
Computers and Mathematics with Applications 80 (2020) 714–732

Contents lists available at ScienceDirect

Computers andMathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Alternating direction ghost-fluidmethods for solving the heat
equationwith interfaces
Chuan Li a, Zhihan Wei b, Guangqing Long c, Cameron Campbell a,
Stacy Ashlyn a, Shan Zhao b,∗

a Department of Mathematics, West Chester University of Pennsylvania, West Chester, PA 19383, USA
b Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
c Department of Mathematics, Nanning Normal University, Nanning 530001, PR China

a r t i c l e i n f o

Article history:
Received 14 August 2019
Received in revised form 28 January 2020
Accepted 25 April 2020
Available online xxxx

Keywords:
Parabolic interface problem
Ghost fluid method
Alternating direction implicit (ADI)
Matched interface and boundary (MIB)

a b s t r a c t

This work presents two new alternating direction implicit (ADI) schemes for solving
parabolic interface problems in two and three dimensions. First, the ghost fluid method
(GFM) is adopted for the first time in the literature to treat interface jumps in the ADI
framework, which results in symmetric and tridiagonal finite difference matrices in each
ADI step. The proposed GFM-ADI scheme achieves a first order of accuracy in both
space and time, as confirmed by numerical experiments involving complex interface
shapes and spatial–temporal dependent jumps. The GFM-ADI scheme also maintains
the ADI efficiency — the computational complexity for each time step scales as O(N)
for a total degree of freedom N in higher dimensions. Second, a new matched interface
and boundary (MIB) scheme is constructed, which downgrades the quadratic polynomial
bases in the existing second order MIB to linear ones. Interestingly, the resulting MIB-ADI
or mADI scheme produces the same finite difference matrices as the GFM-ADI scheme in
all dimensions. Hence, the mADI scheme can be regarded as an improvement of the GFM,
because it calculates tangential jumps which are omitted in the GFM. Consequently, the
present mADI scheme is constantly more accurate than the GFM-ADI in all numerical
examples, while keeping the same computational efficiency. Nevertheless, the mADI
scheme is semi-implicit due to tangential jump approximations, while the GFM-ADI
scheme is fully implicit without tangential corrections. Thus, the GFM-ADI scheme could
be more stable than the mADI scheme when a huge contrast is presented in diffusion
coefficients.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a parabolic partial differential equation (PDE)
∂u
∂t

= ∇ · (α∇u) + f , x⃗ ∈ Ω, (1)

with appropriate initial and boundary conditions

u(x⃗, 0) = u0(x⃗) for all x⃗ ∈ Ω,

u(x⃗, t) = g(x⃗, t) for all x⃗ ∈ ∂Ω
(2)

∗ Corresponding author.
E-mail address: szhao@ua.edu (S. Zhao).

https://doi.org/10.1016/j.camwa.2020.04.027
0898-1221/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2020.04.027
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2020.04.027&domain=pdf
mailto:szhao@ua.edu
https://doi.org/10.1016/j.camwa.2020.04.027


C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 715

over a finite domain Ω ⊂ R1, R2, or R3. Here domain Ω is split by a closed material interface Γ into two subdomains,
Ω+

∪Ω−
= Ω and Ω+

∩Ω−
= Γ , where Ω− and Ω+ denote the inner and outer subdomains, respectively. In Eq. (1),

the diffusion coefficient α, in general, is naturally assumed to be spatially dependent and possibly discontinuous across
the interface Γ . For the seek of simplicity, α is assumed to be piece-wisely constant in this work. That is, α = α− in Ω−

and α = α+ in Ω+, where α−, α+ > 0 and α−
̸= α+. Meanwhile, the source f (x⃗, t) is also allowed to be discontinuous,

even singular, across the interface Γ .
Due to the discontinuity of α occurring on the interface Γ , the solution to above initial and boundary value problem

(IBVP) (1)–(2) shall be piece-wisely defined as u = u−
(
x⃗, t
)
for x⃗ ∈ Ω− and u = u+

(
x⃗, t
)
for x⃗ ∈ Ω+. Moreover, the

unknown function u on the two sides of the interface Γ is related by additional jump conditions

[u] := u+
− u−

= φ(x⃗, t), [αun] := α+
∇u+

· n⃗ − α−
∇u−

· n⃗ = ψ(x⃗, t), (3)

which are defined on the interface Γ by taking the limiting values from both sides of the interface. Here functions φ and
ψ are two known functions, and n⃗ is the unit outer normal direction.

Eqs. (1)–(3) constitute a mathematical model known as the parabolic interface problem, which is widely adopted in
multiple disciplines for studying interested physical quantities, such as heat or electrostatic potentials, propagating across
the material interface Γ from one side to the other. In this work, the interface Γ is considered to be fixed with respect
to time, while the spatial jumps φ and ψ could be time dependent.

Finding the solutions to the parabolic interface problems is nontrivial. Exact solutions in closed forms are only available
in the simplest cases, for instance, when φ = ψ = 0 and the interface Γ is simple and regularly shaped. In practice,
solutions have to be numerically approximated for complicated interfaces. However, standard numerical procedures,
which usually seek for smooth solutions to Eq. (1) over the whole domainΩ , cannot deliver accurate approximations, and
often fail to converge when the interface jumps (3) are significant. It calls for specifically designed numerical procedures
which can explicitly incorporate the jump conditions (3) into the discretization of Eq. (1).

In the past a few decades, a number of numerical methods have been developed to solve parabolic and other interface
problems. In general, methods for solving interface problems can be roughly classified into two categories: (i) Body-
fitted interface methods in which both finite element and finite volume methods [1–5] have been developed to employ
unstructured grids to fit the material interfaces in order to provide the best flexibility for handling complex geometries;
(ii) Cartesian grid interface methods in which sophisticated interface algorithms are indispensable to accommodate the
complex-shaped interfaces and jump conditions. One of the most successful methods is the immersed interface method
(IIM) [6], which manages to achieve the second order of accuracy by imposing jump conditions rigorously in the finite
difference formulations via local Taylor expansions. The IIM has achieved a tremendous success in solving parabolic
interface problems [7–11].

Recently, there has been a growing interest in developing interface algorithms in the framework of Alternating
Direction Implicit (ADI) methods [12,13]. The most attractive feature of ADI methods is their efficiency. As implicit
schemes, ADI methods typically allow using a large time step size for long time simulations. Moreover, in each time
step of ADI methods, a multidimensional system will be reduced to independent one-dimensional (1D) sub-systems of
tridiagonal structures, and such matrices can be efficiently solved using the Thomas algorithm [14]. From the algebra point
of view, the efficiency of ADI methods over usual iterative methods in matrix inversion can be justified by the fact that
ADI methods yield exact algebraic solvers which guarantee to stop within a fixed number of steps. Typically, for a large
system with a total degree of freedom N , the complexity of ADI methods is of the order N , i.e., O(N). Therefore, in solving
parabolic interface problems, it is desired to cope with interfaces in ADI methods, without affecting their efficiency.

In 1993, Li and Mayo [15] introduced a rigorous IIM-ADI scheme for parabolic interface problems with simplified
jump conditions. In this case, the accuracy of the central differences near interfaces can be recovered to second order via
adding some correction terms in the ADI formulation. Later, this IIM-ADI scheme has been applied to solve other parabolic
interface problems [16–18]. For the general jump conditions given in (3), the first ADI method that deliveries second
order spatial accuracy while maintaining O(N) efficiency is the matched ADI (mADI) introduced by Zhao in 2015 [19].
In the mADI, a tensor product decomposition is carried out to reduce jump conditions into 1D ones along Cartesian
directions. Then these 1D conditions are enforced to secure a second order of convergence. Such an interface treatment
is generalized from the matched interface and boundary (MIB) method [20,21] for general interface problems. Moreover,
a fast algebraic algorithm combining the Gaussian Elimination procedure and the Thomas algorithm was introduced for
solving perturbed tridiagonal linear systems so that the overall complexity is maintained as O(N). The mADI method has
been further generalized to the Peaceman–Rachford formulation [22] and for solving three-dimensional (3D) parabolic
interface problems [23]. More recently, a new IIM-ADI method has been developed based on an augmented approach [24].
By introducing new auxiliary variables on the interface, the addition of correction terms is able to handle general jump
conditions. The resulting ADI scheme is of second order accuracy in both space and time discretization.

It is noted that the interface treatments in the ADI methods are related to general interface algorithms, but have subtle
differences. Since the jump conditions (3) are prescribed in the normal direction, which is not along Cartesian directions,
the usual interface treatments naturally couple spatial derivatives in all Cartesian directions [25,26]. Nevertheless, to be
applicable in the ADI formulation, interfaces have to be dealt with in a dimension-by-dimension manner. It is crucial that
discretization in one alternating direction should not be simultaneously coupled with other Cartesian directions. Two
major types of strategies have been developed in the literature for this purpose. In the IIM-ADI methods [15–18,24],



716 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

the jump conditions are satisfied multi-dimensionally through introducing corrections to standard central difference
discretization of the Laplacian operator. Such a discrete Laplacian operator allows a direct dimensional splitting, giving
rise to a new type of ADI methods. A different approach is employed in the mADI methods [19,22,23], in which the
jump conditions are decomposed in a tensor product manner to each Cartesian direction. This requires jump data in
tangential directions at the future time step, say tn+1. This process is essentially equivalent to the general MIB interface
algorithm [20,21]. However, in order to avoid unwanted coupling, the tangential jumps are estimated by using function
values at the current time step tn in the mADI methods. The numerically generated Cartesian jump conditions can then
be discretized in a single direction, so that the standard ADI methods [12,13] can be corrected.

