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Abstract. This work characterizes the vanishing of the Fourier coefficients of all CM eta-quotients.
As consequences, we recover Serre’s characterization about that of η(12z)2 and recent results of
Chang on the p-th coefficients of η(4z)6 and η(6z)4. Moreover, we generalize the results on the
cases of weight 1 to the setting of binary quadratic forms.

1. Introduction

In Serre’s work [12] on applications of his groundbreaking theory [11] on connections between
CM newforms and lacunarity, he characterizes the vanishingness of the coefficients of the infinite
products

q
∞∏
n=1

(
1− q12n

)2
=

∞∑
n=1

A (n) qn, q
∞∏
n=1

(
1− q6n

)4
=

∞∑
n=1

B (n) qn, q
∞∏
n=1

(
1− q4n

)6
=

∞∑
n=1

C (n) qn

and shows that

(1) A (n) = 0 if and only if n ̸≡ 1 (mod 12), or n ≡ 1 (mod 12) has a prime factor p ̸≡ 1
(mod 12) with odd exponent,

(2) B (n) = 0 if and only if n ̸≡ 1 (mod 6), or n ≡ 1 (mod 6) has a prime factor p ≡ 2 (mod 3)
with odd exponent,

(3) C (n) = 0 if and only if n ̸≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor p ≡ 3 (mod 4)
with odd exponent.

This characterization of the vanishing also justifies that the series expansions for the products are

lacunary. Setting q = e2πiz for Im (z) > 0 and writing η (z) = q
1
24
∏∞

n=1 (1− qn) for the Dedekind
eta function, it follows that these infinite products are all actually eta quotients, namely, η(12z)2,

η (6z)4 and η (4z)6, which as functions in z are CM newforms by Q[i] or Q[
√
−3]. We call an eta

quotient that is a CM newform a CM eta quotient.
Martin [8] proved there are only finitely many eta quotients that are newforms and thus, there

are only a finite number of CM eta quotients. Martin’s work allows us to deduce that there are
exactly 28 CM eta quotients. This motivates the present work describing necessary and sufficient
conditions under which the Fourier coefficients of the CM eta quotients vanish. The number of
CM eta quotients under consideration may be reduced by taking into account twists. For a series
f (q) =

∑∞
n=1 a (n) q

n, the coefficients of the series can be twisted by an arithmetic function χ
via (f ⊗ χ) (q) :=

∑∞
n=1 χ (n) a (n) qn. The twist f ⊗ χ has the same support as f assuming that

χ (n) = 0 only if a (n) = 0. In light of this, one can reduce the number of CM eta quotients in
Martin’s list inequivalent up to twists. These CM eta quotients are tabulated in Table 1. An index
is assigned to each eta quotient in Table 1 for further reference.
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Table 1: A full list of CM eta quotients up to twisting

Index Modular Form Weight Level CM

1 η (3z)2 η (9z)2 2 27 Q[
√
−3]

2 η (4z)2 η (8z)2 2 32 Q[i]

3 η (6z)4 2 36 Q[
√
−3]

4 η (z)2 η (2z) η (4z) η (8z)2 3 8 Q[
√
−2]

5 η (z)3 η (7z)3 3 7 Q[
√
−7]

6 η (2z)3 η (6z)3 3 12 Q[
√
−3]

7 η (4z)6 3 16 Q[i]

8 η(4z)5η(8z)5

η(2z)2η(16z)2
3 32 Q[

√
−2]

9 η (3z)8 4 8 Q[
√
−3]

10 η (z)4 η (2z)2 η (4z)4 5 4 Q[i]

11 η(8z)38

η(4z)14η(16z)14
5 64 Q[i]

12 η (3z) η (21z) 1 63 Q[
√
−3],Q[

√
−7]

13 η (8z) η (16z) 1 128 Q[i],Q[
√
−2]

14 η (12z)2 1 144 Q[i],Q[
√
−3]

15 η (4z) η (20z) 1 80 Q[i],Q[
√
−5]

16 η (z) η (23z) 1 23 Q[
√
−23]

17 η (2z) η (22z) 1 44 Q[
√
−11]

18 η (6z) η (18z) 1 108 Q[
√
−3]

For the reader’s reference, the remaining ten CM eta quotients and their relations with those in
Table 1 are listed as follows:

