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Abstract. Let p ≥ 5 be a prime and for a, b ∈ Fp, let Ea,b denote the
elliptic curve over Fp with equation y2 = x3 + a x + b. As usual define
the trace of Frobenius ap, a, b by

#Ea,b(Fp) = p + 1− ap, a, b.

We use elementary facts about exponential sums and known results
about binary quadratic forms over finite fields to evaluate the sums∑

t∈Fp
ap, t, b,

∑
t∈Fp

ap, a, t,
∑p−1

t=0 a2
p, t, b,

∑p−1
t=0 a2

p, a, t and
∑p−1

t=0 a3
p, t, b

for primes p in various congruence classes.
As an example of our results, we prove the following: Let p ≡ 5 (mod

6) be prime and let b ∈ F∗p. Then

p−1∑
t=0

a3
p, t, b = −p

(
(p− 2)

(
−2

p

)
+ 2p

) (
b

p

)
.

1. Introduction

Let p ≥ 5 be a prime and let Fp be the finite field of p elements. For a, b ∈
Fp, let Ea,b denote the elliptic curve over Fp with equation y2 = x3 +a x+ b.
Denote by Ea, b(Fp) the set of Fp– rational points on the curve Ea, b and
define the trace of Frobenius, ap, by the equation

#Ea, b(Fp) = p + 1− ap.

A simple counting argument makes it clear that

(1.1) ap = −
∑
x∈Fp

(
x3 + a x + b

p

)
,

where
(

.
p

)
denotes the Legendre symbol. We recall some of the arithmetic

properties of the distribution of ap. The following theorem is due to Hasse
[4]:

Theorem 1. The integer ap satisfies

−2
√

p ≤ ap ≤ 2
√

p.
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Since we wish to look at how ap varies as the coefficients a and b of the
elliptic curve vary, it is convenient for our purposes to write ap for the elliptic
curve Ea,b as ap, a, b. The following result is well known (an easy consequence
of the remarks on page 36 of [3], for example).

Proposition 1. Let the function f : Z → N0 be defined by setting

(1.2) f(k) = #{(a, b) ∈ F∗p × F∗p : ap, a, b = k}.

Then for each integer k,
p− 1

2

∣∣∣∣f(k).

The following result can be found in [2] (page 57).

Proposition 2. Define the function f1 : Z → N0 by setting

(1.3) f1(k) = #{(a, b) ∈ Fp × Fp \ {(0, 0)} : ap, a, b = k}.

Then for each integer k,
f1(k) = f1(−k).

The following result is also known ([3], page 37, for example).

Proposition 3. Let v be a quadratic non-residue modulo p. Then

ap, a, b = −ap, v2a, v3b.

To better understand the distribution of the ap, a, b it makes sense to study
the moments. The j -invariant of the elliptic curve Ea,b is defined by

j =
2833a3

4a3 + 27b2
,

provided 4a3 + 27b2 6= 0. Michel showed in [7] that if {Ea(t), b(t) : t ∈ Fp} is
a one-parameter family of elliptic curves with a(t) and b(t) polynomials in t
such that

j(t) :=
2833a(t)3

4a(t)3 + 27b(t)2
,

is non-constant, then ∑
t∈Fp

a2
p, a(t), b(t) = p2 + O(p3/2).

In [2] Birch defined

SR(p) =
p−1∑

a, b=0

[
p−1∑
x=0

(
x3 − ax− b

p

)]2R

for integral R ≥ 1, and proved
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Theorem 2. 1 For p ≥ 5,

S1(p) = (p− 1)p2,

S2(p) = (p− 1)(2p3 − 3p),

S3(p) = (p− 1)(5p4 − 9p2 − 5p),

S4(p) = (p− 1)(14p5 − 28p3 − 20p2 − 7p),

S5(p) = (p− 1)(42p6 − 90p4 − 75p3 − 35p2 − 9p− τ(p)),

where τ(p) is Ramanujan’s τ -function.

Theorem 2 evaluates sums of the form
∑p−1

a, b=0 a2R
p, a, b in terms of p and

these results were derived by Birch as consequences of the Selberg trace
formula .