In this work, a new ADI method based on the Ghost Fluid Method (GFM) will be developed. The GFM was first
proposed by Fedkiw et al. in 1999 for treating interfaces in multi-material flows [27], and was quickly adopted to
solve variable coefficient Poisson equations, as well as the viscous Navier–Stokes equations [28,29], in the presence of
interfaces where both variable coefficients and solutions may be discontinuous [26,30–32]. The GFM, together with its
variations, such as the gas–water version GFM (GWGFM), the modified GFM (MGFM) and the real GFM (RGFM) [33–36],
soon was widely used to solve the models for simulating the impact of strong shock on material interfaces [34,37,38],
interface deflagration and detonation [39], liquid jet [40], compressible/incompressible multimedia flows [33,36,41–54],
multiphase electrohydrodynamic (EHD) flows for a high electric Reynolds number regime [55], shallow water and ideal
magnetohydrodynamics [56,57], fluid–structure interaction [58–60], and so on. Analysis of the accuracy and conservation
errors of various ghost fluid type methods can be found in [61–63] by Liu et al. Recently, a second order GFM was
developed for the Poisson equation through appropriately using of auxiliary virtual points [26]. However, to our best
knowledge, the GFM has not been applied to solve the heat equation with interfaces.

Compared with more accurate interface algorithms, such as the IIM [6], the MIB [20,21], the Coupling Interface Method
(CIM) [25], and the second order GFM [26], the standard GFM [30] employs a very simple procedure for enforcing jump
conditions, albeit it only attains a first order of convergence. By completely neglecting tangential jumps, the normal
jumps are simply projected to Cartesian directions in the GFM, so that the resulting finite difference matrix maintains
symmetry. Such an algebraic property is not shared by other interface algorithms, and is highly desired for time stability
when solving parabolic PDEs. This is one major motivation for developing a GFM-ADI method in this work. Moreover, the
GFM and MIB methods share a great deal of commons to enforce the jump conditions (3) in the numerical procedure.
More profound investigations revealed that the mADI method [19], as well as one simple variation, can be viewed as
modifications/improvements of the GFM.

In particular, three ADI methods will be investigated in this paper. First, a new GFM-ADI method will be proposed.
Moreover, a new mADI method will be developed, which is constructed by simply replacing the quadratic polynomial
basis in the mADI method [19] by linear ones. This new method will be termed as MIBV1-ADI in this work, which has
the same finite difference matrix as that of the GFM-ADI, except that ignored tangential jumps at interface points in the
GFM now are recovered, resulting in more accurately approximated jumps enforced in the MIB-type methods. Finally, the
original mADI method will be called the MIBV2-ADI scheme in this work, emphasizing its second order accuracy. More
details about these three methods and their comparison will be provided in the following sections.

The rest of this work is organized as follows. In Section 2, the GFM and MIB methods will be demonstrated in one
dimension (1D) for the seek of simplicity. In 1D, the interface Γ becomes a point and the normal direction −→n coincides
the x-axis. In this simplest case, one will see that GFM and MIBV1 methods produce the same formulas to impose the
jump conditions (3) via completely different numerical treatments, while the MIBV2 yields a higher order of accuracy.
In Section 3, two-dimensional (2D) GFM-ADI and MIBV1-ADI methods are established. In 2D, the normal direction at an
interface point, in general, does not coincide a grid line, resulting in different numerical formulas in these two methods.
In order to quantitatively compare the performance of the new methods, as well as the original mADI or the MIBV2-ADI
method, numerical experiments are provided in this section as well. In Section 4, all methods are extended once again
via a technique previously reported in [23] to solve three dimensional (3D) interface problems. Concluding remarks are
then provided in Section 5.

2. The GFM and MIB-type methods in one dimension

In one dimension (1D), domain Ω = [a, b] is a finite closed interval on the x-axis. This interval is then discretized by a
sequence of equally spaced grids, a = x0 < x1 < · · · < xn = b, with uniform mesh size h. Point interface Γ is denoted by
xΓ and positioned between xi and xi+1 for some i between 0 and n. The normal direction n coincides either the positive
or negative direction of the x-axis.

The GFM and a MIB-type method are demonstrated here by considering the numerical treatments for approximating
the term ∇ · (α∇u) in Eq. (1). In 1D, ∇ · (α∇u) = (αux)x and we denote its finite difference approximation as δxxu. We
assume the spatial discretization is fine enough so that only two types of interface points can occur, as shown in Fig. 1.
In Fig. 1a, one interface point xΓ (red dot) positions in the subinterval (xi, xi+1) and no other interface points occur in
adjacent subintervals. This interface point is named an irregular (interface) point. Without losing the generality, we denote
xΓ − xi = ηh and xi+1 − xΓ = (1 − η)h for some η between 0 and 1, and assume u(x) = u−(x) on the left side of xΓ
(x ∈ Ω−), while u(x) = u+(x) on the other side (x ∈ Ω+). At xΓ , jump conditions,

[u]Γ = (u+)Γ − (u−)Γ = φΓ , [αux]Γ = α+
(
u+

x

)
Γ

− α−
(
u−

x

)
Γ

= ψΓ , (4)



C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 717

Fig. 1. Graphical demonstration of one dimensional jump conditions enforcement in the GFM.

are given with φΓ = φ(xΓ ) and ψΓ = ψ(xΓ ) being two (possibly nonzero) constants, and the outer normal direction n
coincides the negative direction of the x-axis, pointing from subdomain Ω+ to subdomain Ω−.

The second type of interface points consists of a pair of interface points, demonstrated by xΓ1 and xΓ2 in Fig. 1b,
positioning in two adjacent subintervals. Both interface points in this case are named corners, and the jump conditions
taking place at these two corners are given by

[u]Γ1 = (u+)Γ1 − (u−)Γ1 = φΓ1 , [αux]Γ1 = α+
(
u+

x

)
Γ1

− α−
(
u−

x

)
Γ1

= ψΓ1 , (5)

[u]Γ2 = (u+)Γ2 − (u−)Γ2 = φΓ2 , [αux]Γ2 = α+
(
u+

x

)
Γ2

− α−
(
u−

x

)
Γ2

= ψΓ2 . (6)

We consider to construct δxxu at the five grids shown in Fig. 1. First of all, it is easy to see that the three grids,
{xi−2, xi−1, xi+2} in Fig. 1a, and the two grids, {xi−2, xi+2} in Fig. 1b, are ‘‘regular ’’ in the sense that δxxu can be constructed
by the central difference formula

[(αux)x]j = αj
uj+1 − 2uj + uj−1

h2 + O(h2), (7)

for j = i−2, i−1, i+2 in Fig. 1a and j = i−2, i+2 in Fig. 1b, respectively, since these grids, as well as their left and right
adjacent grids, are all on the same side of point interface xΓ . Here αj could be either α+ or α−, depending on whether xj
is in subdomain Ω− or Ω+.

On the other hand, the discrete operator δxxu must be corrected at the two‘‘irregular ’’ grids, {xi, xi+1} in Fig. 1a, and the
three ‘‘corner ’’ grids, {xi−1, xi, xi+1} in Fig. 1b, when at least one adjacent grid positions on the opposite side of the interface
point(s). In this case, jump conditions (4)–(6) must be taken into account in order to deliver accurate approximations. The
GFM and MIB-type methods enforce jump conditions to correct (7) at irregular and corner grids in different manners, but
result in the same formulas after algebraic simplifications in 1D. Details will be provided in below.

2.1. Enforcing 1D jump conditions in the GFM

To see the connections between GFM and MIB methods, we derive the GFM presented in [30] in a slightly different
way. At irregular grids {xi, xi+1} (Fig. 1a), we consider approximating

(
u−
x

)
Γ

and
(
u+
x

)
Γ

by(
u−

x

)
Γ

=

(
u−
)
Γ

− ui

ηh
+ O(h), and

(
u+

x

)
Γ

=
ui+1 −

(
u+
)
Γ

(1 − η)h
+ O(h). (8)

Substituting approximations (8) into jump conditions (4) yields a system of equations(
u+
)
Γ

−
(
u−
)
Γ

= φΓ , (9)

α+

(
ui+1 −

(
u+
)
Γ

(1 − η)h

)
− α−

((
u−
)
Γ

− ui

ηh

)
= ψΓ + O(h), (10)

from which limit values
(
u−
)
Γ

and
(
u+
)
Γ

at xΓ can be solved for as(
u−
)
Γ

=
α−(1 − η)ui + α+η(ui+1 − φΓ ) − η(1 − η)hψΓ

α+η + α−(1 − η)
+ O(h2), (11)(

u+
)
Γ

=
α−(1 − η)(ui + φΓ ) + α+ηui+1 − η(1 − η)hψΓ

α+η + α−(1 − η)
+ O(h2). (12)

This yields representations of
(
u−
)
Γ

and
(
u+
)
Γ

in terms of {ui, ui+1, φΓ , ψΓ }.



718 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

At xi in Ω−, the GFM in 1D could be derived by using finite difference formula

[(αux)x]i =
1
h

(
αi+ 1

2
(ux)i+ 1

2
− αi− 1

2
(ux)i− 1

2

)
+ O(h2) (13)

=
1
h

(
α−

(
u−

x

)
Γ

− α− (ux)i− 1
2

)
+ O(h)

=
1
h

(
α−

((
u−
)
Γ

− ui

ηh

)
− α−

(
ui − ui−1

h

))
+ O(1).