η (4z)9 η (12z)9

η (2z)3 η (6z)3 η (8z)3 η (24z)3
= η (2z)3 η (6z)3 ⊗

(
−4

n

)
,

η (8z)18

η (4z)6 η (16z)6
= η (4z)6 ⊗

(
−8

n

)
,

η (8z)8

η (4z)2 η (16z)2
= η (4z)2 η (8z)2 ⊗

(
−8

n

)
,

η (12z)12

η (6z)4 η (24z)4
= η (6z)4 ⊗

(
−4

n

)
,

η (4z)3 η (44z)3

η (2z) η (8z) η (22z) η (88z)
= η (2z) η (22z)⊗

(
−4

n

)
,

η (8z)3 η (40z)3

η (4z) η (16z) η (20z) η (80z)
= η (4z) η (20z)⊗

(
−8

n

)
,

η (16z)4

η (8z) η (32z)
= η (8z) η (16z)⊗ (−1)

n−1
8 ,

η (12z)3 η (36z)3

η (6z) η (18z) η (24z) η (72z)
= η (6z) η (18z)⊗

(
−4

n

)
,
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η (24z)6

η (12z)2 η (48z)2
= η (12z)2 ⊗

(
−8

n

)
.

For each eta quotient in Table 1, we use the index i from the first column to define a corresponding
indexed function fi (z) =

∏
d|N η (dz)rd , and write fi (z) =

∑∞
n=1 ai (n) q

n. Theorem 1.1 is the main

result of this work and characterizes the vanishing of the coefficients of each indexed eta quotient.

Theorem 1.1. If ai(n) denotes the coefficient of qn in the eta quotient of index i in Table 1, then

(1) a1 (n) = 0 if and only if n ̸≡ 1 (mod 3), or n ≡ 1 (mod 3) has a prime factor p ≡ 2
(mod 3) with odd exponent,

(2) a2 (n) = 0 if and only if n ̸≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor p ≡ 3
(mod 4) with odd exponent,

(3) a3 (n) = 0 if and only if n ̸≡ 1 (mod 6), or n ≡ 1 (mod 6) has a prime factor p ≡ 2
(mod 3) with odd exponent,

(4) a4 (n) = 0 if and only if n has a prime factor p ≡ 5, 7 (mod 8) with odd exponent,
(5) a5 (n) = 0 if and only if n has a prime factor p ≡ 3, 5, 6 (mod 7) with odd exponent,
(6) a6 (n) = 0 if and only if n ̸≡ 1 (mod 2), or n ≡ 1 (mod 2) has a prime factor p ≡ 2 mod 3

with odd exponent,
(7) a7 (n) = 0 if and only if n ̸≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor p ≡ 3

(mod 4) with odd exponent,
(8) a8 (n) = 0 if and only if n ̸≡ 1 (mod 2), or n ≡ 1 (mod 2) has a prime factor p ≡ 5, 7

(mod 8) with odd exponent,
(9) a9 (n) = 0 if and only if n ̸≡ 1 (mod 3), or n ≡ 1 (mod 3) has a prime factor p ≡ 2

(mod 3) with odd exponent,
(10) a10 (n) = 0 if and only if n has a prime factor p ≡ 3 (mod 4) with odd exponent,
(11) a11 (n) = 0 if and only if n ̸≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor p ≡ 3

(mod 4) with odd exponent,
(12) a12 (n) = 0 if and only if n ̸≡ 1 (mod 3), or n ≡ 1 (mod 3) has a prime factor p ̸≡ 1, 4, 7, 16

(mod 21) with odd exponent,
(13) a13 (n) = 0 if and only if n ̸≡ 1 (mod 8), or n ≡ 1 (mod 8) has a prime factor p ̸≡ 1

(mod 8) with odd exponent,
(14) a14 (n) = 0 if and only if n ̸≡ 1 (mod 12), or n ≡ 1 (mod 12) has a prime factor p ̸≡ 1

(mod 12) with odd exponent,
(15) a15 (n) = 0 if and only if n ̸≡ 1 (mod 4), or n ≡ 1 (mod 4) has a prime factor p ̸≡ 1, 9

(mod 20) with odd exponent,
(16) a16 (n) = 0 if and only if n has a prime factor p not a square modulo 23 with odd exponent

or a prime factor p not equal to 23 that is representable by 2x2 + xy + 3y2 with exponent
ep ≡ 2 (mod 3),

(17) a17 (n) = 0 if and only if n ̸≡ 1 (mod 2), or n ≡ 1 (mod 2) has a prime factor p not a
square modulo 11 or a prime factor p not equal to 11 that is representable by 3x2+2xy+4y2

with exponent ep ≡ 2 (mod 3),
(18) a18 (n) = 0 if and only if n ̸≡ 1 (mod 6), or n ≡ 1 (mod 6) has a prime factor p ≡

2 (mod 3) with odd exponent, or a prime factor p ≡ 1 (mod 3) that is representable by
4x2 + 2xy + 7y2 with exponent ep ≡ 2 (mod 3).