In this present paper we instead use elementary facts about exponential
sums and known results about binary quadratic forms over finite fields to
evaluate the sums

∑
t∈Fp

ap, t, b,
∑

t∈Fp
ap, a, t,

∑p−1
t=0 a2

p, t, b,
∑p−1

t=0 a2
p, a, t and∑p−1

t=0 a3
p, t, b, for primes p in particular congruence classes. In particular, we

prove the following theorems.

Theorem 3. Let p ≥ 5 be a prime, and a, b ∈ Fp. Then

(i)
∑

t∈Fp
ap, t, b = −p

(
b
p

)
,

(ii)
∑

t∈Fp
ap, a, t = 0.

This result is elementary but we prove it for the sake of completeness.

Theorem 4. Let p ≡ 5 (mod 6) be prime and let b ∈ F∗p. Then

(1.4)
p−1∑
t=0

a2
p, t, b = p

(
p− 1−

(
−1
p

))
.

Theorem 5. Let p ≥ 5 be prime and let a ∈ F∗p. Then

(1.5)
p−1∑
t=0

a2
p, a, t = p

(
p− 1−

(
−3
p

)
−
(
−3a

p

))
.

Theorem 4 and Theorem 5 could be deduced from Theorem 2, but we
believe it is of interest to give elementary proofs that do not use the Selberg
trace formula.

Theorem 6. Let p ≡ 5 (mod 6) be prime and let b ∈ F∗p. Then

p−1∑
t=0

a3
p, t, b = −p

(
(p− 2)

(
−2
p

)
+ 2p

)(
b

p

)
.

1In [2], Birch incorrectly omitted the factor of p− 1 in his statement of Theorem 2.
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2. Proof of the Theorems

We introduce some standard notation. Define e(j/p) := exp(2πij/p), so
that

(2.1)
p−1∑
t=0

e

(
jt

p

)
=

{
p, p |j,
0, (j, p) = 1.

Define

(2.2) Gp =

{√
p, p ≡ 1( mod 4),

i
√

p, p ≡ 3( mod 4).

Lemma 1. Let
(

.
p

)
denote the Legendre symbol, modulo p. Then

(2.3)
(

z

p

)
=

1
GP

p−1∑
d=1

(
d

p

)
e

(
dz

p

)
.

Proof. See [1], Theorem 1.1.5 and Theorem 1.5.2. �

We will occasionally use the fact that if H is a subset of Fp,

(2.4)
∑

d∈Fp\H

(
d

p

)
= −

∑
d∈H

(
d

p

)
.

We will also occasionally make use of some implications of the Law of Qua-
dratic Reciprocity (see [5], page 53, for example).

Theorem 7. Let p and q be odd primes. Then
(a)
(
−1
p

)
= (−1)(p−1)/2.

(b)
(

2
p

)
= (−1)(p

2−1)/8.

(c)
(

p
q

)(
q
p

)
= (−1)((p−1)/2)((q−1)/2).

We now prove Theorems 3, 4, 5 and 6,
Theorem 3. Let p ≥ 5 be a prime, and a, b ∈ Fp. Then

(i)
∑

t∈Fp
ap, t, b = −p

(
b
p

)
,

(ii)
∑

t∈Fp
ap, a, t = 0.

Proof. (i) From (1.1) and (2.3), it follows that∑
t∈Fp

ap,t,b = −
∑
x∈Fp

p−1∑
d=1

1
GP

(
d

p

)
e

(
d(x3 + b)

p

)∑
t∈Fp

e

(
tdx

p

)
The inner sum over t is zero unless x = 0, in which case it equals to p. The
left side therefore can be simplified to give∑

t∈Fp

ap,t,b = −
p−1∑
d=1

p

GP

(
d

p

)
e

(
db

p

)
= −p

(
b

p

)
.
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The last equality follows from (2.3).
(ii): From (1.1) and (2.3), it follows that∑

t∈Fp

ap,a,t = −
∑
x∈Fp

p−1∑
d=1

1
Gp

(
d

p

)
e

(
d(x3 + ax)

p

)∑
t∈Fp

e

(
dt

p

)
= 0.

