

Introduction:

Certain simultaneous hermaphrodites, such as the snail species *Physa acuta*, while Our recent work on the model has been focused on r, the fraction of resources preferentially outcrossing, are capable of self-fertilization. While self-reproduction invested in size. While other parameters, such as predation rate or mate encounter allows an organism to transmit more copies of its genes to offspring, in many cases, rate, represent environmental factors, r represents various behavioral and physiological attributes of the organisms themselves, and, as such, can be selected for inbreeding depression, the relative fitness depression of inbred offspring compared and optimized. Unfortunately, as our outer integrals cannot be analytically solved, we to outbred offspring, is severe enough to where outcrossing is a better strategy. A cannot analytically optimize r, and must instead use numerical optimization. model to determine optimum delay for self-reproduction under these circumstances The figures below present r sweeps in different environmental scenarios. The is already established, but fails to account for certain organisms' capabilities to rightmost figure in each set plots the optimal wait time, τ^* , vs. r. The figures down the reduce their mortality by responding to predators. In this poster, we discuss the left hand side plot various values based upon to τ^* , each of which can be measured theoretical implications of our adaptation to the established model, including experimentally. From top to bottom, they are: fitness, size, and defenses. It is expected life history scenarios, differences between the models, and the predicted important to note that the size and defense plots are not in proper units, but are existence of hysteresis, the lack of reversibility as a parameter is varied. Of merely relative quantities, as we have yet to decide upon a proper conversion rate. particular note is a greatly increased delay before selfing in response to increased predation rate and inbreeding depression. **Defense-Attacking Predator:** Model: Fitness at Optimum Wait Tim In previous research, Tsitrone et al. constructed a mathematical model for optimal 0.2 0.4 0.6 0.8 1.0 mating strategies in simultaneous hermaphrodites, using *Physa acuta* for testing.¹² — 'Size' at Optimum Wait Time The basic model for this is: 0.2 0.4 0.6 0.8 1.0^r - 'Defenses' at Optimum Wait Time 0.2 0.4 0.6 0.8 1.0 where l(x) is the probability of surviving to day x, b(x) is the rate of gene transmission on day x, and f(u) is the probability of meeting a mate on day u. We Low-Size Preferential Predator: $(k_d = 0, k_s = 0.2)$: modified this model by replacing its constant mortality rate with a piecewise linear mortality function, which emulates an organism's use of defenses to counter the effects of predation. Since certain defenses, such as size, also Fitness at Optimum Wait Tir 0.2 0.4 0.6 0.8 1. increase fecundity, we define k_{a} as those defenses which also serve to increase fecundity and k_d as other defenses, which solely reduce mortality. The – 'Size' at Optimum Wait Time ---- Naive investment into these two defenses is represented by r, the amount of resources 0.2 0.4 0.6 0.8 1.0^r allocated to growth. 'Defenses' at Optimum Wait Time 0.2 0.4 0.6 0.8 1 **Parameters: High-Size Preferential**, $(k_d = 0.2, k_s = -0.1)$: **Defense-Attacking Predator** — Fitness at Optimum Wait Time 0.2 0.4 0.6 0.8 1.0^r ---- 'Size' at Optimum Wait Time 0.2 0.4 0.6 0.8 1.0^r ---- 'Defenses' at Optimum Wait Time 0.2 0.4 0.6 0.8 1.0 In each of the above plots: $c = 18, m_0 = 0.05, \epsilon = 1, e_p = 0.2, e_m = 0.1, k_r = 0.1, \delta = 0.8$