The remainder of this work is organized as follows. In Section 2, we review the notion of CM
newforms and their fundamentals, as well as express all the CM eta quotients in Table 1 in terms of
generalized theta functions. Proofs of Theorem 1.1 are distributed into the subsequent three sections
in accordance with their commonness. In the final section, we conclude with generalizations of the
results on the cases of weight 1 in terms of binary quadratic forms.
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2. Review of CM newforms and their basic properties

Let f (z) =
∑∞

n=1 a (n) q
n be a newform of weight k and level Γ0 (N) with some character χ.

Then one can first recall that its Fourier coefficients a (n) satisfy the recursive relation

(2.1) a (ℓ) a (n) = a (ℓn) + χ (ℓ) ℓk−1a (n/ℓ)

for any positive integer n and any prime ℓ, where a (x) is set to be 0 if x is not an integer, and
possess the multiplicative property that a (mn) = a (m) a (n) for any positive integers m,n such
that gcd (m,n) = 1. Therefore, investigations on a (n) can be boiled down to analysis on a (p) for
p prime.

For any Dirichlent character ϕ of conductor m, a newform f (z) is said to be with CM by ϕ
if a (p)ϕ (p) = a (p) for all p ∤ Nm, also called a CM newform by ϕ. Characterizations of CM
newforms for certain different cases have been established by Ribet [10] and Kani [6], which are
briefly summarized as follows.

2.1. CM newforms of weight k > 1. It is known [4, (6.3)] that a CM newform of weight k > 1
exists only if ϕ is a quadratic character associated to some quadratic field K. In such case, f (z) is
also called a CM newform byK. In his groundbreaking work [10], Ribet gives a full characterization
of such newforms and justifies that any CM newform of weight k > 1 by a quadratic field K must
come from a Hecke character ψK associated to K and be of the form

f (z) =
∑

a⊂OK
integral

ψK (a)N (a)
k−1
2 qN (a),

where N (·) denotes the norm of an ideal. In particular, when K is imaginary of discriminant
−d < 0 and class number 1, one can show (see, e.g., [5, Corollary 2.2]) that f (z) must be a linear
combination of the generalized theta functions∑

α∈β+m

αk−1qN (α) over β ∈ (OK/m)×

for some integral ideal m with N (m) = N/d. Building upon this, one can explicitly express the
CM eta quotients of weight k > 1 in Table 1 in terms of generalized theta functions and obtain the
following lemma.

Lemma 2.1. Write ζ3 for the primitive third root of unity e
2πi
3 . Then the following identities hold.

η (3z)2 η (9z)2 =
∞∑

m,n=−∞
((3m+ 1) + (3n) ζ3) q

N ((3m+1)+(3n)ζ3),(2.2)

η (4z)2 η (8z)2 =
∞∑

m,n=−∞
(2m− 2n+ 1 + (2m+ 2n) i) qN (2m−2n+1+(2m+2n)i),(2.3)

η (6z)4 =
∞∑

m,n=−∞
(2m− 4n+ 1 + (4m− 2n) ζ3) q

N (2m−4n+1+(4m−2n)ζ3),(2.4)

η (z)2 η (2z) η (4z) η (8z)2 =
1

2

∞∑
m,n=−∞

(
m+ n

√
−2

)2
qN(m+n

√
−2),

(2.5)

η (z)3 η (7z)3 =
1

2

∞∑
m,n=−∞

(
m+ n

1 +
√
−7

2

)2

q
N

(
m+n 1+

√
−7

2

)
,(2.6)
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η (2z)3 η (6z)3 =
1

2

∞∑
m,n=−∞

(m+ n+ (2n)ζ3)
2 qN (m+n+(2n)ζ3),(2.7)

η (4z)6 =
1

2

∞∑
m,n=−∞

(2m+ 1 + 2ni)2 qN (2m+1+2ni),(2.8)

η (4z)5 η (8z)5

η (2z)2 η (16z)2
=

1

2

∞∑
m,n=−∞

(
2m+ 1 + 2n

√
−2

)2
qN(2m+1+2n

√
−2)(2.9)

− 1

2

∞∑
m,n=−∞

(
2m+ 1 + (2n+ 1)

√
−2

)2
qN(2m+1+(2n+1)

√
−2),

η (3z)8 =
1

3

∞∑
m,n=−∞

((m− 2n+ 1) + (2m− n) ζ3)
3 qN ((m−2n+1)+(2m−n)ζ3),(2.10)

η (z)4 η (2z)2 η (4z)4 =
1

4

∞∑
m,n=−∞

(m+ ni)4 qN (m+ni),(2.11)

η (8z)38

η (4z)14 η (16z)14
=

∞∑
m,n=−∞

(4m+ 1 + 4ni)4 qN (4m+1+4ni)(2.12)

−
∞∑

m,n=−∞
(4m+ 1 + (4n+ 2) i)4 qN (4m+1+(4n+2)i).