The inner sum over t is equal to 0, by (2.1), since 1 ≤ d ≤ p− 1.
�

The result at (ii) follows also, in the case of primes p ≡ 3 (mod 4), from the
fact that ap, a, t = −ap, a, p−t. However, this is not the case for primes p ≡ 1
(mod 4). For example,

{a13, 1, t : 0 ≤ t ≤ 12} = {−6,−4, 2,−1, 0, 5, 1, 1, 5, 0,−1, 2,−4}.
The results in Theorem 3 are almost certainly known, although we have not
been able to find a reference.

Theorem 4. Let p ≡ 5 (mod 6) be prime and let b ∈ F∗p. Then
p−1∑
t=0

a2
p, t, b = p

(
p− 1−

(
−1
p

))
.

Proof. From (1.1) and (2.3) it follows that

∑
t∈Fp

a2
p,t,b =

1
G2

p

p−1∑
d1,d2=1

(
d1d2

p

) ∑
x1,x2∈Fp

e

(
d1(x3

1 + b) + d2(x3
2 + b)

p

)

×
∑
t∈Fp

e

(
t(d1x1 + d2x2)

p

)
.

The inner sum over t is zero, unless x1 ≡ −d−1
1 d2x2(mod p), in which case

it equals p. Thus∑
t∈Fp

a2
p,t,b =

p

G2
p

p−1∑
d1,d2=1

(
d1d2

p

)
e

(
b(d1 + d2)

p

) ∑
x2∈Fp

e

(
d−2

1 d2x
3
2(d

2
1 − d2

2)
p

)
.

Since the map x → x3 is one-to-one on Fp, when p ≡ 5(mod 6), the x3
2 in

the inner sum can be replaced by x2. Thus the inner sum is zero unless
d2

2 − d2
1 ≡ 0(mod p), in which case it equals p. It follows that

∑
t∈Fp

a2
p,t,b =

p2

G2
p

 p−1∑
d1=1

(
d2

1

p

)
e

(
b(2d1)

p

)
+

p−1∑
d1=1

(
−d2

1

p

)
e

(
b(d1 − d1)

p

)
=

p2

G2
p

(
−1 +

(
−1
p

)
(p− 1)

)
=

p2

G2
p

(
−1
p

)(
p− 1−

(
−1
p

))
.

We have once again used (2.3) to compute the sums, noting that the sums
above start with d1 = 1. The result now follows since p/G2

p× (−1|p) = 1 for
all primes p ≥ 3.
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�

Remarks: (1) It is clear that the results will remain true if a(t) = t is
replaced by any function a(t) which is one-to-one on Fp.
(2) It is more difficult to determine the values taken by

∑
t∈Fp

a2
p,t,b for

primes p ≡ 1(mod 6). This is principally because the map x → x3 is not
one-to-one on Fp for these primes (so that (2.1) cannot be used so easily
to simplify the summation), but also because the answer depends on which
coset b belongs to in F∗p/F∗3p .

Before proving the next theorem, it is necessary to recall a result about
quadratic forms over finite fields. Let q be a power of an odd prime and let
η denote the quadratic character on F∗q (so that if q = p, an odd prime, then
η(c) = (c/p), the Legendre symbol). The function v is defined on Fq by

(2.5) v(b) =

{
−1, b ∈ F∗q ,
q − 1, b = 0.

Suppose

f(x1, . . . , xn) =
n∑

i,j=1

aijxixj , with aij = aji,

is a quadratic form over Fq, with associated matrix A = (aij) and let 4
denote the determinant of A (f is non-degenerate if 4 6= 0).

Theorem 8. Let f be a non-degenerate quadratic form over Fq, q odd, in an
even number n of indeterminates. Then for b ∈ Fq the number of solutions
of the equation f(x1, . . . , xn) = b in Fn

q is

(2.6) qn−1 + v(b)q(n−2)/2η
(
(−1)n/24

)
.