By substituting (11) into (13), one attains the GFM scheme at xi

[(αux)x]i =
1
h

(
α̂

(
(ui+1 − φΓ ) − ui

h
−
ψΓ (1 − η)

α+

)
− α−

(
ui − ui−1

h

))
+ O(1), (14)

where α̂ =

(
α+α−

)/(
α+η + α−(1 − η)

)
. Similarly, at xi+1 in Ω+, the GFM scheme is

[(αux)x]i+1 =
1
h

(
α+

(
ui+2 − ui+1

h

)
− α̂

(
ui+1 − (ui + φΓ )

h
+
ψΓ η

α−

))
+ O(1). (15)

By correcting the discrete operator δxxu according to (14) and (15) at xi and xi+1, respectively, the GFM yields a finite
difference approximation that has an O(1) local truncation error. By using the second order central difference for other
points, the global error of the GFM will be O(h) [25]. We note that the discrete matrix of δxx is symmetric and tridiagonal.
The resulting linear system of equations can then be solved by fast methods, such as the Thomas algorithm [14], for the
values of u at all grids.

Correcting δxxu at the three corner grids {xi−1, xi, xi+1} (Fig. 1b) is neglected in [30]. However, it is not hard to correct
δxxu at corner grids following the same fashion. Here we provide a straightforward formulation to allow the GFM enforce
jump conditions at corner grids.

Following the aforementioned discussions, one can see that correcting δxxu at the left corner grid xi−1 and right corner
grid xi+1 can be achieved by using jump conditions (5) at the left corner xΓ1 and jump conditions (6) at the right corner
xΓ2 , respectively. Moreover, jump condition [(αux)x]i at the middle corner grid xi can be approximated by

[(αux)x]i =
α−

h

(
ui − u−

Γ1

(1 − η1)h
−

u−

Γ2
− ui

η2h

)
+ O(1), (16)

where xi − xΓ1 = (1 − η1)h and xΓ2 − xi = η2h for some η1 and η2 between 0 and 1. Assuming
(
u−
)
Γ1

is represented in
terms of {ui−1, ui, φΓ1 , ψΓ1}, and

(
u−
)
Γ2

is represented in terms of {ui, ui+1, φΓ2 , ψΓ2}, formula (16) corrects δxxu at xi and
can be rewritten in terms of {ui−1, ui, ui+1, φΓ1 , ψΓ1 , φΓ2 , ψΓ2}, in which jump conditions at both corners are involved.
Interestingly, the symmetric and tridiagonal matrix structures are still preserved, while the global approximation error is
still O(h).

2.2. Enforcing 1D jump conditions in the MIB method

MIB-type methods take a difference approach to enforce jump conditions in the finite difference formulation. More
specifically, additional ‘‘fictitious values’’ at irregular and corner grids are introduced in order to correct δxxu at these
grids. For the seek of simplicity, a simple MIB-type method, named the MIBV1, is introduced in detail to elaborate the
formulations. It is interesting to point out that the MIBV1 results in the same finite difference formulas as those obtained
by the GFM after algebraic simplifications.

Fig. 2 considers the same 1D jumps taking place at the irregular interface point xΓ and corners xΓ1 and xΓ2 as those
shown in Fig. 1. In the case of irregular point (Fig. 2a), two fictitious values, ũi and ũi+1, are imposed at the irregular grids
xi and xi+1, respectively. One can view that the two fictitious values are values of unknown function u extended from the
opposite side of the interface point xΓ . With the newly introduced fictitious values, limit values

(
u+
)
Γ

and
(
u−
)
Γ

can
then be approximated by(

u−
)
Γ

= (1 − η)ui + ηũi+1 + O(h2),
(
u+
)
Γ

= (1 − η)ũi + ηui+1 + O(h2). (17)

Substituting approximations (17) in jump conditions (4) yields a system of equations(
(1 − η)ũi + ηui+1

)
−
(
(1 − η)ui + ηũi+1

)
= φΓ + O(h2), (18)

α+

(
ui+1 − ũi

h

)
− α−

(
ũi+1 − ui

h

)
= ψΓ + O(h), (19)



C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 719

Fig. 2. Graphical demonstration of one dimensional jump conditions enforcement in the MIBV1.

from which the two fictitious values can be solved for in terms of {ui, ui+1, φΓ , ψΓ } as

ũi =
α̂

α+
ui + ηα̂

(
1
α−

−
1
α+

)
ui+1 +

α̂

α+
φΓ − ηh

α̂

α+α−
ψΓ + O(h2), (20)

ũi+1 = −(1 − η)α̂
(

1
α+

+
1
α−

)
ui +

α̂

α−
ui+1 −

α̂

α−
φΓ − h(1 − η)

α̂

α+α−
ψΓ + O(h2). (21)

With above fictitious values, central difference approximations can be obtained as

[(αux)x]i = α−

(
ui−1 − 2ui + ũi+1

h2

)
+ O(h2), (22)

[(αux)x]i+1 = α+

(
ũi − 2ui+1 + ui+2

h2

)
+ O(h2). (23)

Substituting (20)–(21) in (22)–(23) yields the same correction formulas (14)–(15) previously obtained for the GFM.
Similarly, correcting δxxu at the three corner grids (Fig. 2b) using fictitious values can be obtained by introducing, in

total, four fictitious values: one (ũi−1) at the left corner grid xi−1, two (ũi and ˜̃ui) at the middle corner grid xi, and one
(ũi+1) at the right corner grid. Substituting the four fictitious values in the jump conditions (5)–(6) yields a system of four
equations(

(1 − η1)ui−1 + η1ũi
)
−
(
(1 − η1)ũi−1 + η1ui

)
= φΓ1 + O(h2), (24)

α+

(
ui − ũi−1

h

)
− α−

(
ũi − ui−1

h

)
= ψΓ1 + O(h), (25)(

(1 − η2) ˜̃ui + η2ui+1

)
−
(
(1 − η1)ui + η2ũi+1

)
= φΓ2 + O(h2), (26)

α+

(
ui+1 − ˜̃ui

h

)
− α−

(
ũi+1 − ui

h

)
= ψΓ2 + O(h), (27)

from which the four fictitious values can be solved for in terms of {ui−1, ui, ui+1, φΓ1 , ψΓ1 , φΓ2 , ψΓ2}. These representations
can then be used in

[(αux)x]i−1 = α+

(
ui−2 − 2ui−1 + ũi

h2

)
+ O(h2), (28)

[(αux)x]i = α−

(
ũi−1 − 2ui + ũi+1

h2

)
+ O(h2), (29)

[(αux)x]i+1 = α+

(
˜̃ui − 2ui+1 + ui+2

h2

)
+ O(h2). (30)

to achieve the corrected formulas of δxxu at the three corner grids.
It is interesting to point out that the GFM and MIBV1 actually result in identical numerical formulas, even though their

approaches to enforce the jump conditions are different. Therefore, one dimensional numerical examples comparing GFM
and MIBV1 are omitted in this work. Interested readers are directed to [30] for 1D numerical examples.



720 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

Fig. 3. Graphical demonstration of two dimensional jump conditions enforcement in the GFM.

Identical formulas resulted in the GFM and MIBV1 methods are essentially due to the fact that linear polynomials
are employed in jump condition enforcement based on either fictitious values at nodes or jump values on the interface.
In the MIB literature, quadratic polynomials are usually used to ensure a local truncation error O(h) and a global error
O(h2) [19,22,23]. Such a MIB method in 1D will be referred to as the MIBV2 scheme in this paper. We briefly discuss
the idea of the MIBV2 without offering much detail. Taking (u−)Γ in Eq. (17) as an example, it will be approximated by
a quadratic polynomial, or in terms of three values, {ui−1, ui, ũi+1}. The truncation error will be O(h3). In this manner,
two fictitious values ũi and ũi+1 will be solved in terms of {ui−1, ui, ui+1, ui+2, φΓ , ψΓ } with O(h3) error. Substituting such
fictitious values in (22)–(23) yields the MIBV2 scheme, which improves the local error from O(1) to O(h). This leads to
O(h2) global error in the maximal norm [25]. The treatment of corner points has been discussed in the mADI method [19].
We note that the order improvement in the MIBV2 breaks the symmetric and tridiagonal matrix structure. Fortunately,
a modified Thomas algorithm was proposed in [19] to solve the system efficiently.

Finally, we note another point that contributes to the identical formulas achieved by the GFM and MIBV1 in 1D. This is
due to the fact that the normal direction at the point interface coincides the x-axis. However, it is not the case in higher
dimensions when the normal directions at interface points, in general, do not coincide grid lines. As a result, the formulas
obtained by the GFM and MIBV1 become different in higher dimensions.

3. Solving parabolic interface problems in two dimensions by the GFM and MIB-type methods

The GFM and MIBV1 methods will be different in higher dimensions. We will elaborate these differences in two
dimensions (2D) in this section. To this end, 2D uniform Cartesian grid meshes are deployed in both x and y directions
over a finite two dimensional rectangular domainΩ . For simplicity, we assume h = ∆x = ∆y in the following discussions.

3.1. GFM and MIB-type methods in two dimensions

Following the same numerical setups and notations in 1D, the GFM in 2D is graphically demonstrated in Fig. 3, in
which both irregular and corner cases are demonstrated by a piece of a 2D closed interface Γ (red) cutting one grid line
yj. In Fig. 3a, interface Γ cuts grid line yj at an irregular interface point IPY, where the normal vector n forms a nonzero
angle θ with the positive direction of the x-grid line y = yj. A coordinate transformation formula

∂

∂n
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

∂

∂τ
= − sin θ

∂

∂x
+ cos θ

∂

∂y
, (31)

is utilized in both the GFM and MIBV1 to convert the jumps at IPY in the normal n and tangential τ directions to those
in the x- and y- directions

[αun]Γ = cos θ [αux]Γ + sin θ
[
αuy

]
Γ
, [αuτ ]Γ = − sin θ [αux]Γ + cos θ

[
αuy

]
Γ
. (32)

For computational simplicity, the GFM [30] assumes that no jump occurs in the tangential direction, i.e., [αuτ ]Γ = 0,
so that the jumps at IPY in the x-direction are obtained by

[u]Γ =
(
u+
)
Γ

−
(
u−
)
Γ

= φΓ , [αux]Γ = α+(u+

x )Γ − α−(u−

x )Γ ≈ cos θ [αun] = cos θ ψΓ . (33)

After jump conditions (33) are obtained, one can then follow the same steps (8)–(15) in one dimension to correct δxxu at
the two irregular grids {(xi, yj), (xi+1, yj)}.



