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Pennes Experiment

Pennes goal was to evaluate the applicability of heat flow
theory to the forearm in basic terms of local rate of tissue
heat production and volume flow of blood
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Pennes Bioheat Equation

Pennes Assumptions

The cross-section of a forearm is cylindrical

The rate of heat production by tissue will be considered
uniform throughout the forearm

The volume flow of blood is constant

The specific thermal conductivity K will be uniform
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Pennes Bioheat Equation

Pennes Bioheat Equation
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c Coefficient of heat for
tissue (J / kg ·◦C)

p Density of tissue
(kg/m3)

K Specific thermal con-
ductivity of tissue
(Watts / m ·◦C)

T Tissue temperature
(◦C)

Qm Rate of tissue heat pro-
duction (Watts/m3)

Qb Rate of heat trans-
fer, blood to tissue
(Watts/m3)
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Pennes Bioheat Equation

Steady State Equation

The steady state of the equation was used to simplify the
calculations. The steady state means: ∂T

∂t
= 0 from the

original equation.
The general equation can then be formulated as:

k∇2T +Qmet −Qblood = 0 (1.2)

where:

∇2T is the Laplacian operator representing diffusion of
heat.
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Numerical Method

Updating Formula

From equation 1.2, I descretized it using the finite difference
method. This resulted in the following updating formula:

Ti,j =
1

4

(
Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1 −

q · dx2

k

)
(2.1)

q is Qmet −Qblood, the heat generation rate (W/m3)

dx2 is the mesh size, the length or spacing between the
discrete points
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Jacobi Method

Applying Jacobi to the Temperature Update

Equation

To apply the Jacobi method, we introduce an iteration index k
and rewrite the equation as:

T
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1

4

(
T
(k)
i+1,j + T

(k)
i−1,j + T

(k)
i,j+1 + T

(k)
i,j−1 −

q dx2

k

)
Procedure:

Start with an initial guess T
(0)
i,j for every grid point.

Update the temperature at each grid point using the above
iterative formula.

Repeat the process until the solution converges (i.e., the
change in Ti,j becomes negligibly small).
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Jacobi Method

Jacobi Results

Running and timing the Jacobi code, we get the following
results:

Completed in 24,441 iterations with an error of
9.9966678135388065E-07

Run time: 5.044s

Changing parameters and number of grid points can
significantly alter the time it takes to converge. This
process can be quite lengthy depending on the problem
parameters.
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Parallel Computing

What is Parallel Computing?

Breaking a big problem into smaller tasks.

Solving those tasks simultaneously using multiple
processors.

Faster and more efficient than doing one task at a time.

To speed up computation, we employ parallel
computing using the Message Passing Interface (MPI).

The parallel method used for my research is Spatial
Domain Decomposition.
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Parallel Computing

Parallel Computing Visualization



Pennes Bioheat Equation 11/17

Parallel Computing

Difference in Computational Time

Method Number of CPU’s Run Time
Jacobi 1 5.044s
Parallel Jacobi 2 0.798s
Parallel Jacobi 4 0.645s
Parallel Jacobi 5 0.598s
Parallel Jacobi 6 0.700s
Parallel Jacobi 8 0.732s
Parallel Jacobi 10 0.871s

Table: Comparison of Jacobi implementations

As we can see, more processors does not mean faster and
faster solving time. This is due to Amdahl’s Law.
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Parareal Algorithm

The Parareal Algorithm

The next goal of the research was to apply the Parareal
Algorithm to the Pennes Bioheat Equation. For this, we go
back to the original Partial Differential Equation:

cp
∂T

∂t
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∂2T

∂y2
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∂2T

∂z2

]
+Qm +Qb (5.1)

This method was developed by Lions, Maday, and
Turinici

A method to speed up solving time-dependent
problems.

Much more complex since we are working with a
partial differential equation
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Parareal Algorithm

Parareal Algorithm: Core Concepts

1. Coarse Propagator u
(k)
n+1 = G(u

(k)
n , tn,∆t)

Cheaper, faster, but less accurate

Runs sequentially over the time domain

2. Fine Propagator u
(k)
n+1 = F (u

(k−1)
n , tn,∆t)

Computationally expensive

Can be run in parallel over subdomains

3. Predictor-Corrector Update Rule

u
(k+1)
n+1 = G(u

(k+1)
n , tn,∆t) + F (u

(k)
n )−G(u

(k)
n )

Combines fast parallel fine step with cheap coarse
prediction

Iterated until convergence
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Parareal Algorithm

Parareal Algorithm Output

Iteration Max Difference

1 1.06811523E-04
2 8.77380371E-05
3 8.01086426E-05
4 7.87016254E-05
5 7.67235015E-05
6 7.24560251E-05
7 7.02351095E-05
8 6.67041494E-05
9 6.23001457E-05
10 5.72204590E-06

Table: Parareal Iterations and Maximum Differences(between
each iteration) in 1D, Runtime: 0.084s
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Parareal Algorithm

Parareal Results

Figure: Spatial Domain
Decomposition on the
Ordinary Differential Equation

Figure: Parareal Algorithm on
the Partial Differential
Equation



Pennes Bioheat Equation 16/17

Parareal Algorithm

Conclusion

The Spatial Domain Decomposition and Parareal
Algorithm solve the problem much more efficiently
compared to the sequential method.

Ultimately, the goal is to combine these methods to
increase efficiency even more

Additionally, further research is needed to apply the
Parareal Algorithm in the 2D and 3D case
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