Proof. See [6], pp 282–293. �

Theorem 5. Let p ≥ 5 be prime and let a ∈ F∗p. Then

p−1∑
t=0

a2
p, a, t = p

(
p− 1−

(
−3
p

)
−
(
−3a

p

))
.

Proof. Once again (1.1) and (2.3) give that

∑
t∈Fp

a2
p, a, t =

1
G2

p

p−1∑
d1,d2=1

(
d1d2

p

) ∑
x1,x2∈Fp

e

(
d1(x3

1 + ax1) + d2(x3
2 + ax2)

p

)

×
∑
t∈Fp

e

(
t b(d1 + d2)

p

)
.
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The inner sum over t is zero, unless d1 ≡ −d2(mod p), in which case it equals
p. Thus∑

t∈Fp

a2
p, a, t =

p

G2
p

(
−1
p

) ∑
x1, x2∈Fp

p−1∑
d1=1

e

(
d1(x3

1 + a x1 − x3
2 − a x2)

p

)
(2.7)

=
∑

x1, x2∈Fp

p−1∑
d1=1

e

(
d1(x1 − x2)(x2

1 + x1x2 + x2
2 + a)

p

)
.

We have used the fact that p/G2
p×(−1|p) = 1 for all primes p ≥ 3. The inner

sum over d1 equals −1, unless one of the factors x1− x2, x2
1 + x1x2 + x2

2 + a
equals 0, in which case the sum is p − 1. The equation x1 = x2 has p
solutions and, by (2.6) with q = p, n = 2, f(x1, x2) = x2

1 + x1x2 + x2
2 and

A =
(

1 (p+1)/2
(p+1)/2 1

)
, the equation x2

1 + x1x2 + x2
2 = −a has

p + (−1)
(
−1(1− (p + 1)2/4)

p

)
= p−

(
−3
p

)
solutions. However, we need to be careful to avoid double counting and to
examine when x2

1+x1x2+x2
2 = −a has a solution with x1 = x2. The equation

3x2
1 = −a will have two solutions if

(
−3a

p

)
= 1 and none if

(
−3a

p

)
= −1.

Hence the number of solutions to the equation 3x2
1 = −a is

(
−3a

p

)
+1. Thus

the number of solutions to (x1 − x2)(x2
1 + x1x2 + x2

2 + a) = 0 is

p +
(

p−
(
−3
p

))
−
((

−3a

p

)
+ 1
)

= 2p− 1−
(
−3
p

)
−
(
−3a

p

)
.

Thus∑
t∈Fp

a2
p, a, t =

(
2p− 1−

(
−3
p

)
−
(
−3a

p

))
(p− 1)

+
(

p2 −
(

2p− 1−
(
−3
p

)
−
(
−3a

p

)))
(−1).

The right side now simplifies to give the result.
�

Before proving Theorem 6, we need some preliminary lemmas.

Lemma 2. Let p ≡ 5 (mod 6) be prime. Then

(2.8)
p−1∑

d,e,f=1

(
ef(1 + e + f)

p

) ∑
y,z∈Fp

e

(
d(−(ey + fz)3 + ey3 + fz3)

p

)

= −p(p− 1)
(

1 +
(
−1
p

))
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+
p−1∑

d,e,f=1

(
e + ef + f

p

) ∑
y,z∈Fp

e

(
d fz(−f2(y + 1)3 + e2y3 + 1)

p

)
.

Proof. If z = 0, the left side of (2.8) becomes

S0 : =
p−1∑

d,e,f=1

(
ef(1 + e + f)

p

) ∑
y∈Fp

e

(
dy3e(1− e2)

p

)

= (p− 1)
p−1∑

e,f=1

(
ef(1 + e + f)

p

) ∑
y∈Fp

e

(
ye(1− e2)

p

)

= p(p− 1)

p−1∑
f=1

(
f(2 + f)

p

)
+

p−1∑
f=1

(
−f2

p

)
= p(p− 1)

p−1∑
f=1

(
2f−1 + 1

p

)
+

p−1∑
f=1

(
−1
p

)
= p(p− 1)

(
−1 + (p− 1)

(
−1
p

))
.

