SOME ELEMENTARY PROPERTIES OF THE
DISTRIBUTION OF THE NUMBERS OF POINTS ON
ELLIPTIC CURVES OVER A FINITE PRIME FIELD

SAIYING HE AND J. MC LAUGHLIN

ABSTRACT. Let p > 5 be a prime and for a,b € Fp,, let E,, denote the
elliptic curve over F,, with equation 4> = z® + ax + b. As usual define
the trace of Frobenius ap, 4,5 by

#Ea,b(]Fp) =p +1-— ap,a,b-

We use elementary facts about exponential sums and known results
about binary quadratic forms over finite fields to evaluate the sums

p—1 2 p—1 2 p—1 3
Ztg]F Qp,t,b, ZtG]F Ap,a,t, Zt:() Qp,t,bs Zt:o ap,q,¢ and Zt:o Ap, ¢, b
P P

for primes p in various congruence classes.
As an example of our results, we prove the following: Let p = 5 (mod
6) be prime and let b € F,,. Then

jz_éai,t,b =-p ((p— 2) (_?2) + Qp) <§> _

1. INTRODUCTION

Let p > 5 be a prime and let [F), be the finite field of p elements. For a,b €
Fy, let E,} denote the elliptic curve over ), with equation y? =23 4+ax+b.
Denote by E, (IF,) the set of Fp— rational points on the curve E, ; and
define the trace of Frobenius, a,, by the equation

#Eq. v(Fp) =p+1—ap.

A simple counting argument makes it clear that

(1.1) ap==3 (MM) ,

z€F, p

where (5) denotes the Legendre symbol. We recall some of the arithmetic
properties of the distribution of a,. The following theorem is due to Hasse
[4]:

Theorem 1. The integer a, satisfies

—2y/p < ap < 24/p.

Date: August 13th, 2004.

1991 Mathematics Subject Classification. 11G20.

Key words and phrases. Elliptic Curves, Finite Fields.
1



2 SAIYING HE AND J. MC LAUGHLIN

Since we wish to look at how a, varies as the coefficients a and b of the
elliptic curve vary, it is convenient for our purposes to write a, for the elliptic
curve E, p as ap q.p. The following result is well known (an easy consequence
of the remarks on page 36 of [3], for example).

Proposition 1. Let the function f : Z — Ny be defined by setting
(1.2) (k) =4{(a,b) € F, x F)  ap 4,6 = k}.
Then for each integer k,

p—1

S|/ b)

The following result can be found in [2] (page 57).
Proposition 2. Define the function f1: Z — Ny by setting
(1.3) fi(k) = #{(a,b) € Fy x Fp \ {(0,0)} = ap a,p = k}.
Then for each integer k,

fi(k) = fi(=k).

The following result is also known ([3], page 37, for example).

Proposition 3. Let v be a quadratic non-residue modulo p. Then
(p,a,b = —0p,v2a,v3b-

To better understand the distribution of the a, 5 it makes sense to study
the moments. The j -invariant of the elliptic curve E, is defined by

283343
" 4a® 42702
provided 4a3 + 27b? # 0. Michel showed in [7] that if {Ea),bt) - t € Fp} is

a one-parameter family of elliptic curves with a(¢) and b(t) polynomials in ¢
such that

J

2833a(t)3
4a(t)® + 27b(t)?’

j(t) =
is non-constant, then

Z a;l%,a(t),b(t) =p>+0(*?).
teF,

In [2] Birch defined

for integral R > 1, and proved
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Theorem 2. ! For p > 5,

Sa(p) = (p — 1)(14p° — 28p® — 20p° — 7p),
Ss(p) = (p — 1)(42p° — 90p" — 75p* — 35p* — 9p — 7(p)),
where T(p) is Ramanujan’s T-function.

Theorem 2 evaluates sums of the form Y 77, o, b 0 12313 p in terms of p and
these results were derived by Birch as consequences of the Selberg trace
formula .

In this present paper we instead use elementary facts about exponential
sums and known results about binary quadratic forms over finite fields to

p—1 2 p—1 2
evaluate the sums Zteﬂ?p ap. b, Zter Apa,ty Y10 a ¢ b > t—0 Up a,¢ and
p—1 3 . . . .
Y@ b for primes p in particular congruence classes. In particular, we
prove the following theorems.

Theorem 3. Let p > 5 be a prime, and a, b € F,. Then

(ZZ)ZtE]Fp ap7 a’t = 0'

This result is elementary but we prove it for the sake of completeness.