C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 721

Fig. 4. Graphical demonstration of two dimensional jump conditions enforcement in the MIBV1.

Similar treatments applied to the corners in Fig. 3b lead to jump conditions at two corners as

[u]Γ1 = (u+)Γ1 − (u−)Γ1 = φΓ1 , [αux]Γ1 = α+
(
u+

x

)
Γ1

− α−
(
u−

x

)
Γ1

≈ cos θ1ψΓ1 , (34)

[u]Γ2 = (u+)Γ2 − (u−)Γ2 = φΓ2 , [αux]Γ2 = α+
(
u+

x

)
Γ2

− α−
(
u−

x

)
Γ2

≈ cos θ2ψΓ2 , (35)

which are used to correct δxxu at the three corner grids {(xi−1, yj), (xi, yj), (xi+1, yj)} in Fig. 3b.
GFM’s assumption that no jumps occurring in the tangential direction is merely a numerical simplification. More

rigorous formulations [19,22] indicate that the exact jump [αux] at the irregular interface point (xΓ , yj) is

[αux]Γ = cos θ ψΓ − sin θ [αuτ ]Γ (36)
= cos θ ψΓ − sin θ (α+

− α−)
(
u+

τ

)
Γ

− sin θα− (φτ )Γ (37)

= cos θ ψΓ − sin θ (α+
− α−)

(
u−

τ

)
Γ

− sin θα+ (φτ )Γ , (38)

where the subscript ‘‘τ ’’ denotes the derivative along the positive tangential direction, and the superscript, ‘‘+’’ or ‘‘−’’,
indicates the derivative is taken in the respective subdomain, Ω+ or Ω−.

Comparing (36)–(38) to (33), the ignored tangential jumps in the GFM are clearly revealed. The MIB-type methods
adopt (36)–(38) to estimate [αux]Γ for better accuracy [19]. Notice that when (37) and (38) are used, either u+

τ =
∂u+

∂τ
or

u−
τ =

∂u−

∂τ
shall be numerically approximated, while φτ =

∂φ

∂τ
could be analytically calculated from the known φ function.

See [19,22] for the methods to estimate
(
u+
τ

)
Γ

and
(
u−
τ

)
Γ
. Let ψ̄Γ ≈ [αux]Γ be an approximation at IPY, a system of

equations(
(1 − η)ũi,j + ηui+1,j

)
−
(
(1 − η)ui,j + ηũi+1,j

)
= φΓ + O(h2), (39)

α+

(
ui+1,j − ũi,j

h

)
− α−

(
ũi+1,j − ui,j

h

)
= ψ̄Γ + O(h), (40)

is then established in the MIBV1 method for the two fictitious values ũi,j and ũi+1,j.
Similar treatments lead to a system of four equations(

(1 − η1)ui−1,j + η1ũi,j
)
−
(
(1 − η1)ũi−1,j + η1ui,j

)
= φΓ1 + O(h2), (41)

α+

(
ui,j − ũi−1,j

h

)
− α−

(
ũi,j − ui−1,j

h

)
= ψ̄Γ1 + O(h), (42)(

(1 − η2) ˜̃ui,j + η2ui+1,j

)
−
(
(1 − η1)ui,j + η1ũi+1,j

)
= φΓ2 + O(h2), (43)

α+

(
ui+1,j −

˜̃ui,j

h

)
− α−

(
ũi+1,j − ui,j

h

)
= ψ̄Γ2 + O(h), (44)

at corners shown in Fig. 4b. Here ψ̄Γ1 ≈ [αux]Γ1 and ψ̄Γ2 ≈ [αux]Γ2 at the two corners, respectively. Solving the system
(41)–(44) results in four fictitious values ũi−1,j, ũi,j, ˜̃ui,j, and ũi+1,j written as the linear combinations of {ui−1,j, ui,j, ui+1,j,
φΓ1 , ψ̄Γ1 , φΓ2 , ψ̄Γ2}.

The main difference between the GFM and MIBV1 in 2D lies in the approximations of [αux]Γ and [αuy]Γ at interface
points. Since such approximations only affect the right hand side values in the discretized jump conditions, the finite



722 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

difference matrix structures of the GFM and MIBV1 in 2D are still the same. Moreover, as in 1D, the global truncation
error of such finite difference formula is also O(h). In other words, the GFM and MIBV1 are first order accurate finite
difference methods in 2D. However, the impact of jump approximations to the GFM and MIBV1 methods is different. For
the GFM, the approximation error underlying [αux]Γ ≈ cos θψΓ is O(1), which could be large or small depending on actual
solution. Since the MIBV1 recovers the jumps along the tangential direction and uses them for correcting δxxu at irregular
and corner grids, it is natural to expect that the MIBV1 is more accurate when compared to the GFM. In particular, for
the present parabolic problem, we will follow the scheme proposed in the mADI method [19,22] to estimate tangential
jumps at the next future time step by using function values at the present time step. Assuming time increment is ∆t , we
have [αux]Γ = ψ̄γ +O(h2

+∆t) for the MIBV1 method. We thereby consider the MIBV1 an improvement of the standard
GFM [30] in terms of accuracy.

3.2. Time discretization

When coupled with appropriate time evolution methods, both GFM and MIBV1 can be used to form fully-discretized
methods for solving parabolic interface problems (1)–(3). In this work, two implicit time evolution methods, the implicit
Euler (IE) and Douglas ADI (ADI) methods, are selected so that the equilibrium solutions of long-term simulations can be
obtained within a reasonable time frame. Both time evolution methods are known to converge in first order and similarly
accurate so that we expect they are going to deliver close numerical solutions. However, our previous experiments indicate
that the ADI is more efficient when comparing to the IE. We will demonstrate their efficiency by comparing the CPU time
when solving the same interface problem using the IE and ADI methods.

In two dimensions, solving Eq. (1) by the IE method with a uniform time step ∆t yields

(1 −∆t(δxx + δyy))un+1
i,j = un

i,j +∆tf n+1
i,j , (45)

and solving Eq. (1) by the ADI method with the same time step ∆t yields

(1 −∆tδxx)u∗

i,j = un
i,j +∆tδyyun

i,j +∆tf n+1
i,j , (46)

(1 −∆tδyy)un+1
i,j = u∗

i,j −∆tδxxun
i,j. (47)

In both time evolution schemes, the finite difference operators δxx and δyy have been corrected by either the GFM or
the MIBV1 at irregular and corners grids. The resulting fully discretized methods are then named as GFM-IE, GFM-ADI,
MIBV1-ADI, and so on. We note that the MIBV2-ADI is actually the mADI method reported in [19]. We are interested in
comparing it with newly proposed methods in this work.

It shall be pointed out that the methods involving the GFM are purely implicit by ignoring the tangential derivatives
at the interface points, while those involving the MIBV1 and MIBV2 are actually semi-implicit due to approximating the
tangential derivatives at the next time step tn+1 with its value at current time step tn in every time evolution step [19].
This numerical treatment obviously affects the stability and accuracy of the proposed methods. Its impact on the numerical
solutions will be studied using various 2D examples in the next subsection.

3.3. Two dimensional numerical experiments

In this subsection, two dimensional (2D) numerical experiments will be conducted to earn profound insights on the
proposed methods for solving parabolic interface problems. To this end, an exact solution is defined

u(x, y, t) =

{
sin(2x) cos(2y) cos(t) in Ω−

cos(2x) sin(2y) cos(t) in Ω+ (48)

over a finite spatial domain Ω = [−0.99, 0.99] × [−0.99, 0.99] from an initial time t = 0 to a final time t = 1. The
interface Γ is constructed by a parametric function

r = 0.5 + b sin(kθ ), (49)

where b > 0 is a real number governing the magnitude and curvature of the interface, k > 0 is a positive integer
determining the number of ‘‘heads’’ of the curve, and θ is an angle in the range of [0, 2π ]. Using the exact solution (48),
jump conditions (3) on the interface are analytically given by

[u] = (cos(2x) sin(2y) − sin(2x) cos(2y)) cos(t),
[αun] = 2(sin(2x) sin(2y)(α− sin(θ ) − α+ cos(θ ))

+ cos(2x) cos(2y)(α+ sin(θ ) − α− cos(θ ))) cos(t). (50)

One can see that jump conditions (50) are actually time-and-space dependent, representing the most general jump
conditions. In a similar fashion, source term f in Eq. (1) is found to be

f (x, y, t) =

{
(8α− cos(t) − sin(t)) sin(2x) cos(2y), in Ω−

(8α+ cos(t) − sin(t)) cos(2x) sin(2y), in Ω+ (51)



C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 723

Fig. 5. Analytic solutions and interfaces used in Examples 1 and 2.