The second equality follows since {y3 : y ∈ Fp} = {y : y ∈ Fp} for the
primes p being considered, the third equality follows from (2.1) and the last
equality follows from (2.4).

If z 6= 0, then the left side of (2.8) equals

(2.9)

S1 :=
p−1∑

d,e,f,z=1

(
ef(1 + e + f)

p

) ∑
y∈Fp

e

(
d(−(ey + fz)3 + ey3 + fz3)

p

)
=

p−1∑
d,e,f,z=1

(
ef(1 + e + f)

p

) ∑
y∈Fp

e

(
dz3(−(eyz−1 + f)3 + e(yz−1)3 + f)

p

)
.

Now replace y by yz and then z3 by z (justified by the same argument as
above) and finally e by ef to get this last sum equals

p−1∑
d,e,f,z=1

(
e(1 + ef + f)

p

)
×
∑
y∈Fp

e

(
dfz(−f2(ey + 1)3 + ey3 + 1)

p

)
.

We wish to extend the last sum to include z = 0. If we set z = 0 on the
right side of the last equation (and denote the resulting sum by ”r.s.”) and
sum over d and y we get that

r.s. = p(p− 1)
p−1∑

e,f=1

(
e(1 + f(e + 1))

p

)
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= p(p− 1)

p−1∑
f=1

(
−1
p

)
+

p−2∑
e=1

p−1∑
f=1

(
e(1 + f(e + 1))

p

) .

Replace f by f(e + 1)−1 in the second sum above and then

r.s. = p(p− 1)

(p− 1)
(
−1
p

)
+

p−2∑
e=1

p−1∑
f=1

(
e(1 + f)

p

)
= p(p− 1)

(p− 1)
(
−1
p

)
+

p−2∑
e=1

(
e

p

) p−1∑
f=1

(
1 + f

p

)
= p(p− 1)

(
(p− 1)

(
−1
p

)
+
(
−
(
−1
p

))
(−1)

)
= p2(p− 1)

(
−1
p

)
.

It follows that the left side of (2.9) equals

− p2(p− 1)
(
−1
p

)
+

p−1∑
d,e,f=1

(
e(1 + ef + f)

p

) ∑
y,z∈Fp

e

(
dfz(−f2(ey + 1)3 + ey3 + 1)

p

)
,

and thus that the left side of (2.8) equals

S0 + S1 = −p(p− 1)
(

1 +
(
−1
p

))
+

p−1∑
d,e,f=1

(
e(1 + ef + f)

p

)(2.10)

×
∑

y,z∈Fp

e

(
dfz(−f2(ey + 1)3 + ey3 + 1)

p

)

= −p(p− 1)
(

1 +
(
−1
p

))
+

p−1∑
d,e,f=1

(
e + ef + f

p

)

×
∑

y,z∈Fp

e

(
dfz(−f2(y + 1)3 + e2y3 + 1)

p

)
.

The second equality in (2.10) follows upon replacing y by ye−1 and then e
by e−1. �
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Lemma 3. Let p ≡ 5 (mod 6) be prime. Then

S∗ :=
p−1∑

d,e,f=1

(
e + ef + f

p

) ∑
y,z∈Fp

e

(
dfz(−f2(y + 1)3 + e2y3 + 1)

p

)(2.11)

= 2p(p− 1)
(
−1 + (p− 1)

(
−1
p

))
− 3p(p− 1)

(
−2
p

)
+ p(p− 1)S∗∗,

where

S∗∗ :=
p−2∑

e, f=2, e2 6=f2

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)
.

Proof. Upon changing the order of summation slightly, we get that

S∗ =
p−1∑

e,f=1

(
e + ef + f

p

) p−1∑
d=1

∑
y,z∈Fp

e

(
dfz(−f2(y + 1)3 + e2y3 + 1)

p

)
If y = 0, the inner double sum over d and z is zero, unless f = ±1, if which
case it equals p(p− 1) and the right side of (2.11) equals

p(p− 1)

(
p−1∑
e=1

(
2e + 1

p

)
+

p−1∑
e=1

(
−1
p

))
= p(p− 1)

(
−1 + (p− 1)

(
−1
p

))
.

