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Abstract Parareal AlgorithmComputational Methods

The Hodgkin-Huxley model [2] is a system of differential equations that

describe the membrane voltage of an axon as it fires the basic signal of

the nervous system: the action potential. When charge-carrying ions

such as sodium and potassium are enabled to cross a selectively

permeable membrane, the resulting current propagates along the length

of the axon as a wave of altered voltage. However, the degree to which

the membrane is permeable to sodium and potassium is itself gated by

voltage; therefore, voltage depends on permeability and permeability

depends on voltage.

https://jackwestin.com/resources/mcat-content/plasma-membrane/membrane-potential

Hodgkin-Huxley Model 
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Here will be a description of our findings and a quick concluding

statement.

Voltage-gated channels

can open or close and

allow a surge of

Sodium and Potassium

ions to pass through.

Voltage and current in

the system are caused

by charged ions

moving across the

membrane.

Conclusion

In conclusion, our numerical methods show high agreement with

Hodgkin and Huxley’s findings. It shows a number of behaviors

dependent on starting conditions that appear consistent with biological

reality. The threshold of activation that we found using the Hodgkin-

Huxley model does line up with Hodgkin and Huxley’s calculated

results, but does not line up with the biological experimentally based

results. Even though there are values for which the model deviates from

biological behaviors, the model has reasonable predicted value for a

variety of starting values.

Forward Euler Method [1] - Fast, but inaccurate

RK4 Method [1] - Accurate, but more expensive
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Numerical Experiments

I: Total membrane current density (inward 

current positive) (𝜇𝐴/𝑐𝑚2)
𝐈𝒊: Ionic current density (inward current positive) 

(𝜇𝐴/𝑐𝑚2)
V: Displacement of the membrane potential 

from its resting value (depolarization negative) 

(mV)

𝑪𝑴: Membrane capacity per unit area (assumed 

constant) (𝜇𝐹/𝑐𝑚2)

t: Time (ms)

𝜶𝒊 and 𝜷𝒊: Rate constants for the i-th ion channel

𝑵𝒂+: Sodium

𝑲+: Potassium

l: Leak

g: Conduction (𝑚.𝑚ℎ𝑜/𝑐𝑚2)

ത𝐠: Maximal value of the conductance 

(𝑚.𝑚ℎ𝑜/𝑐𝑚2)

n, m, and h: Dimensionless quantities between 0 

and 1 (i.e. proportions) that are associated with 

Potassium channel activation, Sodium channel 

activation, and Sodium channel inactivation

Produced by holding the voltage at 15mV

for an indefinite time and then releasing it.

Holding voltage above the steady state

value causes the excitation value to shift

upward such that voltages normally above

the threshold may return to rest without

activation. Similarly, holding the voltage

below rest shifts the activation threshold

below rest.

The Parareal Algorithm is a unique parallel-in-time algorithm, developed

by Lions, Maday, and Turinici in 2001 [3]. It uses sequential numerical

methods running at different time discretizations. The algorithm

converges to the result obtained by the sequential method, but can

achieve significant time savings [4].

▪ Achieves time savings by solving sections at the same time using

multiple CPUs.

▪ Utilizes two temporal discretizations – one coarse, running in

sequential; and one fine, running in parallel, to solve the problem.

▪ Predictor-corrector algorithm generates reasonable starting values for

parallel computing carried out on all time slices simultaneously.

▪ Converges to a solution over multiple iterations with lower overall

running time than an equivalent sequential computation.

Constant current can often be used to

model the input for biological systems.

Repeated activations show the minimum

time between action potentials due to a

refractory period in which no additional

activity can occur. Additionally, the

voltage peak for the first activation is

slightly higher than subsequent values.

𝒙𝒊+𝟏= 𝒙𝒊 + 𝜶𝒙𝒊 ∗ 𝟏 − 𝒙𝒊 − 𝜷𝒙𝒊 ∗ 𝒙𝒊 ∗ 𝒅𝒕 for 𝒙 = 𝒎,𝒏, 𝒉

𝑽𝒊+𝟏 = 𝑽𝒊 + 𝑰𝒊 ∗
𝟏

𝑪𝑴
∗ 𝒅𝒕

For 𝑰𝒊 = (𝑰𝑻𝒐𝒕𝒂𝒍)𝒊 − ഥ𝒈𝑵𝒂+ 𝒎𝒊
𝟑 𝒉𝒊 𝑽𝒊 − 𝑽𝑵𝒂 − (ഥ𝒈𝑲+) 𝒏𝒊

𝟒 𝑽𝒊 − 𝑽𝑲 − ഥ𝒈𝒍(𝑽𝒊 − 𝑽𝑳)