Fig. 6. Numerical errors and CPU time obtained in Example 1.

and the initial and boundary conditions are given by

u(x, y, 0) = sin(2x) cos(2y) in Ω−, u(x, y, 0) = cos(2x) sin(2y) in Ω+, (52)
u(−0.99, y, t) = cos(−1.98) sin(2y) cos(t), u(0.99, y, t) = cos(1.98) sin(2y) cos(t), (53)
u(x,−0.99, t) = cos(2x) sin(−1.98) cos(t), u(x, 0.99, t) = cos(2x) sin(1.98) cos(t).

Example 1. In the first example, interface is constructed by selecting (b, k) = (0.05, 4), resulting in a smooth and regular
‘‘squircle’’ interface, demonstrated in Fig. 5a. The contour plot of the exact solution (48) is drawn in Fig. 5a, in which
jumps across the interface can be easily observed.

We study the performance of the two time evolution methods in this example. To this end, GFM-IE and GFM-ADI are
adopted to solve Eq. (1) from t = 0 to t = 1 with a fixed time step ∆t = 1.0E−4 and various spatial meshes ranging from
the coarsest mesh (the number of grids per direction N = 41) to the finest mesh (N = 341). In the GFM-IE scheme, the
linear system at each time step is solved by a biconjugate gradient iterative method implemented in the mathematical
library Slatec https://people.sc.fsu.edu/~jburkardt/f_src/slatec/slatec.html. The obtained results are presented in Fig. 6.

One can see that the two time evolution methods are similarly accurate. The resulting L2 and L∞ errors are almost
indistinguishable, as shown by continuous curves for the GFM-IE and discrete markers for the GFM-ADI in Fig. 6a. It is
understood that the two time evolution methods differ only by a higher-order perturbation term, and the underlying
spatial discretization method is the same. On the other hand, Fig. 6b shows that the GFM-ADI is much more efficient
than the GFM-IE. Difference of their executed CPU time becomes more significant as N increases. In the case of the finest
spatial resolution (N = 341), GFM-IE is about 17 times slower than the GFM-ADI to achieve close accuracy at the final
time. It clearly suggests that the ADI is more suitable to be used for time evolution. For this reason, we will only use the
ADI in the following examples.

https://people.sc.fsu.edu/~jburkardt/f_src/slatec/slatec.html


724 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

Fig. 7. Temporal accuracy and convergence rates obtained in Example 2. The average convergence rates are calculated by obtained results of time
steps in the range of [2.5E−3, 1.0E−1] for the GFM-ADI and [2.5E−4, 1.0E−1] for the MIBV1-ADI, respectively.

Example 2. The second example is borrowed from [19] so that we can focus on comparing the performance of the
two methods, GFM-ADI and MIBV1-ADI, while interested reader is directed to [19] for similar results obtained by the
MIBV2-ADI. Interface in this example is constructed by selecting (b, k) = (0.25, 2), resulting in a 2-headed interface with
sharper curvature, as shown in Fig. 5b. Temporal and spatial accuracy, as well as corresponding convergence rates, are
quantitatively examined in this example.

We first study the temporal accuracy and convergence rate. To this end, N = 321 is fixed, and the time step ∆t varies
from 1.0E−5 to 1.0E−1. The interface problem is then solved from t = 0 to t = 1. Numerical errors and convergence
rates are presented in Fig. 7.

In both Figs. 7a–7b, it is observed that the GFM-ADI is able to achieve better accuracy when ∆t is large, i.e., ∆t >
1.0E−3. However, both L∞- and L2-errors are flatten quickly after the point of ∆t = 1.0E−3. The best L∞-error ≈ 2.4E−3
is achieved at ∆t = 2.5E−4 and the best L2-error ≈ 1.6E−4 is achieved at ∆t = 1.0E−3, respectively. On the other
hand, MIBV1-ADI starts off with larger errors at ∆t = 1.0E−1, but both errors decline in faster paces as ∆t decreases.
When ∆t ≤ 1.0E−3, the MIBV1-ADI starts to achieve better accuracy than that obtained by the GFM-ADI. Eventually,
the MIBV1-ADI achieves the best L∞-error ≈ 2.4E−4 at ∆t = 1.0E−4 and the best L2-error ≈ 3.7E−5 at ∆t = 1.0E−4,
respectively. Numerical (average) convergence rates are also demonstrated in Figs. 7a–7b. These rates are calculated at ∆t
over the interval [2.5E−3, 1.0E−1] for the GFM-ADI and [2.5E−4, 1.0E−1] for the MIBV1-ADI, respectively. All temporal
convergence rates are found to be greater than or equal to one.

The difference in the temporal convergence patterns of the GFM and MIBV1 methods is believed to be caused by
different numerical treatments of the tangential jumps in two methods. In the GFM-ADI, errors introduced by neglecting
tangential jumps at interface points are overwhelmed by errors introduced in temporal discretization when time step ∆t
is large. As∆t becomes smaller, the tangential errors do not change, and therefore become more significant and eventually
dominate the overall errors when ∆t ≤ 1.0E−3 so that no more reduction of errors is observed in both L∞- and L2-errors
as ∆t continues to decrease. On the other hand, tangential derivative un+1

τ is approximated by un
τ , and un

τ , in turn, is
approximated by the numerical treatments described in Section 3.1, in each time evolution step tn of the MIBV1-ADI.
Accuracy of the former approximation obviously depends on the size of ∆t . When ∆t is large, i.e., ∆t > 1.0E−3, the
error is significant, resulting in less accurate numerical solutions. However, this error diminishes quickly as ∆t decreases,
leading to more accurate numerical solutions when ∆t ≤ 1.0E−3.

We next examine the spatial accuracy and convergence rate. A small time step ∆t = 2.5E−6 is fixed so that
the temporal error can be neglected. The numerical errors for various mesh size N are presented in Table 1. Based
on successive mesh refinements, numerically calculated convergence rates are reported for both L2 and L∞ error
measurements. One can see that the spatial convergence rates obtained by both methods are mostly between one and
two, while the rates obtained by the MIBV1-ADI are slightly higher than those obtained by the GFM-ADI.

Example 3. We continue to examine the performance of the two methods on an example with a more complicated
4-headed interface constructed by choosing (b, k) = (0.25, 4), as shown in Fig. 8a. The MIBV2-ADI is also adopted in
this example to be compared with the GFM-ADI and MIBV1-ADI. The same numerical setups in Example 2 are reused
here for temporal experiments. On the other hand, the spatial experiments start with N = 81 in order to capture the



C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 725

Fig. 8. Analytic solutions and interfaces used in Examples 3 and 4.

Fig. 9. Temporal accuracy and convergence rates obtained in Example 3. The average convergence rates are calculated by obtained results of time
steps in the range of [2.5E−3, 1.0E−1] for the GFM-ADI, [1.0E−4, 1.0E−1] for the MIBV1-ADI, and [7.5E−5, 1.0E−1] for the MIBV2-ADI, respectively.

Table 1
Spatial accuracy and convergence rates obtained in Example 2.
N GFM-ADI MIBV1-ADI

L∞ L2 L∞ L2
Error Rate Error Rate Error Rate Error Rate

21 2.08E−02 4.19E−03 1.09E−02 1.75E−03
41 1.31E−02 0.69 2.04E−03 1.08 3.64E−03 1.64 5.77E−04 1.66
81 6.21E−03 1.10 7.02E−04 1.57 1.92E−03 0.93 5.25E−04 0.14
161 2.71E−03 1.21 3.41E−04 1.05 6.22E−04 1.64 1.31E−04 2.02
321 2.38E−03 0.19 2.01E−04 0.76 2.39E−04 1.39 3.66E−05 1.84

sharp change of the interface in this example. The obtained temporal results are presented in Fig. 9. One can see that all
three methods are still capable of maintaining first order temporal convergence rates in this example.

The spatial results are presented in Table 2. The spatial convergence rates obtained by the GFM-ADI and MIBV1-ADI
are still close the one, while the rates obtained by the MIBV2-ADI are closer to two. Results obtained in this example
strongly suggest that all three methods are robust and capable of delivering accurate approximations on examples with
fairly complicated interfaces.



726 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

Fig. 10. CPU time obtained in Examples 3 and 4.

Fig. 11. Temporal accuracy and convergence rates obtained in Example 4. The average convergence rates are calculated by obtained results of time
steps in the range of [2.5E−3, 1.0E−1] for the GFM-ADI, [1.0E−4, 1.0E−1] for the MIBV1-ADI, and [7.5E−5, 1.0E−1] for the MIBV2-ADI, respectively.

Moreover, the obtained CPU time in Fig. 10a shows that all three methods are similarly efficient in practice. Here, with
a fixed ∆t and total time steps, the CPU time is plotted against the degree of freedom N in log–log scale. The complexities
of three methods all appear to be linear with respect to N . As a demonstration, the linear trend of the data obtained for
the GFM-ADI method is presented by the dashed line. The slope of this straight line is found to be 0.892. This indicates
that the complexity of the GFM-ADI scales as O(N0.892) in this example. The efficiency of the present three ADI methods
is some of the fastest for solving parabolic PDEs, because the underlying Thomas algorithm in each ADI step is an O(N)
method.

Example 4. The most complicated 2D interface examined in this work is constructed by selecting (b, k) = (0.2, 6), resulting
in a 6-headed interface as shown in 8b. The obtained CPU time (Fig. 10b), temporal (Fig. 11) and spatial (Table 3) results
are similar to those obtained in Example 3.

For this example, the space accuracies of the GFM-ADI and MIBV1-ADI schemes in estimating solution gradients are
considered in Table 4. Here, for the numerical solution u at the final time step tn = 1, the central differences are employed
to approximate ∂u

∂x and ∂u
∂y . Such a central difference approximation further degrades the spatial order of convergence.