By similar reasoning, if y = −1, the right side of (2.11) also equals

p(p− 1)
(
−1 + (p− 1)

(
−1
p

))
.

Thus

S∗ = 2p(p− 1)
(
−1 + (p− 1)

(
−1
p

))(2.12)

+
p−2∑
y=1

p−1∑
e,f=1

(
e + ef + f

p

) p−1∑
d=1

∑
z∈Fp

e

(
dfz(−f2(y + 1)3 + e2y3 + 1)

p

)

= 2p(p− 1)
(
−1 + (p− 1)

(
−1
p

))
+

p−2∑
y=1

(
y(y + 1)

p

)

×
p−1∑

e,f=1

(
(e + f)y + e(1 + f)

p

) p−1∑
d=1

∑
z∈Fp

e

(
dfz((e2 − f2)y + 1− f2)

p

)
,

where the last equality follows upon replacing f by f(y + 1)−1 and e by
ey−1. The inner sum over d and z is zero unless

(e2 − f2)y + 1− f2 = 0,
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in which case the inner sum is p(p − 1). We distinguish the cases e2 = f2

and e2 6= f2. If e2 = f2, then necessarily e2 = f2 = 1 and the sum on the
right side of (2.12) becomes

(2.13)

p(p− 1)
p−2∑
y=1

(
y(y + 1)

p

)((
2(y + 1)

p

)
+
(

0
p

)
+
(
−2
p

)
+
(
−2y

p

))

= −3p(p− 1)
(
−2
p

)
.

If e2 6= f2 then

y =
f2 − 1
e2 − f2

,

and since y 6= 0,−1, we exclude f2 = 1 and e2 = 1. After substituting for y
in the sum in the final expression in (2.12), we find that
(2.14)

S∗ = 2p(p− 1)
(
−1 + (p− 1)

(
−1
p

))
− 3p(p− 1)

(
−2
p

)
+ p(p− 1)S∗∗,

where

(2.15) S∗∗ :=
p−2∑

e, f=2, e2 6=f2

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)
.

�

Lemma 4. Let p ≡ 5 (mod 6) be prime and let S∗∗ be as defined in Lemma
3. Then

S∗∗ =
p−1∑
e=0

p−1∑
f=0

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)

+ 2
(
−6
p

)
+ 3

(
−2
p

)
+ 3

(
−1
p

)
+ 2.

Proof. Clearly we can remove the restrictions f 6= e, f 6= 1 and e 6= −1
freely. If we set f = −e, we have that

p−2∑
e, f=2, e=−f

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)
=

p−2∑
e=2

(
−2e(1 + 2e)

p

)

= −
((

−6
p

)
+
(
−2
p

)
+
(
−1
p

))
.

The last equality follows from (2.4). Thus

S∗∗ =
p−2∑

e, f=2

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)
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+
(
−6
p

)
+
(
−2
p

)
+
(
−1
p

)
.

If f is set equal to 0 in the sum above we get

p−2∑
e=2

(
−e

p

)
= −1−

(
−1
p

)
.

If f is set equal to -1 in this sum we get

p−2∑
e=2

(
−2(2 + e)

p

)
= −

((
−4
p

)
+
(
−2
p

)
+
(
−6
p

))
= −

((
−1
p

)
+
(
−2
p

)
+
(
−6
p

))
.

Thus

S∗∗ =
p−2∑
e=2

p−1∑
f=0

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)

+ 2
((

−6
p

)
+
(
−2
p

)
+
(
−1
p

))
+ 1 +

(
−1
p

)
.

If we set e = 0 in this latest sum we get

p−1∑
f=0

(
−f(1− f)(−1 + f)

p

)
=

p−1∑
f=0,f 6=1

(
f

p

)
= −1.

If we set e = 1 in this sum we get

p−1∑
f=0

(
2(1− f)(2− f)(−1 + f)

p

)
=

p−1∑
f=0,f 6=1

(
−2(2− f)

p

)
= −

(
−2
p

)
.