Theorem 4. Let p =5 (mod 6) be prime and let b € F,. Then

(1.4) I:Z_éazzat,b_p@_l_ <_pl>>

Theorem 5. Let p > 5 be prime and let a € F,. Then

w Eeerb-()-(2)

Theorem 4 and Theorem 5 could be deduced from Theorem 2, but we
believe it is of interest to give elementary proofs that do not use the Selberg
trace formula.

Theorem 6. Let p =5 (mod 6) be prime and let b € Fy. Then

St (o0 (2) 1) (1)

n [2], Birch incorrectly omitted the factor of p — 1 in his statement of Theorem 2.
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2. PROOF OF THE THEOREMS

We introduce some standard notation. Define e(j/p) := exp(27ij/p), so
that

(2.1) lee <J;> _ {g: plj,

t=0 (jvp) = 1

Define
(2.2) G, = @, p=1( mod 4),
iv/p, p=3( mod4).

Lemma 1. Let <5> denote the Legendre symbol, modulo p. Then

-1
z 1% (d> (dz>
2.3 Z) = = el Z2) .
23 <p> Gp ; p p
Proof. See [1], Theorem 1.1.5 and Theorem 1.5.2. O
We will occasionally use the fact that if H is a subset of I,

= (-2

delF,\H deH

We will also occasionally make use of some implications of the Law of Qua-
dratic Reciprocity (see [5], page 53, for example).

Theorem 7. Let p and q be odd primes. Then
(a)(3) = (~nle-vr2.

() (%) — (—1)@*-1/8,

() (%) (%) — (—1)(-1/2)(@-1)/2),

We now prove Theorems 3, 4, 5 and 6,
Theorem 3. Let p > 5 be a prime, and a, b € F,. Then

(1) 2ter, Op.t.b = —P (%)7
(1) X ier, Ap,a,t =0
Proof. (i) From (1.1) and (2.3), it follows that

p—1
1 [d d(x® +b) tdx
Sww=- g (5) (") 2 (%)
teF, z€F, d=1 teF,

The inner sum over ¢ is zero unless x = 0, in which case it equals to p. The
left side therefore can be simplified to give

p—1
d db b
==X ()¢ ()=~ (5):
ter, =1 TP \P p p
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The last equality follows from (2.3).
(ii): From (1.1) and (2.3 ) it follows that

S EE 4 () e (2) o

te T, z€F, d= 1 teF,,

The inner sum over t is equal to 0, by (2.1), since 1 <d <p— 1.

([
The result at (ii) follows also, in the case of primes p = 3 (mod 4), from the
fact that ap q,¢+ = —ap, a,p—¢t- However, this is not the case for primes p =1

(mod 4). For example,
{a131,¢: 0 <t <12} ={-6,-4,2,-1,0,5,1,1,5,0,—1,2, —4}.

The results in Theorem 3 are almost certainly known, although we have not
been able to find a reference.
Theorem 4. Let p =5 (mod 6) be prime and let b € F;. Then

p—1 1

2 -
dari,=p <p— 1- ()) :
t=0 p

Proof. From (1.1) and (2.3) it follows that

D = 1 pi (dlpd2> > e(dl(x%b);dg(xgm))

telF, d1,d2=1 x1,22€F,
d1.1‘1 + ngL’Q)
xD el ————
tEF,
The inner sum over t is zero, unless x1 = —dl_ daxe(mod p), in which case

it equals p. Thus

p—1 -2 3(12 2
2 _ P dido b(dl + dg) dl d2$2(d1 — d2)
Sdu=g 3 (MR)e(MIR) ¥ o (hsg)),

telF, P dy,do=1 z2€F,

Since the map = — 23 is one-to-one on Fj,, when p = 5(mod 6), the 3 in
the inner sum can be replaced by x2. Thus the inner sum is zero unless
d3 — d? = 0(mod p), in which case it equals p. It follows that

2 (8- (2 £ () (4457%)

teF,, di=1 di=1

50 () )5 ()6-(3)

We have once again used (2.3) to compute the sums, noting that the sums
above start with d; = 1. The result now follows since p/ GZQ7 x (—=1|p) =1 for
all primes p > 3.

S|
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O

Remarks: (1) It is clear that the results will remain true if a(t) = t is

replaced by any function a(t) which is one-to-one on F,.
(2) It is more difficult to determine the values taken by > ,cp a;%,t,b for
primes p = 1(mod 6). This is principally because the map = — 22 is not
one-to-one on F), for these primes (so that (2.1) cannot be used so easily
to simplify the summation), but also because the answer depends on which
coset b belongs to in F}/F3.

