Reading Between the Lines: Uncovering Market Regimes with Hidden Markov Models

Jacob Martin

Department of Mathematics West Chester University of Pennsylvania

Spring 2025

Content

§Introduction

§Markov Chains

§Hidden Markov Chains

§Implementation

§Results

§Conclusion

Project Motivation

- ▶ Since 2016, I have been an investor and algorithmic trader
- The strategies and indicators often involve advanced applied math concepts
- Roughly 5 years ago, after futile attempts to read about an indicator using hidden markov models, I was motivated to get the degree in Applied & Computational Mathematics

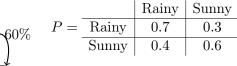
Here we are, five years later, implementing the model.

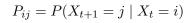
What is a Markov Chain?

- Discovered in 1906 by Andrey Markov, a Markov Chain (MC) is a stochastic (random) model describing a sequence of events
 - The MC incorporates randomness and probability to predict outcomes
 - The MC embraces uncertainty rather than fighting it
 - The model wants to determine what the future state a given system will be in
 - E.g., Is tomorrows weather state going to be sunny or rainy?

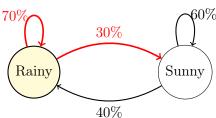
The Memoryless Nature of Markov Chains

Real-World Example

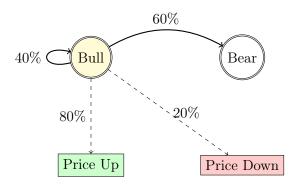

Think of a weather forecast:


- ▶ If it's sunny today, there's a 70% chance it's sunny tomorrow
- ► A Markov chain only considers "it's sunny today" to predict tomorrow

- Markov chains have "no memory" of their past
- Only the current state matters for deciding the future
- Previous history is irrelevant once you know the current state


Markov Chain State Transition Example

Transition Matrix P



Where P_{ij} is the probability of transitioning from state *i* to state *j*

Difference in Hidden Markov Chain

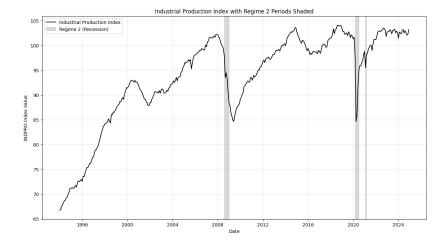
The HMM can expose future observations using an **Emissions** Matrix

- Bear and Bull are the states
- Price data are observations within the current state
- Price up and Price down are additional probabilities which the model outputs

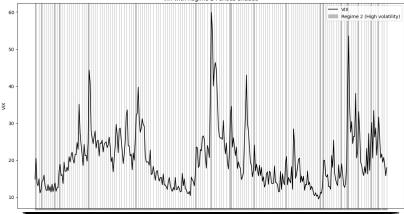
Implementation

- ▶ This implementation of the Hidden Markov Model is based on the work by in the white paper called *RISKS* by Nguyen and Nguyen. (1-1).
- The research performed in the paper aimed to implement several HMM's to detect regimes for various macroeconomic variables.
- ▶ The authors implemented four algorithms:
 - ▶ Forward & Backward Algorithms,
 - ▶ Used for parameter estimation
 - ▶ Baum-Welch algorithm
 - Maximizes parameter estimation
 - Vertibi algorithm
 - Determines optimal next state to choose

Macroeconomic Variables Overview

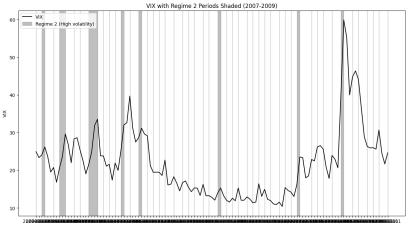

Variable	Data Descrip- tion	State 1	State 2
S&P 500 (to- tal market in- dex)	MoM % change	bull	bear
INDPRO (industrial production index)	MoM % change	growth	recession
VIX (volatil- ity index)	MoM % change	low volatility	high volatility
CPI (total urban consumer index)	YoY % change	inflation	deflation

S&P 500 Results



S&P 500 with Regime 2 Periods Shaded

INDPRO Results


VIX Results

VIX with Regime 2 Periods Shaded

Date

VIX Results 07 - 08 zoomed

Date

CPI Results

CPI All Urban Consumers with Regime 2 Periods Shaded

Conclusion

This project included learning about the inner workings of a hidden markov model enough to fully understand and implement it. It is quite satisfying to achieve this goal with quantifiable, valid results.

Next Steps

- ► Finer granularity models (hour-by-hour)
- ▶ Implement a trading strategy on top of this indicator

References

1 Nguyen, N., & Nguyen, D. (2015). Hidden Markov Model for Stock Selection. *Risks*, 3(4), 455-473. Published: 29 October 2015 ISSN 2227-9091 www.mdpi.com/journal/risks