𝒙𝒊+𝟏 = 𝒙𝒊 + [𝒌𝟏𝒙𝒊+𝟐𝒌𝟐𝒙𝒊 + 𝟐𝒌𝟑𝒙𝒊 + 𝒌𝟒𝒙𝒊] ∗
𝟏

𝟔
∗ 𝒅𝒕 for 𝒙 = 𝒎,𝒏, 𝒉, 𝑽

With 𝒌𝒋𝒙𝒊 𝑭𝒐𝒓 𝒋 = 𝟏, 𝟐, 𝟑, 𝟒 𝒂𝒏𝒅 𝒙 = 𝒎,𝒏, 𝒉, 𝑽 are calculated as:

𝒌𝒋𝒙𝒊= 𝜶𝒙𝒊 ∗ 𝟏 − (𝒙𝒏𝒐𝒘)𝒊 − 𝜷𝒙𝒊(𝒙𝒏𝒐𝒘)𝒊 for 𝒙 = 𝒎,𝒏, 𝒉. 

𝒌𝒋𝒙𝒊= 𝑰𝒊 ∗
𝟏

𝑪𝑴
for 𝒙 = 𝑽. 𝑾𝒆 𝒉𝒂𝒗𝒆 𝑰𝒊 are calculated as:   

𝑰𝒊 = (𝑰𝑻𝒐𝒕𝒂𝒍)𝒊 − ഥ𝒈𝑵𝒂+ 𝒎𝒏𝒐𝒘
𝟑

𝒊
𝒉𝒏𝒐𝒘 𝒊 𝑽𝒏𝒐𝒘 𝒊 − 𝑽𝑵𝒂 − ഥ𝒈𝑲+ 𝒏𝒏𝒐𝒘

𝟒
𝒊
(𝑽𝒏𝒐𝒘)𝒊 − 𝑽𝑲 − ഥ𝒈𝒍 (𝑽𝒏𝒐𝒘)𝒊−𝑽𝑳

Table of (𝒙𝒏𝒐𝒘)𝒊. For 𝒙 = 𝒎, n, h, V.

Numerical approximation of an action

potential in the Hodgkin-Huxley model

after a millisecond-long depolarization of

15mV.

Initial depolarizations below the excitation

threshold return to rest without activation.

For the same initial parameters, the

threshold for the RK4 method falls

between 6.61mV and 6.62mV.

Tolerance 
(mV)

Iterations 
(47 max)

10−5 3

10−6 4

10−7 4

10−8 5

▪ Preliminary estimations for a 48-CPU system.

▪ At 47 iterations time savings is negative

compared to sequential calculations, but the

Parareal algorithm finishes well before then.

▪ At massively increased CPU counts (100,

200, etc.), iteration count seems to fall around

~1/100th at this tolerance level.

j =1 (𝑽𝒏𝒐𝒘)𝒊= 𝑽𝒊 (𝒎𝒏𝒐𝒘)𝒊= 𝒎𝒊 (𝒏𝒏𝒐𝒘)𝒊= 𝒏𝒊 (𝒉𝒏𝒐𝒘)𝒊 = 𝒉𝒊

j=2 (𝑽𝒏𝒐𝒘)𝒊= 𝑽𝒊 + 𝟎. 𝟓𝒌𝟏𝑽𝒊 (𝒎𝒏𝒐𝒘)𝒊= 𝒎𝒊 + 𝟎. 𝟓𝒌𝟏𝒎𝒊
(𝒏𝒏𝒐𝒘)𝒊= 𝒏𝒊 + 𝟎. 𝟓𝒌𝟏𝒏𝒊 (𝒉𝒏𝒐𝒘)𝒊 = 𝒉𝒊 + 𝟎. 𝟓𝒌𝟏𝒉𝒊

j=3 (𝑽𝒏𝒐𝒘)𝒊= 𝑽𝒊 + 𝟎. 𝟓𝒌𝟐𝑽𝒊 (𝒎𝒏𝒐𝒘)𝒊= 𝒎𝒊 + 𝟎. 𝟓𝒌𝟐𝒎𝒊
(𝒏𝒏𝒐𝒘)𝒊= 𝒏𝒊 + 𝟎. 𝟓𝒌𝟐𝒏𝒊 (𝒉𝒏𝒐𝒘)𝒊 = 𝒉𝒊 + 𝟎. 𝟓𝒌𝟐𝒉𝒊

j=4 (𝑽𝒏𝒐𝒘)𝒊= 𝑽𝒊 + 𝒌𝟑𝑽𝒊 (𝒎𝒏𝒐𝒘)𝒊= 𝒎𝒊 + 𝒌𝟑𝒎𝒊
(𝒏𝒏𝒐𝒘)𝒊= 𝒏𝒊 + 𝒌𝟑𝒏𝒊 (𝒉𝒏𝒐𝒘)𝒊 = 𝒉𝒊 + 𝒌𝟑𝒉𝒊


