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Motivation

Finding the roots of a polynomial has been a mathematical problem of
interest for hundreds of years.
For polynomials of degree ≤ 4, algebraic solutions exist to find the exact
roots of polynomials.
However, those algebraic formulas raise a question: Can such formulas
produce accurate roots when programmed and executed on a modern
computer?
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Review

Recall from high school that for a quadratic of the form
ax2 + bx + c = 0, x is given by:

x =
−b ±

√
b2 − 4ac
2a (1)

However, the Quadratic Formula can be inaccurate for extreme values,
particularly for very large values of b.
Consider the discriminant, defined as√

b2 − 4ac (2)

If a and c are small relative to a large value b2, the discriminant can be
approximated as √

b2 − 4ac ≈
√

b2 = b (3)
Using this approximation, the Quadratic Formula becomes

x ≈ −b + b
2a =

0

2a = 0 (4)
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Low-Entropy Method

Low-Entropy: An expression that has its terms organized in a way to
make their origin evident.
The Low-Entropy Method is based on the original quadratic formula and
aims to resolve truncation issues.
This method eliminates truncation by subtracting two close values before
numerical evaluation.
Middlebrook introduces two terms, Q and F and defines them as follows:

Q =

√
(c/a)
b/a (5)

F =
1

2
+

1

2

√
1− 4Q2 (6)

The two roots of the quadratic are given by:

x1 = − c
b
1

F x2 = −b
a F (7)

Danny Halovanic Department of Mathematics West Chester University of PennsylvaniaComparing Methods for Finding Roots of Polynomials April 4, 2025 5 / 16



Example of Low-Entropy Method

Middlebrook used the example of a = c = 1 and b = 45, 000 to show
the motivation behind the Low-Entropy Method.
Using a 10 digit calculator, the smaller root using the traditional formula
is 2.000000000 ∗ 10−5.
The actual value, to 9 significant digits, is 2.22222222 ∗ 10−5
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Bisection Method

The Bisection Method is a numerical technique for approximating roots
of a polynomial.
The Bisection Method follows these steps:

1 Choose an interval.
2 Calculate the midpoint.
3 Evaluate f (c).
4 Repeat the process until the interval is sufficiently small.

Figure: Visualizing the Bisection Method
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Newton’s Method

Newton’s method is an iterative numerical technique for finding roots
using differential calculus.
The method follows these steps:

1 Choose an initial guess close to the actual value.
2 Compute the next approximation using Newton’s iteration formula:

xn+1 = xn −
f (xn)

f ′(xn)
(8)

3 Repeat the previous step until |xn+1 − xn| is sufficiently small.

Figure: Newton’s Method Visualized
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Results for Quadratic Case (a = c = 1)

b = −5 × 1011

Method Small Root Big Root Iterations

Quadratic Formula 0.000 5.000e11 N/A
Bisection 2.000e-12 5.001e11 51
Newton’s 2.000e-12 5.000e11 3
Low-Entropy 2.000e-12 5.000e11 N/A

b = −5.3 × 1011

Method Small Root Big Root Iterations

Quadratic Formula 0.000 5.300e11 N/A
Bisection 1.887e-12 5.299e11 51
Newton’s 1.887e-12 5.300e11 3
Low-Entropy 1.887e-12 5.300e11 N/A
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Graphical Representation for Quadratic Results

Figure: b = −5.0× 1011 Figure: b = −5.3× 1011
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Cubic Formula

The solution for a general cubic polynomial, ax3 + bx2 + cx + d = 0 is
given by the following formula:

The cubic formula is quite lengthy and involves the subtraction of many
terms, leading to truncation errors for extreme coefficient values.
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Results for Cubic Case (With a = c = d = 1)

b = −8 × 109

Method Root 1 Root 2 Root 3 Iterations

Cubic Formula 8.000e9 No real solution! No real solution! N/A
Bisection 8.000e9 1.118e-05 -1.144e-05 51
Newton’s 8.000e9 1.118e-05 -1.144e-05 21

b = −9 × 109

Method Root 1 Root 2 Root 3 Iterations

Cubic Formula 9.000e9 25.810 -25.810 N/A
Bisection 9.000e9 1.054-5 -1.049e-5 51
Newton’s 9.000e9 1.054e-5 -1.049e-5 21
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Graphical Representation for Cubic Results

Figure: b = −8× 109 Figure: b = −9× 109
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Conclusion

The standard algebraic formulas work well for most cases when
coefficients do not have extreme values.
Due to rounding errors, algebraic formulas may cause the smaller root(s)
to differ significantly from the results obtained numerically.
Generally speaking, the bisection method is the least efficient method in
terms of computation time due to its slow rate of convergence.
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Further Research

While this presentation mentioned second-degree and third-degree
polynomials, further investigation is needed for quartic polynomials.
Further comparisons with extreme values for a and c can also be
explored.
Additionally, further exploration is needed to understand why
low-entropy forms may or may not exist for cubic and quartic formulas.
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