ≥ 0), while
the left side of (2.1) maintains the constant value 1.

Many readers will no doubt have recognized that what has been encoded in the
various generating functions is a sequence of ideal solutions of size 6 to what has
become known as the Prouhet-Tarry-Escott problem (Dickson [3] referred to it as
the problem of “equal sums of like powers”). Before coming to the proof of Theorem
2.1, we briefly discuss this problem.

The Prouhet-Tarry-Escott problem, which has a history going back to Goldbach,
asks for two distinct multisets of integers A = {a1, ..., am} and B = {b1, ..., bm} such
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that
m∑
i=1

aei =
m∑
i=1

bei , for e = 1, 2, . . . , k, (2.3)

for some integer k < m. We call m the size of the solution and k the degree. If
k = m− 1, such a solution is called ideal. For example, it is easy to check that

1j + 21j + 36j + 56j = 2j + 18j + 39j + 55j

holds for j = 1, 2 and 3. Thus A = {1, 21, 36, 56}, B = {2, 18, 39, 55} provide an
ideal solution of size 4.

We write

{a1, ..., am} k
= {b1, ..., bm} (2.4)

to denote a solution of size m and degree k to the Prouhet-Tarry-Escott problem.
As regards parametric solutions, an early example was given by Euler (see [3, page
705]), who showed that

{a, b, c, a+ b+ c} 2
= {a+ b, a+ c, b+ c, 0}.

Parametric ideal solutions are known for m = 1, . . . , 8 and particular numerical
solutions are known for m = 9, 10 and 12. The interested reader may find some of
the early history of this interesting problem in Chapter XXIV of [3], and some of
the more recent developments at [1] and [8].

The following parametric solution of size 6 is due to Chernick [2]. For any integers
mk and nk, if

a′k = −5m2
k + 4mknk − 3n2

k, p′k = −5m2
k + 6mknk + 3n2

k, (2.5)

b′k = −3m2
k + 6mknk + 5n2

k, q′k = −3m2
k − 4mknk − 5n2

k,

c′k = −m2
k − 10mknk − n2

k, r′k = −m2
k + 10mknk − n2

k,

d′k = 5m2
k − 4mknk + 3n2

k, s′k = 5m2
k − 6mknk − 3n2

k,

e′k = 3m2
k − 6mknk − 5n2

k, t′k = 3m2
k + 4mknk + 5n2

k,

f ′
k = m2

k + 10mknk + n2
k, u′k = m2

k − 10mknk + n2
k.

then

{a′, b′, c′, d′, e′, f ′} 5
= {p′, q′, r′, s′, t′, u′}. (2.6)

The observant reader will have noticed that the twelve terms actually form 6 pairs,
each of the three pairs on each side of (2.6) consisting of a term and its negative
(d′k = −a′k and so on), so that (2.6) is trivially true for odd powers. To make our
generating functions and sequences at least superficially more interesting, we will
modify these sequences using the easily-proved fact that if

{a1, ..., am} k
= {b1, ..., bm},

then

{Ma1 +K, ...,Mam +K} k
= {Mb1 +K, ...,Mbm +K},

for constants M and K.
In the present case, we will determine particular sequences {mk}∞k=0 and {nk}∞k=0,

with the sequences a′k . . . u
′
k being defined by (2.5). We then set ak = a′k + 2u′k,
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bk = b′k + 2u′k and so on. In particular, rk = r′k + 2u′k = −u′k + 2u′k = u′k. We will
further show that u′k = rk = 1, so that

{ak, bk, ck, dk, ek, fk}
5
= {pk, qk, 1, sk, tk, uk}

will hold automatically for each integer k ≥ 0, which gives (2.1), after a slight
manipulation.

All that will remain will be to show that each of the generating functions has the
stated form. We now proceed to the proof.

Proof of Theorem 2.1. Set h0 = 0, h1 = 1, and for k > 1, set

hk = 10hk−1 − hk−2. (2.7)

Upon solving the characteristic equation x2 − 10x+ 1 = 0 and applying the stated
initial conditions, we find that

hk = −
(
5− 2

√
6
)k

4
√
6

+

(
5 + 2

√
6
)k

4
√
6

,

h2k =
−2 +

(
49− 20

√
6
)k

+
(
49 + 20

√
6
)k

96
,

hk+1hk =
−10 +

(
5− 2

√
6
) (

49− 20
√
6
)k

+
(
5 + 2

√
6
) (

49 + 20
√
6
)k

96
.

In (2.5), we set mk = hk+1 and nk = hk, noting that (2.7) implies that

h2k+1 − 10hk+1hk + h2k = h2k − 10hkhk−1 + h2k−1 = · · · = h21 − 10h1h0 + h20 = 1,

so that rk = u′k = 1. Thus all that remains is to show that, with these choices for
mk and nk, that the various generating functions have the stated forms. We do this
for
∑∞

k=0 akx
k only, since the proofs for the other generating functions are virtually

identical.
Define

H1(x) :=

∞∑
k=0

h2kx
k =

∞∑
k=0

−2 +
(
49− 20

√
6
)k

+
(
49 + 20

√
6
)k

96
xk

=
1

96

(
−2

1− x
+

1

1−
(
49− 20

√
6
)
x
+

1

1−
(
49 + 20

√
6
)
x

)

=
−x(x+ 1)

x3 − 99x2 + 99x− 1
,

H2(x) :=

∞∑
k=0

hk+1hkx
k

=
1

96

(
−10

1− x
+

5− 2
√
6

1−
(
49− 20

√
6
)
x
+

5 + 2
√
6

1−
(
49 + 20

√
6
)
x

)

=
−10x

x3 − 99x2 + 99x− 1
,

H3(x) :=

∞∑
k=0

h2k+1x
k
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=
H1(x)

x
=

−x− 1

x3 − 99x2 + 99x− 1
.

These formulae for H1(x), H2(x) and H3(x) follow after using the summation
formula for an infinite geometric series a number of times, and then using a little
algebra to combine the resulting rational expressions.

Next,
ak = a′k + 2u′k = −5h2k+1 + 4hk+1hk − 3h2k + 2,

so that
∞∑
k=0

akx
k =

∞∑
k=0

(−5h2k+1 + 4hk+1hk − 3h2k + 2)xk

= −5H3(x) + 4H2(x)− 3H1(x) +
2

1− x

=
x2 + 164x+ 3

x3 − 99x2 + 99x− 1
,

as claimed in Theorem 2.1. The claimed formulae for the other generating functions
follow similarly, giving the result. �
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