Thus, it can be seen in Table 4 that the GFM-ADI error is essentially divergent in L∞ norm, while converges about O(h0.5)
in L2 norm. By incorporating tangential jumps, the MIBV1-ADI yields a slightly better accuracy. Its gradient error is not
divergent in L∞ norm, and converges exactly on the order of 0.5 in L2 norm. However, an additional error is involved in
the present MIBV1-ADI gradient approximation, because in mADI schemes, the tangential jumps are calculated from the



C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 727

Table 2
Spatial accuracy and convergence rates obtained in Example 3.
N GFM-ADI MIBV1-ADI MIBV2-ADI

L∞ L2 L∞ L2 L∞ L2
Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

81 1.07E−02 9.72E−04 2.59E−03 4.41E−04 1.93E−03 3.28E−04
161 7.76E−03 0.46 6.71E−04 0.54 1.31E−03 0.99 3.16E−04 0.49 5.59E−04 1.80 9.32E−05 1.83
321 2.97E−03 1.39 3.27E−04 1.04 3.54E−04 1.90 9.00E−05 1.82 1.12E−04 2.33 1.48E−05 2.66

Table 3
Spatial accuracy and convergence rates obtained in Example 4.
N GFM-ADI MIBV1-ADI MIBV2-ADI

L∞ L2 L∞ L2 L∞ L2
Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

81 1.31E−02 1.62E−03 4.75E−03 9.11E−04 2.07E−03 3.70E−04
161 5.78E−03 1.20 5.76E−04 1.51 1.85E−03 1.37 3.63E−04 1.34 5.26E−04 1.99 7.49E−05 2.32
321 5.19E−03 0.16 4.67E−04 0.30 3.80E−04 2.29 1.09E−04 1.74 2.02E−04 2.39 2.32E−05 1.70

Table 4
Accuracy and convergence rates for calculating gradients in Example 4.
N GFM-ADI MIBV1-ADI

L∞ L2 L∞ L2
Error Rate Error Rate Error Rate Error Rate

81 1.96 1.97E−01 9.91E−01 1.79E−01
161 1.58 0.32 1.35E−01 0.54 9.91E−01 0.00 1.27E−01 0.50
321 2.99 −0.92 9.98E−02 0.44 9.91E−01 0.00 9.04E−02 0.50

Table 5
α-tests obtained in Example 4.
α+

: α− GFM-ADI MIBV1-ADI MIBV2-ADI

L∞ L2 L∞ L2 L∞ L2
10 : 1 5.19E−03 4.67E−04 3.80E−04 1.09E−04 2.02E−04 2.32E−05
40 : 1 7.67E−03 6.44E−04 4.66E−04 1.26E−04 2.85E−04 3.19E−05
160 : 1 9.01E−03 7.18E−04 4.96E−04 1.32E−04 3.10E−04 3.49E−05
320 : 1 9.35E−03 7.34E−04 5.00E−04 1.33E−04 3.08E−04 3.53E−05
640 : 1 9.56E−03 7.42E−04 — — — —
1 : 10 4.82E−03 8.44E−04 7.61E−04 1.99E−04 1.94E−04 3.59E−05
1 : 40 6.18E−03 1.31E−03 1.06E−03 2.73E−04 2.73E−04 5.28E−05
1 : 160 6.77E−03 1.52E−03 1.35E−03 3.38E−04 3.15E−04 6.07E−05
1 : 320 6.89E−03 1.57E−03 1.66E−03 4.67E−04 3.20E−04 6.20E−05
1 : 640 6.95E−03 1.59E−03 2.48E−03 9.94E−04 3.61E−04 7.50E−05

previous time step tn−1, not at tn. For this reason, the gradient improvement of the MIBV1-ADI over GFM-ADI is very slim.
In particular, it is believed that the non-convergence pattern of the MIBV1-ADI in L∞ norm is due to such a temporal
error. Moreover, the gradient errors of the MIBV2-ADI are found to be exactly the same as those of the MIBV1-ADI, due
to the same temporal error. Better gradient approximation techniques will be explored in the future for both GFM-ADI
and MIB-ADI methods.

Besides the shape of the interface, another factor which is known to affect the performance of the proposed numerical
methods is the contrast ratio of α+

: α−. When the ratio is extremely large or small, it has been found that MIB-type
methods could be unstable, while GFM-type methods are still able to converge. In order to illustrate the impact of α+

: α−

on the stability of the proposed methods, we nail the smaller value of α equal to one on one side of the interface, and
vary its larger value on the other side. Obtained results are presented in Table 5.

The GFM-ADI is found to converge in all tested cases shown in Table 5, while both MIB-type methods diverge in the
case of α+

: α−
= 640 : 1 or even larger ratios. It is interesting enough to see that both MIB-type methods diverge only

when α+
: α−

= 640 : 1, but converge when the ratio is reversed (α+
: α−

= 1 : 640). We reason the divergence is
caused by the numerical treatments of [αux] and [αuy] in current implementations. As the matter of the fact, Eq. (37)
and its analog in the y-direction are actually the ones used for estimating jumps [αux] and [αuy] from the Ω+-side of
the interface, while Eq. (38) and its analog are not used at all in current MIB implementations. It points out a direction
to improve the current MIB methods. If Eqs. (37)–(38), as well as their analogs in the y-direction, can be chosen wisely
for approximating [αux] and [αuy], the stability of the MIB methods may be improved. A development in this direction is
under construction and will be reported elsewhere.



728 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

4. Solving parabolic interface problems in three dimensions by GFM and MIB-type methods

4.1. GFM and MIB-type methods in three dimensions

In three dimensions (3D), interface Γ becomes a closed hypersurface. The extension of the GFM is fairly straightfor-
ward, so it will be mentioned first.

In 3D, jump [αun]Γ at an interface point is decomposed into three directional jumps in x, y, and z directions,
respectively, in the GFM. Provided the hypothesis that, at an interface point, no jump occurs in the tangential plane
orthogonal to the normal vector, each of above directional jumps is treated as the actual jump in that particular direction
and used to correct δxxu, δyyu, and δzzu at irregular and corner grids near the interface point. More details can be found
in [30].

On the other hand, tangential jumps are required to be estimated in MIB-type methods. In three dimensions, a
particular non-orthogonal local coordinate system is proposed in [23] so that two particular tangential directions in
the tangential plane are selected, and jumps in these two tangential directions are numerically approximated. The
approximated tangential jumps are then used for estimating jumps in x, y and z directions. This unique treatment lowers
the dimension by one for the task to estimate the jumps in x, y and z directions. This treatment has not been commonly
seen in others’ work. We shall elaborate this novel treatment in below.

At an interface point IPY(xi, yΓ , zk) on the straight line where the plane x = xi meets the plane z = zk, an outer
normal vector is provided as ξ = (nx, ny, nz). A local coordinate system (ξ, η, ζ ) is desired with two vectors, η and ζ ,
not necessarily orthogonal, to span the tangential plane of the interface at the point IPY. One possible choice is to select
η on the straight line where the tangential plane intersects the plane x = xi, and ζ on the intersection line where the
tangential plane meets the plane z = zk. A pair of unit vectors of η and ζ is given by

η =

⎛⎝0,
nz√

n2
y + n2

z

, −
ny√

n2
y + n2

z

⎞⎠ , ζ =

⎛⎝ ny√
n2
x + n2

y

, −
nx√

n2
x + n2

y

, 0

⎞⎠ . (54)

The local coordinate system (ξ, η, ζ ) can then be related to the global coordinate system (x, y, z) via a transformation
formula

[
ξ

η

ζ

]
= Py

[x
y
z

]
=

⎡⎢⎢⎢⎣
nx ny nz

0 nz√
n2y+n2z

−
ny√

n2y+n2z
ny√

n2x+n2y
−

nx√
n2x+n2y

0

⎤⎥⎥⎥⎦
[x
y
z

]
, (55)

where the coordinate transformation matrix Py is nonsingular, so that the desired jump conditions in x, y and z directions
can be obtained by⎛⎜⎝(ψx)Γ(

ψy
)
Γ

(ψz)Γ

⎞⎟⎠ :=

⎛⎜⎝[αux]Γ[
αuy

]
Γ

[αuz]Γ

⎞⎟⎠ = P−1
y

⎛⎜⎜⎝
[
αuξ

]
Γ[

αuη
]
Γ[

αuζ
]
Γ

⎞⎟⎟⎠ , (56)

where[
αuξ

]
Γ

= ψΓ ,[
αuη

]
Γ

= α+
(
φη
)
Γ

+ (α+
− α−)

(
u−
η

)
Γ

= α−
(
φη
)
Γ

+ (α+
− α−)

(
u+
η

)
Γ
,[

αuζ
]
Γ

= α+
(
φζ
)
Γ

+ (α+
− α−)

(
u−

ζ

)
Γ

= α−
(
φζ
)
Γ

+ (α+
− α−)

(
u+

ζ

)
Γ
.

(57)

Notice that the three jumps, ψΓ ,
(
φη
)
Γ
and

(
φζ
)
Γ
, can all be obtained analytically via the imposed jump conditions at the

interface point IPY, while the tangential jumps
(
u−
η

)
Γ
,
(
u+
η

)
Γ
,
(
u−

ζ

)
Γ

and
(
u+

ζ

)
Γ

in (57), must be numerically estimated,
for example, by the method proposed in [23]. After approximations to directional jumps

[
αuξ

]
Γ
,
[
αuη

]
Γ
, and

[
αuζ

]
Γ

in
(56) are obtained, one can follow similar procedure mentioned previously in one and two dimensions to correct δxxu, δyyu,
and δzzu at the irregular and corner grids near the interface.