Remark 2.1. Identities (2.6)–(2.8) were first discovered and proved by Chan et al. [1] using
properties of spherical theta functions.

Remark 2.2. In recent work [2], using a different approach Chang characterizes a3 (p) for prime
p ≡ 1 (mod 6) and a7 (p) for prime p ≡ 1 (mod 4) and shows that a3 (p) = X + Y for integers X,
Y such that 2X ≡ Y + 1 (mod 6) and X ≡ 1 (mod 2), and a7 (p) = 2

(
X2 − Y 2

)
for integers X,

Y such that X2 + Y 2 = p and X ≡ 1 (mod 2) and Y ≡ 0 (mod 2). A careful inspection of (2.4)
and (2.8) leads one to recover Chang’s results.

2.2. CM newforms of weight 1. In recent work [6], Kani extends Ribet’s results to the case of
CM newforms of weight 1 and level Γ0 (D) with character

(−D
n

)
by an imaginary quadratic field

K = Q[
√
−D], where −D is a form discriminant. He showed that any such a CM newform must

be a linear combination of

∞∑
x,y=−∞

qQ(x,y) =

∞∑
n=0

 ∑
Q(x,y)=n

1

 qn over
[
Q(x, y) = ax2 + bxy + cy2

]
∈ Cl (D),

where Cl (D) denotes the class group of primitive positive definite binary quadratic forms of dis-
criminant −D. As a consequence, one can relate the CM eta quotients of weight 1 in Table 1 to
classical theta series associated with binary quadratic forms.

Lemma 2.2. The following identities hold.

η (3z) η (21z) =
1

2

∞∑
n=1

 ∑
x2+xy+16y2=n

1−
∑

4x2+xy+4y2=n

1

 qn,(2.13)
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η (8z) η (16z) =
1

2

∞∑
n=1

 ∑
x2+32y2=n

1−
∑

4x2+4xy+9y2=n

1

 qn,(2.14)

η (12z)2 =
1

2

∞∑
n=1

 ∑
x2+36y2=n

1−
∑

4x2+9y2=n

1

 qn,(2.15)

η (4z) η (20z) =
1

2

∞∑
n=1

 ∑
x2+20y2=n

1−
∑

4x2+5y2=n

1

 qn,(2.16)

η (z) η (23z) =
1

2

∞∑
n=1

 ∑
x2+xy+6y2=n

1−
∑

2x2+xy+3y2=n

1

 qn,(2.17)

η (2z) η (22z) =
1

2

∞∑
n=1

 ∑
x2+11y2=n

1−
∑

3x2+2xy+4y2=n

1

 qn,(2.18)

η (6z) η (18z) =
1

2

∞∑
n=1

 ∑
x2+27y2=n

1−
∑

4x2+2xy+7y2=n

1

 qn.(2.19)

3. Proofs of Theorem 1.1 (1)–(11)

The proofs of items (1)–(11) of Theorem 1.1 are very similar to one another, which can be
generally elaborated as follows. Note that the coefficients ai (n) satisfy the multiplicative property,
ai (n) =

∏
p|n ai (p

ep) given the prime factorization n =
∏

p|n p
ep of n. Therefore the analysis of the

vanishing of ai (n) may be decomposed into local parts ai (p
ep). As observed in the remarks given

at the beginning of Subsection 2.1, when a newform has CM by an imaginary quadratic field K of
class number 1, its Fourier development is enumerated by the norms of elements of OK . So for p
inert in OK with ep odd, it is clear that pep cannot be represented by the norm of any element of
OK , and this justifies all the if-parts of items (1)–(11).

For their only-if-parts, it suffices to show that ai (p
ep) ̸= 0 for p not inert, or p inert with ep even.

This can be achieved by the explicit descriptions for ai (n) given in Lemma 2.1. In what follows,
we give the proof for item (11) as an illustration and leave the cases of items (1)–(10) to the reader.

Proof of the only-if-part of item (11). Suppose that p is an odd prime not inert in Z[i]. Then there
is a unique π ∈ Z[i] up to complex conjugation such that either π ≡ 1 (mod 4Z[i]) or π ≡ 1 + 2i
(mod 4Z[i]), and N (π) = p, and therefore, by (2.12), a11 (p) = ±

(
π4 + π4

)
̸= 0. Moreover, it

follows that a11 (p) ̸≡ 0 (mod p), since π and π are coprime. Note by (2.1) that

a11 (p
m) ≡ a11 (p)

m (mod p).