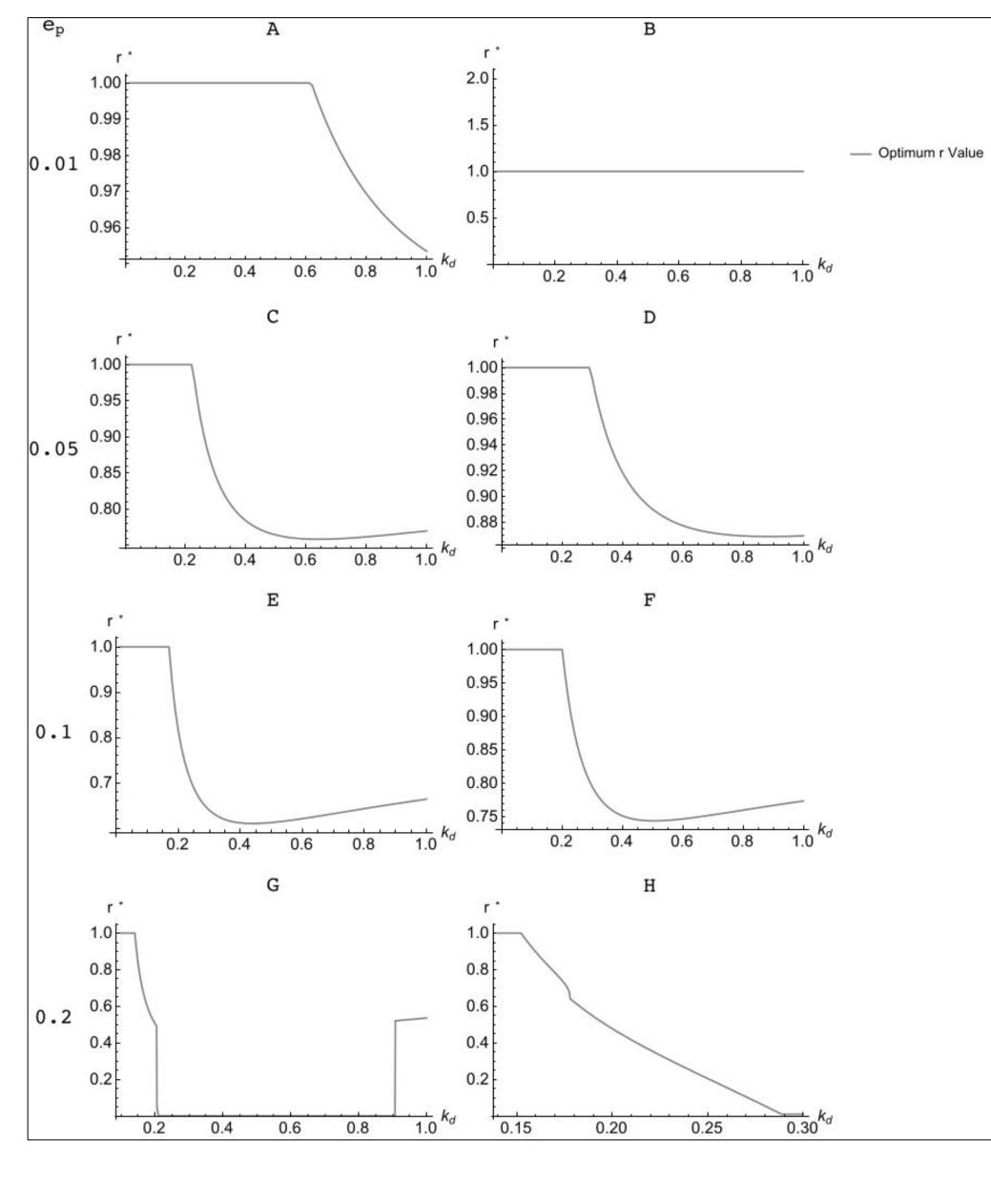
$$R_0 = \int_0^\infty \left[\int_u^\infty l(x)b(x)dx, \right] f(u)du,$$

Baseline Reproduction
Baseline Mortality
Resource Allocation Efficiency
Size Defense Efficiency
Other Defense Efficiency
Mate Encounter Rate
Predator Encounter Rate
Predator Success Rate
Inbreeding Depression
Resources Allocated to Growth

Optimal Mating Strategies for Simultaneous Hermaphrodites in the Presence of Predators

Corin Stratton¹, Nicole Bishop², Allison Kolpas¹, Josh Auld² ¹Department of Mathematics, West Chester University, ²Department of Biology, West Chester University, West Chester, PA

Results:



Optimal *r* **Parameter Sweeps:**

In the above sweeps: c = 18, $m_0 = 0.05$, $\epsilon = 1$, $k_s = 0.1$, $k_r = 0.01$ In A: $e_m = 0.1$, $\delta = 0.8$ In B: $e_m = 0.01$, $\delta = 0.75$

Above, we present plots of optimal r values. As r is primarily a defensive parameter, it relates most closely to the other defensive parameters, k_d and k_s , and the predation parameters, e_n and ϵ . As such, each above plot is of r^* vs k_d , and e_n is larger for lower plots. Note that the plots are most certainly *not* to scale, so the differences between plots are more significant than they may appear graphically.

The sudden jumps in the bottom plots suggest that r^* might have multiple optimal strategies, any of which may be the global maximum. We also noted this phenomena in τ^* .

Acknowledgments

This project would not be possible without funding from the National Science Foundation Department of Environmental Biology (award number DEB-1406231.)

Literature Cited

- Tsitrone, A., Duperron, A., & David, P. 2003. Delayed selfing as an optimal mating strategy in preferentially outcrossing species: theoretical analysis of the optimal age at first reproduction in relation to mate availability. American Naturalist, 162, 318–331.
- 2. Tsitrone, A., Jarne, P., & David, P. 2003. Delayed selfing and resource reallocations in relation to mate availability in the freshwater snail Physa acuta. American Naturalist, 162, 474–488.