4.2. Time discretization

For both GFM and MIB-type methods, a Douglas-Rachford ADI method is employed for time evolution in 3D,

(1 −∆tδxx)u∗

i,j,k = un
i,j,k +∆tδyyun

i,j,k +∆tδzzun
i,j,k +∆tf n+1

i,j,k , (58)

(1 −∆tδyy)u∗∗

i,j,k = u∗

i,j,k −∆tδyyun
i,j,k, (59)



C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 729

Fig. 12. Numerical solutions and errors at the final time t = 1 obtained in Example 5.

(1 −∆tδzz)un+1
i,j,k = u∗∗

i,j,k −∆tδzzun
i,j,k, (60)

where u∗ and u∗∗ are two intermediate values. As in 2D, the temporal order of such ADI method is also one. The resulting
fully discretized methods will also be named as GFM-ADI, MIBV1-ADI, and MIBV2-ADI.

4.3. Three dimensional numerical experiments

Example 5. An example is constructed to examine the capability of the three methods for solving problems with 3D
interfaces. In this example, the interface is a simple smooth ellipsoid surface constructed as the zero level set of

S(x, y, z) =
x2

4
+ y2 + z2 − 1. (61)



730 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

Fig. 13. Temporal accuracy and convergence rates obtained in Example 5. The average convergence rates are calculated by obtained results of time
steps in the range of [8.0E−4, 2.0E−2] for all three methods.

Table 6
Spatial accuracy and convergence rates obtained in Example 5.
N GFM-ADI MIBV1-ADI MIBV2-ADI

L∞ L2 L∞ L2 L∞ L2
Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

20 2.56E−01 5.42E−02 2.97E−01 5.16E−02 3.64E−01 5.47E−02
40 1.92E−01 0.41 1.44E−02 1.91 1.69E−01 0.82 1.34E−02 1.95 1.27E−01 1.52 1.30E−02 2.07
80 1.14E−01 0.76 4.89E−03 1.56 8.74E−02 0.95 3.41E−03 1.98 5.65E−02 1.17 3.19E−03 2.03
160 6.77E−02 0.75 1.86E−03 1.39 3.18E−02 1.46 9.17E−04 1.89 1.20E−02 2.24 1.59E−04 4.32

This interface is regular and convex, and each grid line cuts the interface at most twice. The numerical solution is
constructed as

u(x, y, t) =

{
(cos(2x) + sin(2y) + cos(2z)) sin(t) in Ω−

(sin(2x) + cos(2y) + sin(2z)) sin(t) in Ω+
(62)

A 3D computational domain [−4, 4] × [−4, 4] × [−4, 4] is used. At the final time t = 1, numerical solutions and errors
on the surface obtained by the three proposed methods with ∆t = 1.0E − 4 and N = 160 are graphically demonstrated
in Fig. 12. More detailed temporal and spatial results are presented in Fig. 13 and Table 6, respectively. It is found that
the temporal convergence rates are close to one, while the spatial convergence rates are even better than those obtained
in examples with complicated 2D interfaces due to the simple shape of the interface used in this 3D example.

In summary, we conclude that all three methods can be successfully extended to solve three-dimensional interface
problems. The obtained numerical accuracy and convergence rates are comparable to those obtained in two dimensional
cases.

5. Conclusion

In this work, two new ADI schemes are developed and compared for solving parabolic interface problems in two and
three dimensions. First, a GFM-ADI scheme is proposed for the first time in the literature. Second, a MIBV1-ADI scheme
is constructed by downgrading the second order matched ADI or MIBV2-ADI method [19] to first order. Interestingly,
the finite difference matrices of the GFM-ADI and MIBV1-ADI are the same in all dimensions – all being symmetric and
diagonal. Moreover, both schemes maintain the ADI efficiency – the computational complexity for each time step scales
as O(N) for a total degree of freedom N in higher dimensions. The only difference is that the MIBV1-ADI and MIBV2-ADI
schemes calculate tangential jumps which are omitted in the GFM. In other words, the MIB scheme can be regarded as
higher order generalization of the GFM. In fact, high order MIB schemes, such as fourth order or even higher, have been
constructed for solving general interface problems [20,21].

The performances of the GFM-ADI and MIBV1-ADI for solving parabolic interface problems with complex interfaces in
two- and three-dimensions are investigated through numerical experiments. The obtained results show that both methods
are capable of achieving first order of temporal convergence in ADI computations. For spatial accuracy, even though both
schemes have the theoretical convergence rate being one, the MIBV1-ADI method is more accurate by taking into account



C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732 731

the tangential derivatives at the interface points in the formulations. Nevertheless, the GFM-ADI method is more stable
due to its fully implicit nature, while the MIBV1-ADI becomes semi-implicit when calculating tangential jumps using
function values in the previous time steps. The O(N) complexity of both schemes is also numerically verified.

The two proposed ADI methods have great potential to be applied for solving practical interface models. For instance,
the application of the GFM-ADI scheme for solving the nonlinear Poisson–Boltzmann equation has been considered in [64].
Future developments of MIB-type methods are under construction to improve their stability and will be reported in a
separate work in the future.

CRediT authorship contribution statement

Chuan Li: Software, Validation, Visualization, Writing - original draft. Zhihan Wei: Software, Validation, Visualization,
Writing - original draft. Guangqing Long: Writing - review & editing. Cameron Campbell: Validation. Stacy Ashlyn:
Validation. Shan Zhao: Conceptualization, Methodology, Writing - review & editing.

Acknowledgments

This research is partially supported by the Simons Foundation, United States award 524151, the National Science
Foundation (NSF) of USA under grant DMS-1812930, the Natural Science Foundation of China under grant 11461011,
and the key project of Guangxi Provincial Natural Science Foundation of China under grants 2017GXNSFDA198014 and
2018GXNSFDA050014.

References

[1] C. Attanayake, D. Senaratne, Convergence of an immersed finite element method for semilinear parabolic interface problems, Appl. Math. Sci.
5 (3) (2011) 135–147.

[2] Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (2) (1998) 175–202.
[3] R.K. Sinha, B. Deka, Optimal error estimates for linear parabolic problems with discontinuous coefficients, SIAM J. Numer. Anal. 43 (2) (2005)

733–749.
[4] R.K. Sinha, B. Deka, Finite element methods for semilinear elliptic and parabolic interface problems, Appl. Numer. Math. 59 (8) (2009) 1870–1883.
[5] S. Wang, R. Samulyak, T. Guo, An embedded boundary method for elliptic and parabolic problems with interfaces and application to

multi-material systems with phase transitions, Acta Math. Sci. 30 (2) (2010) 499–521.
[6] R.J. Leveque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer.

Anal. 31 (4) (1994) 1019–1044.
[7] L. Adams, Z. Li, The immersed interface/multigrid methods for interface problems, SIAM J. Sci. Comput. 24 (2) (2002) 463–479.
[8] F. Bouchon, G.H. Peichl, An immersed interface technique for the numerical solution of the heat equation on a moving domain, in: Numerical

Mathematics and Advanced Applications 2009, Springer, 2010, pp. 181–189.
[9] F. Bouchon, G.H. Peichl, The immersed interface technique for parabolic problems with mixed boundary conditions, SIAM J. Numer. Anal. 48

(6) (2010) 2247–2266.
[10] J.D. Kandilarov, L.G. Vulkov, The immersed interface method for a nonlinear chemical diffusion equation with local sites of reactions, Numer.

Algorithms 36 (4) (2004) 285–307.
[11] J.D. Kandilarov, L.G. Vulkov, The immersed interface method for two-dimensional heat-diffusion equations with singular own sources, Appl.

Numer. Math. 57 (5–7) (2007) 486–497.
[12] J. Douglas Jr, On the numerical integration of ∂2u

∂x2
+

∂2u
∂y2

=
∂u
∂t by implicit methods, SIAM J. Appl. Math. 3 (1) (1955) 42.

[13] J. Douglas, D.W. Peaceman, Numerical solution of two-dimensional heat-flow problems, AIChE J. 1 (4) (1955) 505–512.
[14] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004.
[15] Z. Li, A. Mayo, ADI methods for heat equations with discontinuous along an arbitrary interface, in: Proceedings of Symposia in Applied

Mathematics, Vol. 48, 1993, pp. 311–315.
[16] Z. Li, Y.-Q. Shen, A numerical method for solving heat equations involving interfaces, in: Electronic Journal of Differential Equations, Conf., Vol.

3, AMS, 1999, pp. 100–108.
[17] J. Liu, Z. Zheng, IIM-Based ADI finite difference scheme for nonlinear convection–diffusion equations with interfaces, Appl. Math. Model. 37 (3)

(2013) 1196–1207.
[18] J. Liu, Z. Zheng, A dimension by dimension splitting immersed interface method for heat conduction equation with interfaces, J. Comput. Appl.