Therefore, a11 (p
m) ̸≡ 0 (mod p), and thus, a11 (p

m) ̸= 0.
Now suppose that p is inert with ep even. Since Z[i] is a PID, it is clear that any α ∈ Z[i] such

that N (α) = pep must be of the form α = ±pep/2, ±ipep/2. Thus, by (2.12), a11 (p
ep) = p2ep ̸= 0.

□

4. Proofs of Theorem 1.1 (12)–(15)

Instead of directly proving items (12)–(15) of Theorem 1.1, we do a bit more and establish
explicit formulas for their associated ai (p

m), after which the assertions follow immediately. These
formulas are summarized in the following proposition.
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Proposition 4.1. For i = 12, . . . , 15, let ai (n) be defined as in Section 1. Given a nonnegative
integer m and a prime p. The following assertions hold.

(1) (a) For n = 7, a12 (7
m) = (−1)m,

(b) for p ≡ 1, 4, 16 (mod 21),

a12 (p
m) =

{
m+ 1 if p = X2 +XY + 2Y 2 with 3|Y ,

(−1)m (m+ 1) otherwise,

(c) for p ≡ 2, 8, 11 (mod 21),

a12 (p
m) =

{
0 if m is odd,

(−1)m/2 otherwise,

(d) for p ≡ 5, 10, 13, 17, 19, 20 (mod 21),

a12 (p
m) =

{
0 if m is odd,

1 otherwise.

(2) (a) For p ≡ 1 (mod 8),

a13 (p
m) =

{
m+ 1 if p = X2 + 2Y 2 with 4|Y ,

(−1)m (m+ 1) otherwise,

(b) for p ≡ 3 (mod 8),

a13 (p
m) =

{
0 if m is odd,

(−1)m/2 otherwise,

(c) for p ≡ 5, 7 (mod 8),

a13 (p
m) =

{
0 if m is odd,

1 otherwise.

(3) (a) For p ≡ 1 (mod 12),

a14 (p
m) =

{
m+ 1 if p = X2 + Y 2 with 6|Y ,

(−1)m (m+ 1) otherwise,

(b) for p ≡ 5 (mod 12),

a14 (p
m) =

{
0 if m is odd,

(−1)m/2 otherwise,

(c) for p ≡ 7, 11 (mod 12),

a14 (p
m) =

{
0 if m is odd,

1 otherwise.

(4) (a) For n = 5, a15(5
m) = (−1)m,

(b) for p ≡ 1, 9 (mod 20),

a15 (p
m) =

{
m+ 1 if p = X2 + 5Y 2 with 2|Y ,

(−1)m (m+ 1) otherwise,
7



(c) for p ≡ 3, 7 (mod 20),

a15 (p
m) =

{
0 if m is odd,

(−1)m/2 otherwise,

(d) for p ≡ 11, 13, 17, 19 (mod 20),

a15 (p
m) =

{
0 if m is odd,

1 otherwise.

Proofs of items of Proposition 4.1 are very similar, especially the first three cases, whose corre-
sponding maximal quadratic orders are all of class number 1. The last case has to make use of the
classical fact [3, p. 31] that a prime p not equal to 5 can be represented by X2 +5Y 2 if and only if
p ≡ 1, 9 (mod 20). As such, we give the proof of item (1) only, and leave the others to the reader.

Proof of Proposition 4.1 (1). Item (a) follows from a12 (7) = −1 and the recursive formula (2.1).
Note that

x2 + xy + 16y2 = (x− y)2 + (x− y) (3y) + 2 (3y)2 ,(4.1)

4x2 + xy + 4y2 = (x+ 2y)2 + (x+ 2y) (x− y) + 2 (x− y)2 .(4.2)

Then for p ≡ 1, 4, 16 (mod 21), since p ≡ 1, 2, 4 (mod 7), p must be uniquely representable by
X2 +XY + 2Y 2 up to complex conjugation and multiplication by a unit. The induced fact that
p ≡ 1 (mod 3) implies that such a representation verifies either Y ≡ 0 (mod 3) or X − Y ≡ 0
(mod 3). Up to a multiplier of a unit, there are exactly two representations for the former case and
one for the latter case. Therefore, by (4.1) and (4.2), p is representable by either x2 + xy + 16y2

or 4x2 + xy + 4y2, each of which has exactly four solutions. Whence by (2.13), a12 (p) = 2 if p can
be represented by X2 +XY + 2Y 2 with 3|Y , since otherwise a12 (p) = −2. These facts, together
with (2.1), yield the desired formula for p ≡ 1, 4, 16 (mod 21).