Before proving the next theorem, it is necessary to recall a result about
quadratic forms over finite fields. Let ¢ be a power of an odd prime and let
n denote the quadratic character on F (so that if ¢ = p, an odd prime, then
n(c) = (¢/p), the Legendre symbol). The function v is defined on F, by

-1 F*
(2.5) ooy =4 b UeEF
qg—1, b=0.

Suppose

f($1, e ,l’n) == Z aijxixj, with aij == ajl-,
ij=1
is a quadratic form over F,, with associated matrix A = (a;;) and let A
denote the determinant of A (f is non-degenerate if A # 0).

Theorem 8. Let f be a non-degenerate quadratic form over Fy, q odd, in an
even number n of indeterminates. Then for b € F, the number of solutions

of the equation f(x1,...,2n) =b in F is
(2.6) ¢+ u(b)g "D 2 (<1720
Proof. See [6], pp 282-293. O

Theorem 5. Let p > 5 be prime and let a € F,. Then

L, -3 ~3a
ayar=p0(p—1-(—]—-(—]]-
=0 p p

Proof. Once again (1.1) and (2.3) give that

-1
ZCL2 tzf pz: <d1d2> Z e<d1(3c‘;’+a:c1)+d2(sc%+ax2))
p7a’7 2

telF, P dy,da=1 r1,22€F), p

(Y <tb d1+d2)>

tel,
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The inner sum over ¢ is zero, unless d; = —da(mod p), in which case it equals
p. Thus

— p—1 3 .3
(2.7) Eaiat:é;<l> }: Ze<d1($1+afc1 xy axz))
Yy p
p

telF, x1,22€F, di=1 p

_ Z pz_ie<d1(l‘1$2)($%+$1IE2+$%+CL>>'

:El,:EQGFp di=1 p

We have used the fact that p/G2x (—1|p) = 1 for all primes p > 3. The inner
sum over dj equals —1, unless one of the factors x1 — xo, x% + x129 + ZL'% +a
equals 0, in which case the sum is p — 1. The equation 1 = x2 has p
solutions and, by (2.6) with ¢ = p, n = 2, f(x1,72) = 2% + z122 + 23 and

A= ((p+11)/2 (p+11)/2), the equation x% + z129 + x% = —a has
—1(1 - (p+1)2/4 -3
(o) (SR DYDY (=5
p p
solutions. However, we need to be careful to avoid double counting and to
examine when IL‘%—I—IL‘L’L‘Q—HL‘% = —a has a solution with 1 = x2. The equation
322 = —a will have two solutions if (773“) = 1 and none if (%"’) = —1.
Hence the number of solutions to the equation 3z? = —a is (%) +1. Thus

the number of solutions to (z1 — z2)(23 + x122 + 23 +a) =0 is
-3 —3a -3 —3a
(- (5))-(57) ) 2= (5) - (57)
p p p p
Thus

St oot (3)os
(o))

The right side now simplifies to give the result.

Before proving Theorem 6, we need some preliminary lemmas.

Lemma 2. Let p =5 (mod 6) be prime. Then

(2.8) pi (M> 3 e<d(_(6?/+fz)3+ey3+fz3)>

d.e,f=1 p p

y,z€F,
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N Z <e+ef+f> Z e(dfz(—fQ(y+1)3+62y3+1)>'

d.e, f=1 p y,2€F, p

Proof. If z = 0, the left side of (2.8) becomes

Som 3 (LUt yo (W)

p =t p

C 1) <ef(1+e+f)> 26(96062))

p el p
=plp-1) (

505050
-1

(55 6)

en(2)

The second equality follows since {y> : y € F,} = {y : y € F,} for the
primes p being considered, the third equality follows from (2.1) and the last
equality follows from (2.4).