Math. 261 (2014) 221–231.
[19] S. Zhao, A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces, J. Sci. Comput. 63 (1) (2015)

118–137.
[20] S. Zhao, G. Wei, High-order FDTD methods via derivative matching for maxwell’s equations with material interfaces, J. Comput. Phys. 200 (1)

(2004) 60–103.
[21] Y. Zhou, S. Zhao, M. Feig, G.-W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients

and singular sources, J. Comput. Phys. 213 (1) (2006) 1–30.
[22] C. Li, S. Zhao, A matched Peaceman–Rachford ADI method for solving parabolic interface problems, Appl. Math. Comput. 299 (2017) 28–44.
[23] Z. Wei, C. Li, S. Zhao, A spatially second order alternating direction implicit (ADI) method for solving three dimensional parabolic interface

problems, Comput. Math. Appl. 75 (2018) 2173–2192.
[24] Z. Li, X. Chen, Z. Zhang, On multiscale ADI methods for parabolic pdes with a discontinuous coefficient, SIAM Multiscale Model. Simul. 16 (4)

(2018) 1623–1647.
[25] I.-L. Chern, Y.-C. Shu, A coupling interface method for elliptic interface problems, J. Comput. Phys. 225 (2009) 2138–2174.
[26] C. Liu, C. Hu, A second order ghost fluid method for an interface problem of the Poisson equation, Commun. Comput. Phys. 22 (4) (2017)

965–996.
[27] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method),

J. Comput. Phys. 152 (2) (1999) 457–492.

http://refhub.elsevier.com/S0898-1221(20)30174-7/sb1
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb1
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb1
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb2
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb3
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb3
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb3
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb4
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb5
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb5
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb5
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb6
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb6
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb6
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb7
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb8
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb8
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb8
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb9
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb9
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb9
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb10
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb10
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb10
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb11
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb11
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb11
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb12
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb13
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb14
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb16
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb16
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb16
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb17
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb17
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb17
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb18
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb18
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb18
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb19
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb19
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb19
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb20
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb20
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb20
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb21
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb21
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb21
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb22
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb23
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb23
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb23
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb24
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb24
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb24
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb25
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb26
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb26
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb26
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb27
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb27
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb27


732 C. Li, Z. Wei, G. Long et al. / Computers and Mathematics with Applications 80 (2020) 714–732

[28] R.P. Fedkiw, X.-D. Liu, The ghost fluid method for viscous flows, in: Innovative Methods for Numerical Solution of Partial Differential Equations,
World Scientific, 2002, pp. 111–143.

[29] Z. Ge, J.-C. Loiseau, O. Tammisola, L. Brandt, An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions
under depletion forces, J. Comput. Phys. 353 (2018) 435–459.

[30] X.-D. Liu, R.P. Fedkiw, M. Kang, A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys. 160 (1)
(2000) 151–178.

[31] X.-D. Liu, T. Sideris, Convergence of the ghost fluid method for elliptic equations with interfaces, Math. Comput. 72 (244) (2003) 1731–1746.
[32] S. Hou, X.-D. Liu, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys. 202 (2) (2005) 411–445.
[33] R.P. Fedkiw, Coupling an eulerian fluid calculation to a lagrangian solid calculation with the ghost fluid method, J. Comput. Phys. 175 (1) (2002)

200–224.
[34] T. Liu, B. Khoo, K. Yeo, Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys. 190 (2) (2003) 651–681.
[35] C. Wang, T. Liu, B. Khoo, A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput. 28 (1) (2006)

278–302.
[36] C. Wang, H. Tang, T. Liu, An adaptive ghost fluid finite volume method for compressible gas-water simulations, J. Comput. Phys. 227 (12)

(2008) 6385–6409.
[37] S. Majidi, A. Afshari, Towards numerical simulations of supersonic liquid jets using ghost fluid method, Int. J. Heat Fluid Flow 53 (2015) 98–112.
[38] C. Farhat, A. Rallu, S. Shankaran, A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow

computation of underwater implosions, J. Comput. Phys. 227 (16) (2008) 7674–7700.
[39] R.P. Fedkiw, T. Aslam, S. Xu, The ghost fluid method for deflagration and detonation discontinuities, J. Comput. Phys. 154 (2) (1999) 393–427.
[40] T. Ménard, S. Tanguy, A. Berlemont, Coupling level set/vof/ghost fluid methods: Validation and application to 3d simulation of the primary

break-up of a liquid jet, Int. J. Multiph. Flow. 33 (5) (2007) 510–524.
[41] W. Bo, J.W. Grove, A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Comput. & Fluids 90 (2014) 113–122.
[42] O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput.

Phys. 227 (18) (2008) 8395–8416.
[43] W. Donghong, Z. Ning, H. Ou, L. Jianming, A ghost fluid based front tracking method for multimedium compressible flows, Acta Math. Sci. 29

(6) (2009) 1629–1646.
[44] R.W. Houim, K.K. Kuo, A ghost fluid method for compressible reacting flows with phase change, J. Comput. Phys. 235 (2013) 865–900.
[45] B. Lalanne, L.R. Villegas, S. Tanguy, F. Risso, On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid

method, J. Comput. Phys. 301 (2015) 289–307.
[46] T. Liu, B. Khoo, C. Wang, The ghost fluid method for compressible gas-water simulation, J. Comput. Phys. 204 (1) (2005) 193–221.
[47] T. Michael, J. Yang, F. Stern, A sharp interface approach for cavitation modeling using volume-of-fluid and ghost-fluid methods, J. Hydrodyn.

Ser. B 29 (6) (2017) 917–925.
[48] V. Moureau, P. Minot, H. Pitsch, C. Bérat, A ghost-fluid method for large-eddy simulations of premixed combustion in complex geometries, J.

Comput. Phys. 221 (2) (2007) 600–614.
[49] J. Qiu, T. Liu, B.C. Khoo, et al., Simulations of compressible two-medium flow by runge-kutta discontinuous Galerkin methods with the ghost

fluid method, Commun. Comput. Phys. 3 (2) (2008) 479–504.
[50] H. Terashima, G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys. 228 (11) (2009)

4012–4037.
[51] P. Trontin, S. Vincent, J.-L. Estivalezes, J.-P. Caltagirone, A subgrid computation of the curvature by a particle/level-set method. application to

a front-tracking/ghost-fluid method for incompressible flows, J. Comput. Phys. 231 (20) (2012) 6990–7010.
[52] L.R. Villegas, R. Alis, M. Lepilliez, S. Tanguy, A ghost fluid/level set method for boiling flows and liquid evaporation: Application to the leidenfrost

effect, J. Comput. Phys. 316 (2016) 789–813.
[53] L. Xu, T. Liu, Explicit interface treatments for compressible gas-liquid simulations, Comput. & Fluids 153 (2017) 34–48.
[54] L. Xu, C. Feng, T. Liu, Practical techniques in ghost fluid method for compressible multi-medium flows, Commun. Comput. Phys. 20 (3) (2016)

619–659.
[55] B. Van Poppel, O. Desjardins, J. Daily, A ghost fluid, level set methodology for simulating multiphase electrohydrodynamic flows with application

to liquid fuel injection, J. Comput. Phys. 229 (20) (2010) 7977–7996.
[56] L. Cai, J.-H. Feng, W.-X. Xie, J. Zhou, Tracking discontinuities in shallow water equations and ideal magnetohydrodynamics equations via ghost

fluid method, Appl. Numer. Math. 56 (12) (2006) 1555–1569.
[57] W.-X. Xie, L. Cai, J.-H. Feng, Tracking entropy wave in ideal mhd equations by weighted ghost fluid method, Appl. Math. Model. 31 (11) (2007)

2503–2514.
[58] X. Zeng, C. Farhat, A systematic approach for constructing higher-order immersed boundary and ghost fluid methods for fluid–structure

interaction problems, J. Comput. Phys. 231 (7) (2012) 2892–2923.
[59] L. Xu, T. Liu, Modified ghost fluid method as applied to fluid-plate interaction, Adv. Appl. Math. Mech. 6 (1) (2014) 24–48.
[60] T. Liu, A. Chowdhury, B.C. Khoo, The modified ghost fluid method applied to fluid-elastic structure interaction, Adv. Appl. Math. Mech. 3 (5)

(2011) 611–632.
[61] L. Xu, T. Liu, Optimal error estimation of the modified ghost fluid method, Commun. Comput. Phys. 8 (2010) 403–426.
[62] L. Xu, T. Liu, Accuracies and conservation errors of various ghost fluid methods for multi-medium riemann problem, J. Comput. Phys. 230 (12)

(2011) 4975–4990.
[63] T. Liu, B. Khoo, The accuracy of the modified ghost fluid method for gas–gas riemann problem, Appl. Numer. Math. 57 (5–7) (2007) 721–733.
[64] S. Ahmed Ullah, S. Zhao, Pseudo-transient ghost fluid methods for the poisson-boltzmann equation with a two-component regularization, Appl.

Math. Comput. 380 (2020) 125267.

http://refhub.elsevier.com/S0898-1221(20)30174-7/sb28
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb28
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb28
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb29
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb29
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb29
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb30
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb30
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb30
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb31
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb32
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb33
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb33
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb33
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb34
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb35
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb35
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb35
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb36
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb36
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb36
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb37
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb38
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb38
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb38
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb39
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb40
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb40
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb40
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb41
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb42
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb42
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb42
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb43
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb43
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb43
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb44
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb45
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb45
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb45
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb46
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb47
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb47
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb47
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb48
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb48
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb48
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb49
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb49
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb49
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb50
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb50
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb50
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb51
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb51
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb51
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb52
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb52
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb52
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb53
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb54
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb54
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb54
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb55
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb55
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb55
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb56
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb56
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb56
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb57
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb57
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb57
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb58
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb58
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb58
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb59
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb60
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb60
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb60
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb61
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb62
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb62
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb62
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb63
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb64
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb64
http://refhub.elsevier.com/S0898-1221(20)30174-7/sb64

	Alternating direction ghost-fluid methods for solving the heat equation with interfaces
	Introduction
	The GFM and MIB-type methods in one dimension
	Enforcing 1D jump conditions in the GFM
	Enforcing 1D jump conditions in the MIB method

	Solving parabolic interface problems in two dimensions by the GFM and MIB-type methods
	GFM and MIB-type methods in two dimensions
	Time discretization
	Two dimensional numerical experiments

	Solving parabolic interface problems in three dimensions by GFM and MIB-type methods
	GFM and MIB-type methods in three dimensions
	Time discretization
	Three dimensional numerical experiments

	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	References