For p ≡ 2, 8, 11 (mod 21), since p ≡ 2 (mod 3) and x2+xy+16y2 ≡ 4x2+xy+4y2 ≡ x2+xy+y2 ≡
0, 1 (mod 3), neither of x2 + xy + 16y2 and 4x2 + xy + 4y2 represent p, and thus a12 (p) = 0, and

with
(
−7
p

)
= 1 and (2.1) the corresponding formula follows.

For p ≡ 5, 10, 13, 17, 19, 20 (mod 21), clearly, p is not a square modulo 7, while both x2+xy+16y2

and 4x2 + xy + 4y2 are of discriminant −63 = −7 · 32, neither of them can represent p. Therefore,

a12 (p) = 0, and with
(
−7
p

)
= −1 and (2.1) the corresponding formula follows. □

Remark 4.1. The common vanishing in these four cases is related to the fact that their attached
form class groups are all Z/4Z, and the principal genus classes of the form class groups associated
with their corresponding maximal orders consist of exactly one form class. This also explains why
the representability of p by the binary quadratic forms of these four cases can be interpreted in
terms of congruences, which, however, is not the case for items (16)–(18) of Theorem 1.1. Moreover,
following this observation and using the genus theory of binary quadratic forms, one can find a
uniform interpretation and extension of Proposition 4.1. We shall return to this in Section 6.

Remark 4.2. In fact, one can check that both quadratic forms involved in (2.13) lie in the same
genus of Cl(63), so by the classical Siegel–Weil theorem (see, e.g., [9, Chapter 7]), one can replace
one of them by Eisenstein series and obtain the alternative expression

η(3z)η(21z) = −1 +

∞∑
n=1

 ∑
x2+xy+16y2=n

1− 1

2

∑
d|n

(
−7

d

)
+
∑
d|n

(
−3

d

)(
21

n/d

) qn
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− 3

2

∞∑
n=1

∑
d|n

(
−7

d

) q9n.

Combining this with (4.2), one can also recover Proposition 4.1 (1). For the reader’s reference, we
also record the analogous expressions for the other companions as follows.

η(8z)η(16z) = −1 +
∞∑
n=1

 ∑
x2+32y2=n

1− 1

2

∑
d|n

(
−8

d

)
+
∑
d|n

(
−4

d

)(
8

n/d

) qn

+
1

2

∞∑
n=1

∑
d|n

(
−8

d

) q2n −
∞∑
n=1

∑
d|n

(
−8

d

)
+
∑
d|n

(
−4

d

)(
8

n/d

) q4n

+
∞∑
n=1

∑
d|n

(
−8

d

) q8n − 2
∞∑
n=1

∑
d|n

(
−8

d

) q16n,

η(12z)2 = −1 +

∞∑
n=1

 ∑
x2+36y2=n

1− 1

2

∑
d|n

(
−4

d

)
+
∑
d|n

(
−3

d

)(
12

n/d

) qn

+
1

2

∞∑
n=1

∑
d|n

(
−4

d

)
−
∑
d|n

(
−3

d

)(
12

n/d

) q2n

−
∞∑
n=1

∑
d|n

(
−4

d

)
+
∑
d|n

(
−3

d

)(
12

n/d

) q4n

− 3

2

∞∑
n=1

∑
d|n

(
−4

d

) q9n +
3

2

∞∑
n=1

∑
d|n

(
−4

d

) q18n,

η(4z)η(20z) = −1 +
∞∑
n=1

 ∑
x2+20y2=n

1− 1

2

∑
d|n

(
−20

d

)
+
∑
d|n

(
−4

d

)(
5

n/d

) qn

+
1

2

∞∑
n=1

∑
d|n

(
−20

d

)
−
∑
d|n

(
−4

d

)(
5

n/d

) q2n

−
∞∑
n=1

∑
d|n

(
−20

d

)
+

∑
d|n

(
−4

d

)(
5

n/d

) q4n.

Remark 4.3. In [12], Serre justifies Theorem 1.1 (14) by finding the Hecke theta series for η(12z)2

using Galois representations. We literally use an alternative expression for η(12z)2 to recover Serre’s
result.

5. Proofs of Theorem 1.1 (16)–(18)

Similar to the cases of (12)–(15), we establish the following formulas for ai (n) for i = 16, . . . , 18
as an intermediate step towards items (16)–(18) of Theorem 1.1.

Proposition 5.1. For i = 16, . . . , 18, let ai (n) be defined as in Section 1, and let Di denote 23, 44
and 108, respectively. Also write Qi (x, y) for the principal binary quadratic form of discriminant

9



−Di, i.e., x
2 + xy + 6y2, x2 + 11y2 and x2 + 27y2, respectively. For a nonnegative integer m and

a prime p, the following assertions hold.