If z # 0, then the left side of (2.8) equals

~

=plp—1)

(2.9)

5 ”i <ef(1+e+f)> Ze<d(—(ey+fz)3+ey3+fz3)>:

d.e,f,z=1 p S P

d787f7'z:1 yeIFP

Now replace y by yz and then z3 by z (justified by the same argument as
above) and finally e by ef to get this last sum equals

5 (<1+f+f>> x> e (dfz(—f2(€y+ eyt U) |

de,f,z=1 p y€ly P

We wish to extend the last sum to include z = 0. If we set z = 0 on the
right side of the last equation (and denote the resulting sum by ”"r.s.”) and
sum over d and y we get that

r.s. = p(p — 1) pi <e(1+f(e“)>>

e, f=1 p
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oo (£G)-EE ()

f=1 e=1 f=1

Replace f by f(e +1)~! in the second sum above and then

(2))
PIES)
7))

1

r.s.=p(p—1) ((p Y <_Pl> ! p:: 1

=p(p—1) ((p1< >+pj 5

<
o0 (5 (o
e (3)

It follows that the left side of (2.9) equals

s <e(1+;f+f)> 5 e<dfz(—f2(ey+p1)3+ey3+1)>7

y,z€F,
and thus that the left side of (2.8) equals

(2.10)

ses=e-n (- (3))+ 5 (52)

(dfz (—f2ey +1)2 +ey® + 1))
p

%
o () 8 (2429
E;

<dfz (—f2(y+1)° + e*y® + 1))
p

The second equality in (2.10) follows upon replacing y by ye~! and then e
by e~ 1. O
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Lemma 3. Let p =5 (mod 6) be prime. Then

(2.11)
=21 (<1461 (21) ~mo -1 () +alp - 1,
where

p—2
st =Y <(1 te)le—f)l+e—[f)(-1 +f)> ‘

e f=2, 2 f? b

Proof. Upon changing the order of summation slightly, we get that

o ’S (e—i—ef—i—f)z > <dfz f2(y+110)3+e2y3+1))

e, f=1 d=11y,z€Fyp

If y = 0, the inner double sum over d and z is zero, unless f = 41, if which
case it equals p(p — 1) and the right side of (2.11) equals
1

w0 (& (58 (5) v (o v-n(3)

e=1 e=1

By similar reasoning, if y = —1, the right side of (2.11) also equals
Thus

plp—1) <—1 +(-1) (_pl>) :
(2.12)

S = 2p(p—1) (—1 Fp-1) (_1>)

1

2 <e+ef+f>pz: e(dfz( FAy+1)3 +62y3+1)>

p p

_l’_

y=le,f=1 =1 2€F,

=2p(p—1)<—1+(p—1 <_p1 >+pj< y+1>

Y

e+fy+e ) (dfz e —f2>y+1—f2)>
X )
Z< dleZ]F p

e,f=1

where the last equality follows upon replacing f by f(y 4+ 1)~! and e by
ey~!. The inner sum over d and z is zero unless

(e —fy+1-f=0,
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in which case the inner sum is p(p — 1). We distinguish the cases e? = f2
and e? # f2. If €2 = f2, then necessarily 2 = f? = 1 and the sum on the
right side of (2.12) becomes

(2.13)

S () (50 () (5)+ (57)

y=1

If €2 # f? then
_ -1
Y= m>
and since y # 0, —1, we exclude f2 =1 and e? = 1. After substituting for y
in the sum in the final expression in (2.12), we find that

(2.14)
57 =2~ 1) (<14 G- (2]~ 301 (22) +ao- 5™,
::115) goe S (et pose= it

€, f:27 627£f2
[l

Lemma 4. Let p =5 (mod 6) be prime and let S** be as defined in Lemma
3. Then

p—1p—1
5 =33 <(1 te)le—fll+e— (=1 +f)>

p

(5)2(3)(3)

Proof. Clearly we can remove the restrictions f # e, f # 1 and e # —1
freely. If we set f = —e, we have that

1022 <(1+e)(e—f)(1+6_f)(_1+f)>:pz2<_26(1+26)>

p p

()G G))
=—((=)+(=)+(—))-
p p p
The last equality follows from (2.4). Thus

p—2
TS ((1 +e)le— f)(l;re —f(=1 +f)>

e=0 f=0

€, f:27 esz e=2

e7f:2



12 SAIYING HE AND J. MC LAUGHLIN

()4 @6)

If f is set equal to 0 in the sum above we get

5(3)-6)

If f is set equal to -1 in this sum we get
S ()« ()4 () + ()
() () ().

p=2p] 1+e)(e— 1+e— -1
ZZ(( +e)le—f)l+e— f)( +f)>

Thus

S** —
p

—6 -2 -1 -1
()G G+ 5)
p p p p
If we set e = 0 in this latest sum we get

I)i(_f(l_f;(_Hf)): pzl (;:):_1.