Thus

S∗∗ =
p−1∑
e=0

p−1∑
f=0

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)

+ 2
(
−6
p

)
+ 3

(
−2
p

)
+ 3

(
−1
p

)
+ 2.

�

Lemma 5. Let p ≡ 5( mod 6) be prime. Then

p−1∑
e=0

p−1∑
f=0

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)
= p

(
2
p

)
+ 1.
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Proof. If f is replaced by f + 1 and then e is replaced by e + f , the value of
the double sum above does not change. Thus

p−1∑
e=0

p−1∑
f=0

(
(1 + e)(e− f)(1 + e− f)(−1 + f)

p

)
(2.16)

=
p−1∑
e=0

p−1∑
f=0

(
(1 + e)(e− f − 1)(e− f)f

p

)

=
p−1∑
e=0

p−1∑
f=0

(
(1 + e + f)(e− 1)ef

p

)

=
p−1∑
e=0

p−1∑
f=0

(
e(e− 1)

p

) p−1∑
f=0

(
(1 + e + f)f

p

)
.

We evaluate the inner sum using (2.3).

p−1∑
f=0

(
(1 + e + f)f

p

)
=

1
G2

p

p−1∑
f=0

p−1∑
d1,d2=1

(
d1d2

p

)
e

(
d1f + d2(1 + e + f)

p

)

=
1

G2
p

p−1∑
d1,d2=1

(
d1d2

p

)
e

(
d2(1 + e)

p

) p−1∑
f=0

e

(
f(d1 + d2)

p

)

=
p

G2
p

p−1∑
d2=1

(
−1
p

)
e

(
d2(1 + e)

p

)

=
p

G2
p

(
−1
p

) p−1∑
d2=1

e

(
d2(1 + e)

p

)
.

The next-to-last equality follows since the sum over f in the previous ex-
pression is 0, unless d1 = −d2, in which case this sum is p. The sum over d2

equals p− 1 if e = p− 1 and equals −1 otherwise. Hence the sum at (2.16)
equals

p

G2
p

(
−1
p

)(p−2∑
e=0

(
e(e− 1)

p

)
(−1) + (p− 1)

(
2
p

))

=
p

G2
p

(
−1
p

)((
2
p

)
+ 1 + (p− 1)

(
2
p

))
=

p

G2
p

(
−1
p

)(
p

(
2
p

)
+ 1
)

= p

(
2
p

)
+ 1,

the last equality following from the remark after (2.7). �
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Corollary 1. Let S∗ and S∗∗ be as defined in Lemma 3. Then

(i) S∗∗ = (p− 2)
(

2
p

)
+ 3

(
−2
p

)
+ 3

(
−1
p

)
+ 3,

(ii) S∗ = p(p− 1)
(

1 + (2p + 1)
(
−1
p

)
+ (p− 2)

(
2
p

))
.

Proof. Lemmas 4 and 5 and the fact that (−3|p) = −1 if p ≡ 5( mod 6) give
(i). Lemma 3 and part (i) give (ii). �

Theorem 6. Let p ≡ 5 (mod 6) be prime and let b ∈ F∗p. Then

(2.17)
p−1∑
t=0

a3
p, t, b = −p

(
(p− 2)

(
−2
p

)
+ 2p

)(
b

p

)
.

Proof. Let g be a generator of F∗p. It is a simple matter to show, using
(1.1), that

p−1∑
t=0

a3
p, t, b = −

p−1∑
t=0

a3
p, t, bg.

Thus the statement at (2.17) is equivalent to the statement

(2.18)
p−1∑
b=1

p−1∑
t=0

a3
p, t, b

(
b

p

)
= −p(p− 1)

(
(p− 2)

(
−2
p

)
+ 2p

)
.