(1) One has that a16 (23
m) = a17 (11

m) = 1,

(2) for p such that
(
−Di
p

)
= 1,

ai (p
m) =


m+ 1 if p is representable by Qi (x, y),

1 if p is irrepresentable by Qi (x, y) and m ≡ 0 (mod 3),

−1 if p is irrepresentable by Qi (x, y) and m ≡ 1 (mod 3),

0 otherwise,

(3) for p such that
(
−Di
p

)
= −1,

ai (p
m) =

{
0 if m is odd,

1 otherwise.

Proof. Items (1) and (3) are straightforward by (2.17)–(2.19) and (2.1). For item (2), first note
that the form class groups Cl (Di) are all of class number 3, and thus, all three form classes of
Cl (Di) lie in the same genus. Here, two of them are equivalent by GL2 (Z). By the theory of
quadratic orders (see, e.g., [3]), it is well known that for a split prime p, it is representable by either
the principal form Qi (x, y) with exactly four solutions, or a non-principal form with exactly two
solutions. Therefore, by (2.17)–(2.19), one can find that ai (p) = 2 if p is representable by Qi (x, y),
otherwise ai (p) = −1. From these together with (2.1), the desired formulas follow. □

Remark 5.1. Similar to what is noted in Remark 4.2, Proposition 5.1 can also be derived by the
following alternative expressions for the CM eta quotients associated with ai (n),

η (z) η (23z) = −3

4
+

∞∑
n=1

3

4

∑
x2+xy+6y2=n

1− 1

2

∑
d|n

(
−23

d

) qn,

η (2z) η (22z) = −3

4
+

∞∑
n=1

3

4

∑
x2+11y2=n

1− 1

2

∑
d|n

(
−11

d

) qn

−
∞∑
n=1

∑
d|n

(
−11

d

) q4n,

η (6z) η (18z) = −3

4
+

∞∑
n=1

3

4

∑
x2+27y2=n

1− 1

2

∑
d|n

(
−3

d

) qn

+
1

2

∞∑
n=1

∑
d|n

(
−3

d

) q3n − 1

∞∑
n=1

∑
d|n

(
−3

d

) q4n

− 3

2

∞∑
n=1

∑
d|n

(
−3

d

) q9n + 1
∞∑
n=1

∑
d|n

(
−3

d

) q12n

− 3

∞∑
n=1

∑
d|n

(
−3

d

) q36n.
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6. Further remarks on Proposition 4.1

As noted in Remark 4.1, those analogous formulas deduced in Proposition 4.1 via Lemma 2.12
are by some means related to the fact that their attached form class groups are all Z/4Z, and the
principal genus classes of the form class groups associated to their corresponding maximal orders
all consist of one form class. We now detail how these work.

Let −D = f2(−d) < 0 with −d a fundamental discriminant be a form discriminant such that

the attached form class group Cl(D) = ⟨[Q]⟩ ∼= Z/4Z, and Cl(d)2 = {[Q̃0]}, where Q̃0 denotes the
principal form of discriminant −d. Take the character χ of Cl(D) such that χ([Q]) = i. Then
writing [Q0] = [Q]4 for the identity of Cl(D), where Q0 is the principal form, and [Q2] = [Q]2, the
difference

∞∑
n=1

a(n)qn =
1

2

∞∑
n=0

 ∑
Q0(x,y)=n

1−
∑

Q2(x,y)=n

1

 qn =
1

2

4∑
j=1

χ([Q]j)
∞∑

x,y=−∞
qQ

j(x,y)

is actually a normalized T(f)-eigenform [7, Theorem 12] with quadratic character
(−D

·
)
, where

T(f) denotes the algebra generated by Hecke operators Tn with gcd(n, f) = 1. Therefore, for n
coprime to f , the coefficients a(n) satisfy the recursive relation (2.1) and multiplicativity, so to
compute a(n), it is sufficient to find a(p) for p|n.

By the genus theory of binary quadratic forms, for p split in Q[
√
−d] and such that p = Q̃0(X,Y )

(mod d) is solvable, p is uniquely representable by Q̃0(X,Y ) up to complex conjugation and mul-

tiplication by a unit, since Cl(d)2 = {[Q̃0]} by assumption. Furthermore, if p = Q0(x, y) (mod D)
is also solvable, then p is representable by either of Q0 and Q2, which accordingly implies that
a(p) = 2 or a(p) = −2, and the former case is equivalent to that p = Q̃0(X,Y ) with f |Y . Other-
wise, neither of Q0 and Q2 represent p, which yields that a(p) = 0. In summary, one obtains the
following generalization of Proposition 4.1: for any positive integer m,

(1) for p such that
(
−d
p

)
= 1, and both p = Q̃0(X,Y ) (mod d) and p = Q0(x, y) (mod D) are

solvable,

a(pm) =

{
m+ 1 if p = Q̃0(X,Y ) with f |Y ,

(−1)m(m+ 1) otherwise,

(2) for p such that
(
−d
p

)
= 1, and p = Q0(x, y) (mod D) is unsolvable,

a (pm) =

{
0 if m is odd,

(−1)m/2 otherwise,

(3) for p such that
(
−d
p

)
= −1,

a (pm) =

{
0 if m is odd,

1 otherwise.