/=0 f=0.f#1

If we set e = 1 in this sum we get

S () - 5 (250 (3)

e=2 f=0

=0 F=07#1
Thus

Lol i e—Hlre—f(—1+f
s =55 (Wrale=NlLre= 1)

e=0 f=0
- ) -1
r2(2) s () vs(r) 42
p p p
Lemma 5. Let p = 5( mod 6) be prime. Then

%’i( (1+e)( e_f)(1;e—f)(—1+f)> =p<;)+1-

e=0 f=0
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Proof. If f is replaced by f + 1 and then e is replaced by e + f, the value of
the double sum above does not change. Thus

p—1p—1
(2.16) ZZ(1+6 f)(1+6’—f)(—1+f))

e=0 f=0 p

1

1p

bS]
|

<(1 +e)(e— fp— (e - f)f)

I
o
]
()
’E*ﬁ
= O

=
—

[
(]
(]

<(1+e—|—fp)(e—1)ef>

(O (225220

£=0

@
I
= O
1T
= o

3

0

@
I

T
o

We evaluate the inner sum using (2.3).

Z%<1+e+f )_12p L <d1pd2)e<d1f+d2(;+e+f)>
P 1

= f=0d1,d2=

1% ; < <d2(1+e>p_16< d1+d2))
1

)
-5 (5) (")
(

The next-to-last equality follows since the sum over f in the previous ex-
pression is 0, unless d; = —ds, in which case this sum is p. The sum over do
equals p — 1 if e = p — 1 and equals —1 otherwise. Hence the sum at (2.16)

SREE) e ()
()00
460 )

the last equality following from the remark after (2.7). O

=0
e

2
Gp
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Corollary 1. Let S* and S** be as defined in Lemma 3. Then

TN e S E
@ s =p-0 (1@ () -2 (2)).

Proof. Lemmas 4 and 5 and the fact that (—3|p) = —1 if p = 5(mod 6) give
(i). Lemma 3 and part (i) give (ii). O

Theorem 6. Let p =5 (mod 6) be prime and let b € Fy. Then

(2.17) jz_éaf;,t,b = —p< —2) < p2> +2p> <Z> '

Proof. Let g be a generator of ). It is a simple matter to show, using

(1.1), that
p—1

p—1
3 _ 3
Z ap,t,b = — Z Ap, t,bg-
t=0 t=0

Thus the statement at (2.17) is equivalent to the statement

(2.18) pipiap ¢ b< > =-plp—1) <(p 2) ( p2> +2p>

b=1 =0
Let S denote the left side of (2.18). From (1.1) and (2.3) it follows that

pzipzé 5 <x +ta:+b> <y3+]tgy+b> <z3+;z+b> <b>

b=1 t=0 z,y,z€lF), p

:_é pi <d€f) > 6<d(x3—I—t:v)+e(y3+ty)—|—f(z3+tz)>

p d7e7f:1 p I7yazvt€Fp p

5 (2o (om0

1 K= fdef\ (d+e+f
a2 () ()
d(g;3+t:c)+e(y3+ty)+f(z3+tz)>
> of -

X
z,y,2,tEF,

1 B [def\ (d+e+f did + ey + [
a2, (57 )Ze<“ )

P de,f=1 z,y,2€Fp
t(d

telF,
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The inner sum is zero, unless dr +ey+ fz = 0 in F,,, in which case it equals
p. Upon letting x = —d~!(ey + fz), replacing e by de and f by fe, we get

- Zf‘i < 1+e+f)) 3 e(d(—(ey—i—fz)z+ey3+fz3)>
pp—1)

G

<e+ef+f> Z . (dfz(—f2(y+1)3+62y3+1)>

p yvzelFP p

(1 (3)
A2 (3) 0 0(3)
zp(pl)(2p+(p2)<_p2>)v

which was what needed to be shown, by (2.18). The second equality above

follows from Lemma 2. Above S* is as defined in Lemma 3 and in the next-
to-last equality we used Corollary 1, part (ii). In the last equality we used
once again the fact that p/G2(—1|p) = 1.

ﬁ
T2
Py

0

3. CONCLUDING REMARKS

Let p = 5 (mod 6) be prime, b € F; and k be an odd positive integer.

Define
50 =Y ko)

t=0
(It is not difficult to show that the right side is independent of b € Fy)

By Theorem 6
fs(p) =—p ((p 2) ( p2> +2p>

We have not been able to determine fi(p) for £ > 5 (We do not consider
even k, since a formula for each even k can be derived from Birch’s work in
[2]). We conclude with a table of values of fx(p) and small primes p = 5
(mod 6), with the hope of encouraging others to work on this problem.
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