Let S denote the left side of (2.18). From (1.1) and (2.3) it follows that

S = −
p−1∑
b=1

p−1∑
t=0

∑
x,y,z∈Fp

(
x3 + t x + b

p

)(
y3 + t y + b

p

)(
z3 + t z + b

p

)(
b

p

)

= − 1
G3

p

p−1∑
d,e,f=1

(
def

p

) ∑
x,y,z,t∈Fp

e

(
d(x3 + tx) + e(y3 + ty) + f(z3 + tz)

p

)

×
∑
b∈F∗p

(
b

p

)
e

(
b(d + e + f)

p

)

= − 1
G2

p

p−1∑
d,e,f=1

(
def

p

)(
d + e + f

p

)

×
∑

x,y,z,t∈Fp

e

(
d(x3 + tx) + e(y3 + ty) + f(z3 + tz)

p

)

= − 1
G2

p

p−1∑
d,e,f=1

(
def

p

)(
d + e + f

p

) ∑
x,y,z∈Fp

e

(
dx3 + ey3 + fz3

p

)

×
∑
t∈Fp

e

(
t(dx + ey + fz)

p

)



POINTS ON ELLIPTIC CURVES OVER A FINITE PRIME FIELD 15

The inner sum is zero, unless dx+ey+fz = 0 in Fp, in which case it equals
p. Upon letting x = −d−1(ey + fz), replacing e by de and f by fe, we get
that

S = − p

G2
p

p−1∑
d,e,f=1

(
ef(1 + e + f)

p

) ∑
y,z∈Fp

e

(
d(−(ey + fz)3 + ey3 + fz3)

p

)

=
p2(p− 1)

G2
p

(
1 +

(
−1
p

))

− p

G2
p

p−1∑
d,e,f=1

(
e + ef + f

p

) ∑
y,z∈Fp

e

(
dfz(−f2(y + 1)3 + e2y3 + 1)

p

)

=
p2(p− 1)

G2
p

(
1 +

(
−1
p

))
− p

G2
p

S∗

= −p2(p− 1)
G2

p

(
2p

(
−1
p

)
+ (p− 2)

(
2
p

))
= −p(p− 1)

(
2p + (p− 2)

(
−2
p

))
,

which was what needed to be shown, by (2.18). The second equality above
follows from Lemma 2. Above S∗ is as defined in Lemma 3 and in the next-
to-last equality we used Corollary 1, part (ii). In the last equality we used
once again the fact that p/G2

p(−1|p) = 1.
�

3. Concluding Remarks

Let p ≡ 5 (mod 6) be prime, b ∈ F∗p and k be an odd positive integer.
Define

fk(p) =
p−1∑
t=0

ak
p, t, b

(
b

p

)
.

(It is not difficult to show that the right side is independent of b ∈ F∗p)
By Theorem 6

f3(p) = −p

(
(p− 2)

(
−2
p

)
+ 2p

)
.

We have not been able to determine fk(p) for k ≥ 5 (We do not consider
even k, since a formula for each even k can be derived from Birch’s work in
[2]). We conclude with a table of values of fk(p) and small primes p ≡ 5
(mod 6), with the hope of encouraging others to work on this problem.
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Vorläufige Mitteilung, Nachr. Ges. Wiss. Göttingen I, Math.-phys. Kl. Fachgr. I Math.
Nr. 42 (1933), 253-262

[5] Ireland, Kenneth; Rosen, Michael A classical introduction to modern number theory.
Second edition. Graduate Texts in Mathematics, 84. Springer-Verlag, New York, 1990.
xiv+389 pp.

[6] Lidl, Rudolf; Niederreiter, Harald Finite fields. With a foreword by P. M. Cohn.
Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge
University Press, Cambridge, 1997. xiv+755 pp.

[7] Michel, Philippe Rang moyen de familles de courbes elliptiques et lois de Sato-Tate.
Monatsh. Math. 120 (1995), no. 2, 127–136.

[8] Miller, Steven J. One- and two-level densities for rational families of elliptic curves:
evidence for the underlying group symmetries. Compos. Math. 140 (2004), no. 4,
952–992

Trinity College, 300 Summit Street, Hartford, CT 06106-3100
E-mail address: Saiying.He@trincoll.edu

Mathematics Department, Trinity College, 300 Summit Street, Hartford,
CT 06106-3100

E-mail address: james.mclaughlin@trincoll.edu