Finally, it is noteworthy to mention that one can generalize Proposition 5.1 in a similar manner
by noticing that the form class groups are all Z/3Z. Specifically, if we suppose that −D < 0 is a
form discriminant such that Cl(D) = ⟨[Q0], [Q1], [Q1]

−1⟩ ∼= Z/3Z, where Q0 denotes the principal
form of discriminant −D, and define

∞∑
n=1

b(n)qn =
1

2

∞∑
n=0

 ∑
Q0(x,y)=n

1−
∑

Q1(x,y)=n

1

 qn =
1

2

3∑
j=1

χ([Q1]
j)

∞∑
x,y=−∞

qQ
j
1(x,y),
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where the character χ of Cl(D) is chosen by χ([Q1]) = e
2πi
3 , then for any positive integer m,

(1) for p such that
(
−D
p

)
= 1,

b (pm) =


m+ 1 if p is representable by Q0 (x, y),

1 if p is irrepresentable by Q0 (x, y) and m ≡ 0 (mod 3),

−1 if p is irrepresentable by Q0 (x, y) and m ≡ 1 (mod 3),

0 otherwise,

(2) for p such that
(
−D
p

)
= −1,

b (pm) =

{
0 if m is odd,

1 otherwise.

Acknowledgment The authors thank the referee for his/her comments, corrections and sug-
gestions.

References

[1] Chan, H. H., Cooper, S. and Liaw, W.-C. On η3(aτ)η3(bτ) with a + b = 8, J. Aust. Math. Soc., 84 (2008),
301–313.

[2] Chang, S. Complex multiplication of two eta-products. Colloq. Math. 159 (2020), no. 1, 7–24.
[3] Cox, D. Primes of the form x2 + ny2–Fermat, class field theory, and complex multiplication. AMS Chelsea

Publishing, Providence, RI, (2022).
[4] Deligne, P. and Serre, J -P., Formes modulaires de poids 1, Ann. Scient. Ec. e Norm. Sup., 4 serie, 7 (1974),

507–530.
[5] Huber, T.; Mc Laughlin, J.; Ye, D. Lacunary eta quotients with identically vanishing coefficients, preprint -

submitted.
[6] Kani, E. Binary theta series and modular forms with complex multiplication, Int. J. Number Theory 10 (2014)

1025–1042.
[7] Kani, E. The space of binary theta series, Ann. Sci. Math. Quebec 36 (2012), 501–534.
[8] Martin, Y. Multiplicative η-quotients. Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825–4856.
[9] Wang, X. and Pei, D. Modular forms with integral and half-integral weights. Science Press Beijing, Beijing;

Springer, Heidelberg, 2012.
[10] Ribet, K. A. Galois representations attached to eigenforms with Nebentypus Modular Functions of One Variable,

V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Math., vol. 601, Springer, Berlin
(1977), 17-51.

[11] Serre, J.-P. Quelques applications du theoreme de densite de Chebotarev. Publ. Math. I.H.E.S. 54 (1981), 123–201.
[12] Serre, J.-P. Sur la lacunarit´e des puissances de η. Glasgow Math. J. 27 (1985), 203–221.

School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edin-
burg, Texas 78539, USA

Email address: timothy.huber@utrgv.edu

Mathematics Department, 25 University Avenue, West Chester University, West Chester, PA 19383
Email address: jmclaughlin2@wcupa.edu

School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, Guangdong, People’s Re-
public of China

Email address: liuch569@mail2.sysu.edu.cn
Email address: yedx3@mail.sysu.edu.cn
Email address: yuanmd3@mail2.sysu.edu.cn
Email address: zhangsm53@mail2.sysu.edu.cn

12


	1. Introduction
	2. Review of CM newforms and their basic properties
	2.1. CM newforms of weight k>1
	2.2. CM newforms of weight 1

	3. Proofs of Theorem 1.1 (1)–(11)
	4. Proofs of Theorem 1.1 (12)–(15)
	5. Proofs of Theorem 1.1 (16)–(18)
	6. Further remarks on Proposition 4.1
	References

